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ABSTRACT 

This short and informal article shows that, although Godel's theorem is valid using classical logic, there 

exists some four-valued logical system that is able to prove that arithmetic is both sound and complete. 

Such a system must have at least four values: false, true, unknown and inconsistent, although the values 

may have other terms. In order to make the claim very clear, this article presents a four-valued logic and 

also describes a four-valued Prolog in some informal, brief and intuitive manner. 
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1. INTRODUCTION 

In 1931, Kurt Gödel, after his revolutionary theorem, placed a full stop on Hilbert's dream of 

formalizing mathematics. Gödel demonstrated that it would not work even for arithmetic[1]. 

On the other hand, in the nineties, the present author started inserting a third value called 

"unknown" in Plain[2], i.e. a programming language that he was designing at that time. The 

unknown constant was theoretically referred to as uu since the end of nineties. Later, a five-

valued logic was introduced with the values in {tt, ff, uu, ii, kk}. In 2004, the same logic was 

published as a journal article[3] and a seven-valued logic was also published in a Conference in 

San Diego[4], adding the values {fi, it} ("false or inconsistent", "inconsistent or true", 

respectively) for being able to be used together with the same uncertainty model that had been 

proposed during the present author’s Master course in 1990. The seven-valued logic that makes 

use of that uncertainty model permits that, during the computation, as the system obtains novel 

pieces of information, variables change their values. An example of this is the paternity test: 

before the discovery of the DNA test, it was possible to conclude whether a child was a 

daughter or son of a particular man by hereditary physical characteristics. However, there was 

always uncertainty up to some extent. The uncertainty factor could be represented by uu 

(unknown), at least as an initial state of some variable. Since the DNA test was discovered, all 

variables which represent the hypothesis of being the child's father should change their states 

from uu to either kk or tt or ff. 

 

As part of the present author’s previous contribution, the kk value means "knowable", and it is 

usable when something is not already known, but it is already known that it is consistent. It can 

either be true or false but not both. It can be known by God or someone else or some machine, 

for instance, but it is not already known by the machine which is deductively reasoning, or by 

the person who is deductively doing, and it may be unknown forever, but at least its consistency 

is guaranteed. This is the meaning of the kk value, which fits in the referred uncertainty model 

when a variable thresholds collapse: False = True, which means that there is nothing strictly 

between the False and the True thresholds. In the above example of the paternity test, uu used to 

represent the initial state before the discovery of the DNA test, whereas kk represents the initial 

state given the existence of the DNA test, but before knowing the result of a particular DNA 

test, either ff or tt. 

 



Individually and previously, Kleene, Łukasiewicz and Priest proposed their three-valued logics. 

In 1977, Nuel Belnap (1930-) had proposed his logic on four values[5]. What was observed 

several years ago is that Gödel's proof may not work together with some logics that have more 

than three values. The four necessary values mean "true", "false", "unknown" and 

"inconsistent", or similar meanings. That is, at least these four values and meanings. The latter 

two values correspond to N (none) and B (both) in the four-valued Belnap's logic, respectively, 

and correspond to uu and ii, respectively, in both referred logics of the present author, as well as 

in his four-valued logic presented in this article, and the four-valued Prolog also described here. 

 

The problem Gödel introduced was due to existing self-references and paradoxes, which made 

propositions of arithmetic result in both true and false, together with the observation that any 

proof over mathematics was also a mathematical object itself. However, Boolean logics are 

clearly unable to permit that formal systems capture the problem pointed out by Gödel in his 

theorem. That is, no binary formal system can capture it. 

 

One condition for a four-valued formal system being able to prove all true propositions, and 

only the true propositions, is certainly that it has the same results of the classical logic, except 

where one or two operands have values other than true and false. In any proof, a result here is 

the true value only, and do not include values such as "unknown". Belnap's four-valued logic 

does not fail under this condition, for, although (B ˅ N = T), where T represents the true value, 

the values of the operands are "B" and "N", which are not Boolean. 

In the present author’s PhD thesis, there was a kind of typo in the truth-table for the specific 

case ff↔ff, which results in tt in the five-valued logic but ff was written instead: a kind of 

mistake in only one of the two truth-tables for the equivalence operation. However, taking this 

into account, and by using only one of those equivalence operations, that five-valued logic 

suffices regarding that condition. Moreover, in 2007, having written a program which seems to 

be correct, it was checked whether such a four-valued logic exists, and its computation resulted 

in several logics, where one of them was Belnap's logic. The 12th solution written by the 

program computation was the logic which was the most interesting. In 2011, one could not 

claim the authorship of that four-valued logic, but the referred truth-tables are the following: 

Table 1. The present author’s four-valued logic true table 

 

Section 2 dedicates to Gödel’s theorem and his proof, and a system for capturing all possible 

results is informally described. In section 3, a four-valued Prolog programming language is 

briefly described, whereas section 4 contais the conclusions. 

