A Five-Valued Logic and a System

Ulisses Ferreira
e-mail: Ulisses.Ferreira@philosophers-fcs.org
Escola Politécnica da UFBA, Rua Caetano Moura, Federacgdo, Salvador, Brazil.

ABSTRACT

The present article introduces a five-valued logic and
a deductive system. Here, the logic presented is a
relevant fragment of the @-logic, which is also a
space-time logic. These five values correspond to the
following semantics: unknown, possibly known but
consistent, false, true, and inconsistent. The present
logic and the PLAIN programming language are two
results of the same intuitions and from the same
philosophical view. Finally, as well as the purposes
of PLAIN, the logic ought to be used to support (mo-
bile) agents systems in some manner, besides general
purposes.

Keywords: Many-Valued Logics, Foundations of
Computing Science, Knowledge Representation, Phi-
losophy of Computer Science, Deductive Systems,
Epistemology.

1. INTRODUCTION

The present article introduces a five-valued epistemic
logic and a deductive system for it. The logic that is
presented here is a relevant fragment of the @-logic,
which is also a space-time logic of the same author.
The adopted five values correspond to the following
semantics: unknown, possibly known but consistent (it
is assumed that the real world is consistent), false, true,
and inconsistent (wrt the information). The @-logic
and the PLAIN[8] programming language are two re-
sults of the same intuitions and the same philosophical
view. As well as PLAIN, the logic ought to be used to
support (mobile) agents systems in some manner.
This article is organized as follows: Section 2 provides
the first presentation of the logic in question. Section
3 provides a sequent relation. In addition, section 4
exemplifies the use of the present five-valued logic,
whereas section 5 introduces a deductive system for the
present logic using the sequent relation, and section 6
draws a synthesis on this work. The appendix presents
examples of deduction.

2. THE FIRST PRESENTATION

To date, there has not been any five-valued logic. The
logic which | am introducing here has truth values
represented in

C Y {uu, b, f, tt,ii} (1)

I use two-letter symbols because symbols such as u, f
and ¢ are commonly used in mathematics and other

sciences. In the present piece of work, wu stands
for unknown or stands for undefined, k& stands for
(possibly) known but consistent, whereas 4z stands for
inconsistent. The other two are the known Boolean
values, from the classical logic. |1 chose to work
on inconsistency[3] because we humans often obtain
inconsistent information. In this way, mobile agents,
for instance, ought to be able to decide and act even
when it recognizes the presence of inconsistency. |
consider that 47 is stronger than wu and also stronger
than kk in some kind of strict reasoning, but can be
weaker than either in some forms of lazy computation.
I explain the “known value”, kk, here together with
reasons for having five values. Briefly, to state that
Kk means “someone else might know the truth value”
suffices if we mean to necessarily exclude the person
who reasons from the knowledge about the binary truth
value. More precisely, the meanings of the values are
as follow:

« ff: I, and possibly other agents, know that the
veracity is false;

o tt: |, and possibly other agents, know that the
veracity is true;

e kk: | know that the referred to veracity is either
true or false but, at moment, | do not know
which. However, other agents might know which
of them;

« wu: | do not know the Boolean value nor whether
another possible agent observes some inconsis-
tency with respect to it, nor whether or not they
know the veracity;

« 42 |, and possibly other agents, know that there is
some inconsistency in the subject and, because of
this, whether the actual veracity is true or false
is unknown no matter the other agents’ veracity.

Here, | presume that there is no need for deeply
exemplifying the motivations for these five values
because it is clear that they are used in our daily lives.
Uncertainty would be necessary for solving conflicts
about 44, removing exceptions and considering the
main occurrence. However, although the major purpose
of the @-logic is the integration of synthetic and
analytical concepts, uncertainty is outside the scope
of the present deductive logic.

Brief comment on notation

The present logic has the same syntax of the proposi-
tional Boolean logic, except for the truth values, which
require some change in that vocabulary. In a formula,
an upper-case letter means a (sub-)formula, whereas an

upper-case Greek letter denotes a multiset of formulae
of this logic.

The five values

Initially, | define the strongest five-valued equivalence
in the following way:

= uu kk ff tt ii

uu | tt ff ff ff ff
kk | ff tt ff ff ff
ff ff ff tt ff ff
tt ff ff ff tt ff
ii ff ff ff ff tt

fig 1 - the table for the equivalence =.

and, further, discrimination: A £B def -(A=B).In
the @-logic, = is the same as =.

