
A NOTE ON GÖDEL´S THEOREM

J. Ulisses Ferreira

Trv Pirapora 36 Costa Azul, 41770-220, Salvador, Brazil

ABSTRACT

This short and informal article shows that, although Godel's theorem is valid using classical logic, there

exists some four-valued logical system that is able to prove that arithmetic is both sound and complete.

Such a system must have at least four values: false, true, unknown and inconsistent, although the values

may have other terms. In order to make the claim very clear, this article presents a four-valued logic and

also describes a four-valued Prolog in some informal, brief and intuitive manner.

KEYWORDS

Gödel, incompleteness theorem, four-valued logic, Hilbert’s program

1. INTRODUCTION

In 1931, Kurt Gödel, after his revolutionary theorem, placed a full stop on Hilbert's dream of

formalizing mathematics. Gödel demonstrated that it would not work even for arithmetic[1].

On the other hand, in the nineties, the present author started inserting a third value called

"unknown" in Plain[2], i.e. a programming language that he was designing at that time. The

unknown constant was theoretically referred to as uu since the end of nineties. Later, a five-

valued logic was introduced with the values in {tt, ff, uu, ii, kk}. In 2004, the same logic was

published as a journal article[3] and a seven-valued logic was also published in a Conference in

San Diego[4], adding the values {fi, it} ("false or inconsistent", "inconsistent or true",

respectively) for being able to be used together with the same uncertainty model that had been

proposed during the present author’s Master course in 1990. The seven-valued logic that makes

use of that uncertainty model permits that, during the computation, as the system obtains novel

pieces of information, variables change their values. An example of this is the paternity test:

before the discovery of the DNA test, it was possible to conclude whether a child was a

daughter or son of a particular man by hereditary physical characteristics. However, there was

always uncertainty up to some extent. The uncertainty factor could be represented by uu

(unknown), at least as an initial state of some variable. Since the DNA test was discovered, all

variables which represent the hypothesis of being the child's father should change their states

from uu to either kk or tt or ff.

As part of the present author’s previous contribution, the kk value means "knowable", and it is

usable when something is not already known, but it is already known that it is consistent. It can

either be true or false but not both. It can be known by God or someone else or some machine,

for instance, but it is not already known by the machine which is deductively reasoning, or by

the person who is deductively doing, and it may be unknown forever, but at least its consistency

is guaranteed. This is the meaning of the kk value, which fits in the referred uncertainty model

when a variable thresholds collapse: False = True, which means that there is nothing strictly

between the False and the True thresholds. In the above example of the paternity test, uu used to

represent the initial state before the discovery of the DNA test, whereas kk represents the initial

state given the existence of the DNA test, but before knowing the result of a particular DNA

test, either ff or tt.

Individually and previously, Kleene, Łukasiewicz and Priest proposed their three-valued logics.

In 1977, Nuel Belnap (1930-) had proposed his logic on four values[5]. What was observed

several years ago is that Gödel's proof may not work together with some logics that have more

than three values. The four necessary values mean "true", "false", "unknown" and

"inconsistent", or similar meanings. That is, at least these four values and meanings. The latter

two values correspond to N (none) and B (both) in the four-valued Belnap's logic, respectively,

and correspond to uu and ii, respectively, in both referred logics of the present author, as well as

in his four-valued logic presented in this article, and the four-valued Prolog also described here.

The problem Gödel introduced was due to existing self-references and paradoxes, which made

propositions of arithmetic result in both true and false, together with the observation that any

proof over mathematics was also a mathematical object itself. However, Boolean logics are

clearly unable to permit that formal systems capture the problem pointed out by Gödel in his

theorem. That is, no binary formal system can capture it.

One condition for a four-valued formal system being able to prove all true propositions, and

only the true propositions, is certainly that it has the same results of the classical logic, except

where one or two operands have values other than true and false. In any proof, a result here is

the true value only, and do not include values such as "unknown". Belnap's four-valued logic

does not fail under this condition, for, although (B ˅ N = T), where T represents the true value,

the values of the operands are "B" and "N", which are not Boolean.