2. ON GÖDEL’S PROOF 

The set of all propositions on arithmetical true is written for the two Boolean values, but that set 

could be complete but cannot be sound, i.e. it is clearly inconsistent. However, the present 

author writes an external layer with an external view of that set, as well as an internal layer. The 

former layer is written with four or more values. It interprets that set and, thus, both layers 

together form a formal system where the two-valued system is the server while the four-valued 



system is the client. The external layer makes use of the internal one. The system with at least 

four values is pretty simple and works in the following manner: 

Whenever one attempts to prove that a proposition is true and the two-valued system results in 

true, the external layer still tries to prove that the proposition is false: If the two-valued system 

results in true, the external layer results in ii, the inconsistent value. However, on the other 

hand, if the two-valued system results in false instead, the external layer results in true. 

Whenever one attempts to prove that a proposition is true and the two-valued system results in 

false, the external layer still tries to prove that the proposition is false: If the two-valued system 

results in false, the external layer results in uu, the unknown value. However, on the other hand, 

if the two-valued system results in true instead, the external layer results in false. 

In other words, the meaning of a two-valued internal query is only the attempt to prove, which 

either succeeds or not. In this way, the whole formal system is clearly sound and complete. In 

1997, the present author wrote a three-valued Prolog which he called Kleene at that time and 

Globallog in the following year[6] for becoming more modest, and the same language is the 

subject of one of the chapters of his PhD thesis. The system described above in this section can 

be more clearly written in a Pascal-like language style as follows: 

1. An algorithm in Pascal-like language 

type 
   proposition = string; 

   QueryAnswers = (LocalFalse, LocalTrue, NotFound); 

   FourValues = (uu, ff, tt, ii); 

 

  (* … *) 

 

function TryProposition2v(p: proposition, q: QueryAnswers): boolean; 

begin 

    (*any polynomial search algorithm with unification for checking whether 

       the proposition p is true. Alternatively, this function also returns 

       the information that the search algorithm has been unable to answer 

       whether the proposition p is true or false with respect to the current 

        state of the knowledge base. In this case, where no unification has been 

       found, the result is false. 

    *) 

end; 

 

function proposition4v(p: proposition): FourValues;  

begin 

      if TryProposition2v(p,LocalTrue) then 

      if TryProposition2v(p,LocalFalse) then 

         proposition4v := ii 

      else 

         proposition4v := tt 

    else 

       if TryProposition2v(p,LocalFalse) then 

           proposition4v := ff 

       else 
           proposition4v := uu 

end; 



 

Clearly, such an algorithm captures all possibilities, and can be adapted to extend from the 

propositional logic to a more sophisticated and even second-order logic with predicates. 

Certainly, we are unable to state all mathematical true, for mathematics is a science and, as 

such, new theorems and proofs, new mathematical objects, are being formulated all the time by 

researchers. So, a proper four-valued formal system is able to state when a proposition is still 

unknown due to the uu value. On the other hand, such a formal system captures the notion of 

paradoxes due to the ii value. Therefore, it is sound and complete. 

3. A FOUR-VALUED PROLOG 

For further work, a four-valued Prolog can be formally defined, implemented and used. This 

section introduces a brief, informal and intuitive description of the adaptation of the three-

valued Prolog defined by the present author in [6]. Let us call Prolog4v the sample 

programming language whose interpreter is intended to be the four-valued formal system. 

3.1 Syntactical and Semantic Definitions 

Definition 1. A program in Prolog4v is a sequence S of clauses c1 … cn . Thus, it is said that a 

computation by S proves a goal g if and only if there exists some ci in S such that g is an 

immediate consequence of ci , assuming that the body of ci can be proven. The notion of clause 

and body are in the following definition subsection. 

Given S as a sequence of clauses c1 … cn, a program in Prolog4v corresponds to the disjunction 

among all clauses. That is: c1 ˅ … ˅ cn , where the disjunctive operator ˅ is the same operator of 

the four-valued logic in table 1. Nonetheless, the interpreter, also called formal system here, 

carries out its computation “downwards”, i.e. from the first to the last clause. The sequence of 

clauses is often written like a Prolog program is, i.e. one clause fills one line. 