In this section, | explain a hierarchy of veracity.
Essentially, there are two kinds of unknown: “unknown
because one does not know the value in the problem
domain” (uu) or, alternatively, “unknown because the
value is inconsistent” (ig). Thus, in comparison with
other logics such as Belnap’s, which can be roughly
shown below, while 74 may be interpreted as “the
inconsistent value”, the present wu and ¢ are not
opposite values as wu can be the opposite of Ak,
depending on the negation in question. Briefly, there
are two relative views and sets of the operators or
connectives: ontological and epistemic. The present
work is epistemic but the logic also directly deals
with the concepts of true and false, not necessarily
the possible knowledge about them. Whereas —, A, V
form a subset of connectives (operators), ©, &, 7 form
another subset of them. To simplify the language
during the presentation, | shall refer to them as “onto-
logical” and “epistemic” operators or connectives. This
classification is relative. Further, | use “connectives”
and “operators” with the same meaning, for any rea-
soning. Thus, k& = Okk and uu = Quu, i.e., both
formulae are evaluated as true whereas —kk = wu and
ke = —uu are valid and make use of the ontological
negation.

From the epistemic point of view, to propagate incon-
sistency, | simply state ©# = i, which means that
“if a formula is inconsistent, so is its negation”. As
an example, if a machine’s father (which is another
machine) states the predicate p(x) and the machine’s
mother (another machine) states the predicate —p(x),
the machine has some inconsistent knowledge, i.e.
{p(z),—p(x)}. If, latter, the machine is told that its
knowledge is wrong, and it negates both what its
father and mother said, the machine will still have
inconsistent knowledge. Another epistemic negation of
42 would be the value “consistent”, which is absent
from the set of values that | chose for | do not regard
a specific value for consistency as interesting for my
purpose. | can even represent the following structure

of truth (here, for better clarity, | shall use each value
with a single-letter symbol in the following paragraph):

{ f,1 knows that something is false); (t,1 knows that it
is true); { u, 1 does not know because 1 does not have
sufficient knowledge); (i, 1 does not know because
it obtains inconsistency); (k, 1 knows, although | do
not know which in { ff, ¢t}); (kf, 1 knows f because 2
knows that it is false); { kt, 1 knows t because 2 knows
that it is true); (ku, 1 knows u because 2 does not
know because 2 does not have sufficient knowledge);
(ki, 1 knows i because 2 does not know because 2
sees inconsistency); { kk, 1 knows the value because
2 knows, but I do not know which); (kkf, 1 knows f
because 2 knows f because 3 knows that it is false);
{ kkt, 1 knows t because 2 knows t because 3 knows
that it is true); (kku, 1 knows u because 2 knows
u because 3 does not know because 3 does not have
sufficient knowledge); and so on. The numbers can
indicate machines, for instance.

In general, a truth value is in the form k>"y where
A is a natural number that indicates the number of
occurrences of k, and +y is a single letter in {u, k, f, t, i},
which corresponds to a value of the logic being pre-
sented. As a syntax sugar, one can also consider the
form v**+1, e.g. kkkkt = ttttt and kkku = uuuu. The
predicates u, k and i are modal operators. For example,
in [9], the general form for & is explicitly indexed by
the entity that has the knowledge.

While, for a person person, sometimes we humans
state “according to { person)", the above hierarchy of
truths allows the representation of any indirect knowl-
edge of this simple kind. There can be a simplified and
static view of my five values considering only the last
letter as a truth value.

Although the @-logic is epistemic and knowledge is
a relative notion, in the following figure, the first
set is more ontological while the second set is more
epistemic, in the sense that the first set is with respect
to direct knowledge about the referred to objects,
whereas some results of the second set are on indirect
knowledge. For instance, ff A A yields ff for one is
interested in the actual result, whereas ff&A yields the
information that there is some inconsistency whenever
it is the case, i.e. knowledge about the knowledge about
existences.

I now introduce some connectives of the present logic
as follows:

The nore ontol ogi cal operators:

a -a A uu kk ff tt ii
uu kk uu uu uu ff uu uu
kk uu kk uu kk ff kk ii
ff tt ff ff ff ff ff ff
tt ff tt uu kk ff tt ii
i ii ii uu i ff o0
a L(a) \% uu kk ff tt ii
uu uu uu uu kk uu tt ii
kk ii kk kk kk kk tt kk
ff tt ff uu kk ff tt ii
tt ff tt tt tt tt tt tt
ii kk ii i kk iiott i

The nore epistenic operators:

a oa & uu kk ff tt ii
uu kk uu uu uu ff uu ii
kk uu kk uu kk ff kk ii
ff tt ff ff ff ff ff ii
tt ff tt uu kk ff tt ii
ii ii ii P i i

2 uu kk ff tt ii

uu uu kk uu tt
kk kk kk kk tt
ff uu kk ff tt
tt tt tt tt tt
ii P i i

fig 2 - negative, conjunctive and disjunctive operators
of my 5-valued logic

The L negation (also with notation + after
tukasiewicz) negates the given value over the aspect of
consistency. In this way, ¢ = LLx = -~L-L-Lz =
L-L~L-z holds as stated in example 2 of the ap-
pendix.