In the present author’s PhD thesis, there was a kind of typo in the truth-table for the specific

case ff↔ff, which results in tt in the five-valued logic but ff was written instead: a kind of

mistake in only one of the two truth-tables for the equivalence operation. However, taking this

into account, and by using only one of those equivalence operations, that five-valued logic

suffices regarding that condition. Moreover, in 2007, having written a program which seems to

be correct, it was checked whether such a four-valued logic exists, and its computation resulted

in several logics, where one of them was Belnap's logic. The 12th solution written by the

program computation was the logic which was the most interesting. In 2011, one could not

claim the authorship of that four-valued logic, but the referred truth-tables are the following:

Table 1. The present author’s four-valued logic true table

Section 2 dedicates to Gödel’s theorem and his proof, and a system for capturing all possible

results is informally described. In section 3, a four-valued Prolog programming language is

briefly described, whereas section 4 contais the conclusions.

2. ON GÖDEL’S PROOF

The set of all propositions on arithmetical true is written for the two Boolean values, but that set

could be complete but cannot be sound, i.e. it is clearly inconsistent. However, the present

author writes an external layer with an external view of that set, as well as an internal layer. The

former layer is written with four or more values. It interprets that set and, thus, both layers

together form a formal system where the two-valued system is the server while the four-valued

system is the client. The external layer makes use of the internal one. The system with at least

four values is pretty simple and works in the following manner:

Whenever one attempts to prove that a proposition is true and the two-valued system results in

true, the external layer still tries to prove that the proposition is false: If the two-valued system

results in true, the external layer results in ii, the inconsistent value. However, on the other

hand, if the two-valued system results in false instead, the external layer results in true.

Whenever one attempts to prove that a proposition is true and the two-valued system results in

false, the external layer still tries to prove that the proposition is false: If the two-valued system

results in false, the external layer results in uu, the unknown value. However, on the other hand,

if the two-valued system results in true instead, the external layer results in false.

In other words, the meaning of a two-valued internal query is only the attempt to prove, which

either succeeds or not. In this way, the whole formal system is clearly sound and complete. In

1997, the present author wrote a three-valued Prolog which he called Kleene at that time and

Globallog in the following year[6] for becoming more modest, and the same language is the

subject of one of the chapters of his PhD thesis. The system described above in this section can

be more clearly written in a Pascal-like language style as follows:

1. An algorithm in Pascal-like language

type
 proposition = string;

 QueryAnswers = (LocalFalse, LocalTrue, NotFound);

 FourValues = (uu, ff, tt, ii);

 (* … *)

function TryProposition2v(p: proposition, q: QueryAnswers): boolean;

begin

 (*any polynomial search algorithm with unification for checking whether

 the proposition p is true. Alternatively, this function also returns

 the information that the search algorithm has been unable to answer

 whether the proposition p is true or false with respect to the current

 state of the knowledge base. In this case, where no unification has been

 found, the result is false.

 *)

end;

function proposition4v(p: proposition): FourValues;

begin

 if TryProposition2v(p,LocalTrue) then

 if TryProposition2v(p,LocalFalse) then

 proposition4v := ii

 else

 proposition4v := tt

 else

 if TryProposition2v(p,LocalFalse) then

 proposition4v := ff

 else
 proposition4v := uu

end;

Clearly, such an algorithm captures all possibilities, and can be adapted to extend from the

propositional logic to a more sophisticated and even second-order logic with predicates.

Certainly, we are unable to state all mathematical true, for mathematics is a science and, as

such, new theorems and proofs, new mathematical objects, are being formulated all the time by

researchers. So, a proper four-valued formal system is able to state when a proposition is still

unknown due to the uu value. On the other hand, such a formal system captures the notion of

paradoxes due to the ii value. Therefore, it is sound and complete.