Definition 2. A clause is a language construct which has one of the forms bellow: 

[not] p(t1, , … , tn). 

or 

[not] p(t1, … , tn) ← [not] p1(t1,1 , … , tr,1), … , [not] pm(t1,m , … , ts,m). 

The first clause above corresponds to a fact whereas the second clause corresponds to a rule. 

For instance, 

    not astar(moon). 

is a fact (the moon is not a star), whereas 

    shines(X) :- astar(X).  

is a rule (if X is a star, X shines). If one tries to prove shines(moon), the corresponding query 

results in ff, the false value.   

All clauses end with a dot symbol. As usual in syntax definitions, the above brackets are not 

part of the language but, instead, they mean that the negation operator is optional in the clauses. 

Any rule contains its head, which is on the left of the inference operator ←, and its body, which 

is on the right of the same operator. At the lexical level of Prolog4v, there are two different 



inference operators to be chosen by the programmer, either “:-“ like in Prolog or “:=”. The 

former operator obeys the Closed World Assumption[7] and makes use of the Negation as 

Failure[8]. This means that if the body of a rule results in uu, the “:-“ operator makes the head 

of the same rule become ff. Similarly, if the body of a rule results in ii, the “:-“ operator also 

makes the head of the same rule become ff. The latter operator “:=” is a contribution of the 

present author, which obeys what he called the Open World Assumption in his PhD thesis[6] 

and it corresponds to the → operator described in table 1. 

Briefly, if no clause unifies some given goal g, the answer of the query for g is uu, the unknown 

constant of Prolog4v. 

The body of any rule is formed by a sequence of predicates with zero or more parameters t 

(showed with the indexes above), separated by the comma symbol (“,”), which in its turn 

corresponds to the ˄ operator of the four-valued logic that was showed in table 1, in the 

introductory section. During the computation, each predicate pj(t1,j , … , tu,j) corresponds to a 

new four-valued goal and to a new four-valued query. 

Definition 3. There exist four predefined constants in Prolog4v, namely, ff, tt, uu and ii. 

The above constants correspond to the four operands F, T, U and I, respectively, of the four-

valued logic described in table 1. 

Note that, in accordance with table 1, if any of those queries in a body results in ff, the 

computation of the whole rule results in ff regardless of the existence of any possible 

inconsistency or lack of information in the other queries of the body of the rule in question. The 

queries are performed from left to right like in Prolog, but it is easy to see that the Prolog4v 

interpreter can be designed to carry out the computation in parallel and it can even distribute the 

computation among a number of machines. Also from table 1, note that, for any rule, the 

computation of the rule results in tt if and only if all containing queries in its body result in tt, 

that is, the trivial and Boolean cases clearly must hold. 

With respect to the “:=” inference operator, it corresponds to the → implication operator of the 

introduced four-valued logic, but containing the sides of the implication swapped. One could 

have chosen any pairs of operands of the → table whose results are all tt. However, the main 

diagonal of the → table is what makes sense in the real world, hence they are the choices. That 

is to say, ff → ff,   tt → tt, uu → uu, as well as ii → ii all result in tt and therefore → operator is 

not only sound but also makes sense in the real world. During the computation, if the body of a 

rule results in ii, the query for the whole rule results in ii and, in this way, the inconsistency is 

propagated, possibly to the level of the user, such as a mathematician. 

However, any query with the negation operator can also be treated as a unity. That is, although 

the four-valued logic introduced in table 1 contains the “not” operator  ⌐, the system might not 

make use of it. Instead, the not operator can be part of the query as well as it is part of the 

unification algorithm, i.e. the system tries to unify the predicate including the “not” operator. 

Furthermore, not uu does not result in ii, whereas not ii does not result in uu either. Instead, the 

system ought to propagate uu and also ii. Thus, not uu results in uu whereas not ii results in ii. 
These are the only two exceptions with respect to table 1. In other words, there are two different 

forms of negation. 

In contrast with the negation in table 1, let us call the not operator in the definition 2 “abstract 

negation”. It had also been called “abstract negation” in the three-valued Prolog. Here, the 

negation is a four-valued extension. 



Finally, the ↔ operator in the above four-valued logic is simply not used by the system. 

3.2 Examples 

Consider the following example of a two-clause program in Prolog4v: 

happy(ann). 
not happy(ann). 