Further, for any five-valued variable x, by combining
the above two negations, as well as the following epis-
temic negation, any value can be mapped to any value,
and this feature makes the present logic interesting.
The connective A is commutative, associative and has
a neutral element, ¢¢. The V is commutative, associa-
tive and has a neutral element, ff. For the equality
connective that I shall define, both De Morgan’s laws,

ﬁ(AVB) =-AA-B and —|(A/\B) =-AV B,
as well as both absorption laws, AV (AA B) = A
and AA(AV B) = A, hold in accordance with my
automatic verifications. Furthermore, distributive laws:
AVBAC =(AVB)A(AVC)and AN(BVC) =
AANBV ANAC are valid and can be written in this
way as the present logic binds conjunctions tighter than
disjunctions.

As the results of AA B and AV B are the same as
A&B and A% B, respectively, when A # ii A B # ii,
I can collapse both conjunctions and both disjunctions
above in another four-valued logic by dropping ¢4 and
redefine a four-valued implication and equivalence, if
| presume that there is no inconsistency.

In the logic shown above, a possible interpretation for
the operators is with respect to the knowledge on the
operands of a (possibly non-logical) arbitrary oper-
ation, typically in a programming language context.
If one or more values are in {ff,¢t}, the connective
gives its negation, as above. One may further interpret
the tables above as strict and lazy evaluations. For
instance, kk&uw can mean that, in a strict evaluation,
the first operand is known and that the second one (or,
alternatively, the same one) is completely unknown,
whereas k& V uu can mean the knowledge on the
first operand value or no knowledge on the value
of the second (or, alternatively, the same) operand
in a lazy evaluation. Thus, in accordance with the
tables, the first evaluation yields an unknown result
whereas the second (lazy) evaluation yields a known
result. Here | consider that conjunction and disjunction
are commutative connectives. There may be other
interpretations using these tables. The connective &
is commutative, associative and has a neutral element,
tt. The »@ is commutative, associative and has a neutral
element, ff. De Morgan’s laws hold with both nega-
tions: ﬂ(A’S’B) = =A&~B, —|(A&B) = -A%-B,
O(A®B) = 0A&OB, O(A&B) = 0A® O
B. Furthermore, A9B&C = (A®B)&(A®C) and
AR(B&C) = (A®B)&(A®C) is one more im-
portant property. However, because my purpose is to
propagate #: here, in contrast with the first scheme,
A9(A&B) = A and A&(A®B) = A are not
tautologies. While the ontological connectives can
be seen as lazy, the epistemic connectives can be
seen as strict. A, B € {ff, tt,uu, kk, i1}, i.e. for two
logical formulae or operands, the first implication can
be defined as A -+ B =-AV B whereas A » B =
- A9 B. Furthermore, A <+ B=((A— B)A (B —
A)) whereas A «» B, a very epistemic equivalence,
cannot be defined in this brief way.

For comparison, | present the tables of the Belnap four-
valued logic. Note that although his connectives leave
the tables for oA & B implication and equivalence
to the reader as a simple exercise, | also present the
tables below without implication and equivalence, for
Belnap did not show them[4], and because of his
work on entailment. His n value (none) corresponds
to this wu value (uw in my truth tables here), the b

value (both) roughly corresponds to this k value (k
in my truth tables here). On the other hand, for helping
comparisons, | add the 7 value to the Belnap logic, and
the usual properties are still valid between the three
connectives, with some exceptions, e.g. AQ ff = ff
and A @ t¢ = ¢t no longer hold. | shall refer to
the resulting five-valued scheme as Belnap-based five-
valued logic. The tables become as follows:

a oa ® uu kk ff tt ii
uu kk uu uu ff ff uu ii
kk uu kk || ff kk ff kk ii
ff tt ff ff ff ff ff ii
tt ff tt uu kk ff tt ii
ii ii ii (N A N

@ || uu kk ff tt ii

uu || uu tt uu tt
kk || tt kk kk tt
ff uu kk ff tt
tt tt tt tt tt
ii PP

fig 4 - Belnap four-valued based logic

In [13], in chapter 2, Gupta and Belnap illustrate with
schemes for two, three and four values. For the scheme
with four values, they present the above conjunction
but with the same negation as ©, except that I have one
additional value, i:. Therefore, both the present = and
© are in fact relatively old connectives and exist since
seventies, in the last century. Briefly, the key difference
between my truth tables and Belnap’s is vu® kk = ff,
i.e. one difference between the @-logic and Belnap
four-valued logic is that, while his A ® B results in
ff for A having value uu and B having value k%, this
operation with these values results in uu in the @-
logic. The other table results are exactly the same.
In the present five-valued logic, a formula is a tau-
tology if and only if it results in ¢t for all models.
Similarly, a formula is a contradiction if and only if it
results in ff for all models. Otherwise, a formula is a
contingency.