3. A FOUR-VALUED PROLOG

For further work, a four-valued Prolog can be formally defined, implemented and used. This

section introduces a brief, informal and intuitive description of the adaptation of the three-

valued Prolog defined by the present author in [6]. Let us call Prolog4v the sample

programming language whose interpreter is intended to be the four-valued formal system.

3.1 Syntactical and Semantic Definitions

Definition 1. A program in Prolog4v is a sequence S of clauses c1 … cn . Thus, it is said that a

computation by S proves a goal g if and only if there exists some ci in S such that g is an

immediate consequence of ci , assuming that the body of ci can be proven. The notion of clause

and body are in the following definition subsection.

Given S as a sequence of clauses c1 … cn, a program in Prolog4v corresponds to the disjunction

among all clauses. That is: c1 ˅ … ˅ cn , where the disjunctive operator ˅ is the same operator of

the four-valued logic in table 1. Nonetheless, the interpreter, also called formal system here,

carries out its computation “downwards”, i.e. from the first to the last clause. The sequence of

clauses is often written like a Prolog program is, i.e. one clause fills one line.

Definition 2. A clause is a language construct which has one of the forms bellow:

[not] p(t1, , … , tn).

or

[not] p(t1, … , tn) ← [not] p1(t1,1 , … , tr,1), … , [not] pm(t1,m , … , ts,m).

The first clause above corresponds to a fact whereas the second clause corresponds to a rule.

For instance,

 not astar(moon).

is a fact (the moon is not a star), whereas

 shines(X) :- astar(X).

is a rule (if X is a star, X shines). If one tries to prove shines(moon), the corresponding query

results in ff, the false value.

All clauses end with a dot symbol. As usual in syntax definitions, the above brackets are not

part of the language but, instead, they mean that the negation operator is optional in the clauses.

Any rule contains its head, which is on the left of the inference operator ←, and its body, which

is on the right of the same operator. At the lexical level of Prolog4v, there are two different

inference operators to be chosen by the programmer, either “:-“ like in Prolog or “:=”. The

former operator obeys the Closed World Assumption[7] and makes use of the Negation as

Failure[8]. This means that if the body of a rule results in uu, the “:-“ operator makes the head

of the same rule become ff. Similarly, if the body of a rule results in ii, the “:-“ operator also

makes the head of the same rule become ff. The latter operator “:=” is a contribution of the

present author, which obeys what he called the Open World Assumption in his PhD thesis[6]

and it corresponds to the → operator described in table 1.

Briefly, if no clause unifies some given goal g, the answer of the query for g is uu, the unknown

constant of Prolog4v.

The body of any rule is formed by a sequence of predicates with zero or more parameters t

(showed with the indexes above), separated by the comma symbol (“,”), which in its turn

corresponds to the ˄ operator of the four-valued logic that was showed in table 1, in the

introductory section. During the computation, each predicate pj(t1,j , … , tu,j) corresponds to a

new four-valued goal and to a new four-valued query.

Definition 3. There exist four predefined constants in Prolog4v, namely, ff, tt, uu and ii.

The above constants correspond to the four operands F, T, U and I, respectively, of the four-

valued logic described in table 1.

Note that, in accordance with table 1, if any of those queries in a body results in ff, the

computation of the whole rule results in ff regardless of the existence of any possible

inconsistency or lack of information in the other queries of the body of the rule in question. The

queries are performed from left to right like in Prolog, but it is easy to see that the Prolog4v

interpreter can be designed to carry out the computation in parallel and it can even distribute the

computation among a number of machines. Also from table 1, note that, for any rule, the

computation of the rule results in tt if and only if all containing queries in its body result in tt,

that is, the trivial and Boolean cases clearly must hold.

With respect to the “:=” inference operator, it corresponds to the → implication operator of the

introduced four-valued logic, but containing the sides of the implication swapped. One could

have chosen any pairs of operands of the → table whose results are all tt. However, the main

diagonal of the → table is what makes sense in the real world, hence they are the choices. That

is to say, ff → ff, tt → tt, uu → uu, as well as ii → ii all result in tt and therefore → operator is

not only sound but also makes sense in the real world. During the computation, if the body of a

rule results in ii, the query for the whole rule results in ii and, in this way, the inconsistency is

propagated, possibly to the level of the user, such as a mathematician.