 

Over the last thirty years, some proposals have been made for solving the inconsistency 

problem[9], such as setting priorities, possibly in some implicitly way, for all clauses. The 

literature on inconsistency in deductive databases and logic programs is large[10] but the 

present author thinks that there is little references to abstract negation. 

In the above example, a query like happy(ann) clearly results in ii. Accordingly, a query like 

not hapy(ann) also results in ii. In both cases, the system tries to prove both and, in accordance 

with the algorithm 1, it implicitly makes two binary queries, for both the positive and the 

negative forms of the predicate. 

Now, consider the classical non-flying bird example: 

    fly(X) := bird(X), not penguin(X). 
    not fly(Y) := penguin(Y). 
    bird(tweety). 
    penguin(Z) :- bird(Z), polar(Z). 

To answer the query fly(tweety), the system unifies the goal with the head of the first rule, 

binding the variable X to the constant tweety. Then, the system finds the subgoal bird(tweety) 
which in turn unifies the third clause and that subquerry results in tt. Then, in the body of the 

first rule, not penguin(tweety), is the next subgoal to be explored. Note that, because of the 

inference operator chosen, penguin is the head of a closed-world rule. Then, the subgoal unifies 

the fourth clause binding Z to tweety. As the subgoal bird(tweety) had already been proven, 

the next subgoal is polar(tweety). To explore this subgoal, the system does not unify any clause 

and, because of this, this subquery results in uu. The body of the fourth clause results in uu since 

T Ʌ U results in U in table 1. The subquery penguin(tweety) results in ff  because of the 

closed-world assumption made by using the “:-“ operator. If one replaces “:-“ by “:=” in the 

fourth clause, the subquery penguin(tweety) results in uu instead. 

Now, consider a new clause 

    polar(tweety). 

is asserted and that the system places it at the end of the sequence of clauses. For the same query 

fly(tweety), the system now answers ff. That is, it learns. In comparison to a similar Prolog 

program: 

    fly(X) :- bird(X), not penguin(X). 
    bird(tweety). 
    penguin(Z) :- bird(Z), polar(Z). 

The same query fly(tweety) would have resulted in true because the third clause alone ensures 

that only a polar bird is a penguin. That is, until the knowledge base is complete, the system 

sometimes gives wrong answers with respect to the real world. For instance, for a query such as 

fly(airplane), the answer is uu in the Prolog4v program above, whereas the same query results 



in false in the three-clause Prolog program above. Following this, binary formal systems are 

clearly not appropriate to write mathematical truths. 

As another example, suppose that one knows that Berne is the capital of Switzerland and that 

each county has one capital only. In Prolog4v, one would write 

    capital(berne,switzerland). 
    not capital(X,Y) := capital(Z,Y), X <> Z. 

where <> stands for the different from (≠) operator. A non-ground query, i.e. a query where 

there is some unbound variable, for instance capital(bern,X) (note the different spellings) 

would result in X = uu, whereas a ground query such as capital(zurich,switzerland) would 

definitely result in ff as follows: the corresponding goal would not unify the first clause but 

would unify the second one because the presence of the not abstract negation in its head does 

not fail during the computation of the unification algorithm. In this case, X is bound to zurich 

and Y is bound to switzerland. Then, the system tries to prove the subgoal 

capital(Z,switzerland) and unifies the first clause, i.e. the fact capital(berne,switzerland) 
binding Z to berne. Now, the system evaluates the expression X <> Z, which in turn results in 

tt as zurich is not berne. Since all premises of the rule are true, the body results in tt and the 

system concludes that the head not capital(zurich,switzerlan) is tt and, hence, that 

capital(zurich,switzerland) is ff, and that is the response of the query at the user’s level.  

 

4. CONCLUSIONS 

There exists some four-valued formal system that is able to state arithmetical truths including 

paradoxes. If it is possible for a machine to generate all truths, the same formal system can be 

used on a suitable knowledge base for that purpose. Queries reaching paradoxes are answered 

with ii, the inconsistent value. On the other hand, the claimed system is also able to answer 

queries with uu, the unknown value. The content of the present article was meant to be 

comprehensive even for undergraduate student. Philosophy students can also understand it. 

The computation by the referred formal system roughly takes the double the time of a typical 

binary formal system: some time for trying to prove that a goal is true and some additional time 

for trying to prove that the same goal is false. Therefore, its computation is polynomial. 
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