However, any query with the negation operator can also be treated as a unity. That is, although

the four-valued logic introduced in table 1 contains the “not” operator ⌐, the system might not

make use of it. Instead, the not operator can be part of the query as well as it is part of the

unification algorithm, i.e. the system tries to unify the predicate including the “not” operator.

Furthermore, not uu does not result in ii, whereas not ii does not result in uu either. Instead, the

system ought to propagate uu and also ii. Thus, not uu results in uu whereas not ii results in ii.
These are the only two exceptions with respect to table 1. In other words, there are two different

forms of negation.

In contrast with the negation in table 1, let us call the not operator in the definition 2 “abstract

negation”. It had also been called “abstract negation” in the three-valued Prolog. Here, the

negation is a four-valued extension.

Finally, the ↔ operator in the above four-valued logic is simply not used by the system.

3.2 Examples

Consider the following example of a two-clause program in Prolog4v:

happy(ann).
not happy(ann).

Over the last thirty years, some proposals have been made for solving the inconsistency

problem[9], such as setting priorities, possibly in some implicitly way, for all clauses. The

literature on inconsistency in deductive databases and logic programs is large[10] but the

present author thinks that there is little references to abstract negation.

In the above example, a query like happy(ann) clearly results in ii. Accordingly, a query like

not hapy(ann) also results in ii. In both cases, the system tries to prove both and, in accordance

with the algorithm 1, it implicitly makes two binary queries, for both the positive and the

negative forms of the predicate.

Now, consider the classical non-flying bird example:

 fly(X) := bird(X), not penguin(X).
 not fly(Y) := penguin(Y).
 bird(tweety).
 penguin(Z) :- bird(Z), polar(Z).

To answer the query fly(tweety), the system unifies the goal with the head of the first rule,

binding the variable X to the constant tweety. Then, the system finds the subgoal bird(tweety)
which in turn unifies the third clause and that subquerry results in tt. Then, in the body of the

first rule, not penguin(tweety), is the next subgoal to be explored. Note that, because of the

inference operator chosen, penguin is the head of a closed-world rule. Then, the subgoal unifies

the fourth clause binding Z to tweety. As the subgoal bird(tweety) had already been proven,

the next subgoal is polar(tweety). To explore this subgoal, the system does not unify any clause

and, because of this, this subquery results in uu. The body of the fourth clause results in uu since

T Ʌ U results in U in table 1. The subquery penguin(tweety) results in ff because of the

closed-world assumption made by using the “:-“ operator. If one replaces “:-“ by “:=” in the

fourth clause, the subquery penguin(tweety) results in uu instead.

Now, consider a new clause

 polar(tweety).

is asserted and that the system places it at the end of the sequence of clauses. For the same query

fly(tweety), the system now answers ff. That is, it learns. In comparison to a similar Prolog

program:

 fly(X) :- bird(X), not penguin(X).
 bird(tweety).
 penguin(Z) :- bird(Z), polar(Z).

The same query fly(tweety) would have resulted in true because the third clause alone ensures

that only a polar bird is a penguin. That is, until the knowledge base is complete, the system

sometimes gives wrong answers with respect to the real world. For instance, for a query such as

fly(airplane), the answer is uu in the Prolog4v program above, whereas the same query results

in false in the three-clause Prolog program above. Following this, binary formal systems are

clearly not appropriate to write mathematical truths.

As another example, suppose that one knows that Berne is the capital of Switzerland and that

each county has one capital only. In Prolog4v, one would write

 capital(berne,switzerland).
 not capital(X,Y) := capital(Z,Y), X <> Z.

where <> stands for the different from (≠) operator. A non-ground query, i.e. a query where

there is some unbound variable, for instance capital(bern,X) (note the different spellings)

would result in X = uu, whereas a ground query such as capital(zurich,switzerland) would

definitely result in ff as follows: the corresponding goal would not unify the first clause but

would unify the second one because the presence of the not abstract negation in its head does

not fail during the computation of the unification algorithm. In this case, X is bound to zurich

and Y is bound to switzerland. Then, the system tries to prove the subgoal

capital(Z,switzerland) and unifies the first clause, i.e. the fact capital(berne,switzerland)
binding Z to berne. Now, the system evaluates the expression X <> Z, which in turn results in

tt as zurich is not berne. Since all premises of the rule are true, the body results in tt and the

system concludes that the head not capital(zurich,switzerlan) is tt and, hence, that

capital(zurich,switzerland) is ff, and that is the response of the query at the user’s level.

4. CONCLUSIONS

There exists some four-valued formal system that is able to state arithmetical truths including

paradoxes. If it is possible for a machine to generate all truths, the same formal system can be

used on a suitable knowledge base for that purpose. Queries reaching paradoxes are answered

with ii, the inconsistent value. On the other hand, the claimed system is also able to answer

queries with uu, the unknown value. The content of the present article was meant to be

comprehensive even for undergraduate student. Philosophy students can also understand it.

The computation by the referred formal system roughly takes the double the time of a typical

binary formal system: some time for trying to prove that a goal is true and some additional time

for trying to prove that the same goal is false. Therefore, its computation is polynomial.

ACKNOWLEDGEMENTS

Many thanks to the supervisors of the present author’s Master course, namely, Pedro Sérgio

Nicolletti and Hélio Menezes Silva.

REFERENCES

[1] Gödel, Kurt, (1931) Über formal unentscheidbareSätze der Principia Mathematica und

verwandterSysteme I. MonatsheftefürMathematikunPhysik, Vol. 38, pp173-198.

[2] Ferreira, Ulisses (2000) uu for programming languages. ACM SIGPLAN Notices, 35(8): pp20-

30.

[3] Ferreira, Ulisses (2004) A five-valued logic and a system. Journal of Computer Science and

Technology, 4(3): pp134-140, October.

[4] Ferreira, Ulisses (2004) Uncertainty and a 7-valued logic. In Pradip Peter Dey, Mohammad N.

Amin, and Thomas M. Gatton, editors, Proceedings of The 2
nd

 International Conference on

Computer Science and its Applications, pp 170-173, National University, San Diego, CA, USA,

June.

[5] Belnap Jr, Nuel, (1975) A useful four-valued logic. In J. Michael Dunn and George Epstein,

editors, Proceedings of the Fifth International Symposium on Multiple-Valued Logic, Modern

Uses of Multiple-Valued Logic, pp 8-37. Indiana University, D. Reidel Publishing Company.

[6] Ferreira, Ulisses (2004) A prolog-like language for the internet. In Veljko Milutinovic, editor,

Proceedings of IPSI CAITA-04, Purdue, Indiana, USA.

[7] Reiter, R. (1978) On Closed World Data Bases in Logic and Data Bases, Plenum Press, New

York, pp 55-76.

[8] Clark, Keith (1978) Negation as Failure in Logic and Data Bases, Plenum Press, New York, pp

293-322.

[9] Dung, P. M. & Mancarella P. (1996) Production Systems need Negation as Failure, Proceedings

of the XIII National Conference on Artificial Intelligence, vol 2, AAAI Press and the MIT Press,

pp 1242-1247.

[10] Seipel, Dietmar (1998) Partial Evidential Stable Models for Disjunctive Deductive Databases, in

Logic Programming and Knowledge Representation, Third International Workshop / LPKR’97,

Lecture Notes in Artificial Intelligence, vol. 1471, Springer, New York, October, pp 66-83

Author

The present author studied as a Master student

at the Universidade Federal da Paraíba

in Campina Grande, Brazil, and as a

postgraduate student in the Department

of Computer Science at the University

of Edinburgh, and did some further

research work at Trinity College in

Dublin from 1998 until 2001.