Even for an established logic, | consider that, to
initially define an equivalence connective independent
from the implication, and define the implication as
g A => B Y ~AvBvV (A & B), I cn
obtain a more general meaning and use. One could also
conceive a logic with a non-transitive implication, as
many language constructs in logics can be dependent
on the intention. As an example, agents typically need
to act on an environment. The kind of rules needed
here is 8 = « where 3 represents one premise and

« represents an action, often irreversible. This can
be compatible with epistemic logics with more than
two values. Following this, there is no consequent that
could be called proposition or predicate and, therefore,
transitivity property does not hold. A rule of form
B = a might not even be regarded as a logical one
for some logicians, but one would still need that rule
for capturing agency. | do not present any implication
for actions, for it would be outside the scope of this
article. On the other hand, a deontic logic can be
informally conceived in the following fashion: let ¢
be a formula of the @-logic and &¢ denote obligation
on ¢, A ¢ denote permissibility on ¢. Accordingly,
Q¢ =A ~pad 8¢ = - A . | than
combine such modalities with the epistemic values, e.g.
“one does not know ¢ if and only if he or she does
not know whether ¢ is obligatory (or whether ¢ is
permissible).” etc. Such modal operators are welcome.
While < represents possibility, O does not represent
necessity in the real world, but instead sureness. The
rules correspond to the implications A + <A and
OA F A in Gentzen’s style.

I shall introduce in a due course yet another implication
symbol, ¢, which has the properties of the intuition-
istic logic, according to a well-known scheme that |
only reproduce with some adaptation, below.

3. SEQUENT

In [11], Gabbay states a scheme for a linear logic
in Hilbert style and using the classical implication
symbol:

Identity: A=A

Commutativity: (A= (B=C))=> (B= (A= ()
Prefixing: (C=2A4)=((B=>C)=(B=>A4)
Suffixing: (C=A)= (A= B)= (C=> B))

The relevance logic[2], [15] is based on the schema
above plus

(A= (B=C)=((A=B)=(A=0))

The intuitionistic logic is based on the relevance logic
scheme plus A = (B = A). Finally, by adding the
following schema

(A= B)= A)=> A.

to the previous one, | obtain the schema for classical
logic.

In this way, if | let A, B be formulae, the axioms in
the classical logic (A = B) = ((A= (B = ff)) =
(A= ff)) and A = ((A = ff) = B) had not been
tautologies if I would want to propose a paraconsistent
and relevance logic[7], together with some extra rules
in the calculus. The latter axiom is also the sixth axiom
above, that one which complements the scheme for
intuitionistic logic.

In the present logic, | do not have the notion of con-
tradiction as a primitive because there are five values
(including ff and #4) and two different consequence

relations: weak and strong. The proposal of a pair of
two consequence relations is probably a novelty.

For a version of five-valued implication that has the
properties of a classical logic, including the law of
excluded third-middle, the truth table is the following:

— uu kk ff tt ii

uu tt kk kk tt kk
kk uu tt uu tt uu
ff tt tt tt tt tt
tt uu kk ff tt ii
ii tt tt tt tt tt

fig 5 - an implication sufficiently weak for the
classical logic

However, the formulae A A B — A, A&B — A,
A — AV B and A - AgB, like the implications
introduced above, are not tautologies for —.

Likewise, an implication with the properties of the
above scheme for intuitionistic logic is the following:

% | uu kk ff tt ii

uu tt kk ff tt ii
kk uu tt ff tt i
ff tt tt tt tt tt
tt uu kk ff tt ii
ii uu kk ff tt tt

fig 6 - an implication sufficiently weak for the
intuitionistic logic

However, the — and & implications, as well as most
implications, do not support entirely the @-calculus
and the deductive system, but instead only a few rules.
Nonetheless, | introduce a weaker implication for the
present calculus that has the properties of the classical
scheme as well as makes the rules tautologies with the
first tables (i.e. the connectives {—, A, V}. F is also
tautological for the truth tables of the second scheme
if there is no inconsistency in the calculus presented
later), for the principle of contraposition does not need
to hold in the above schemes. In accordance with
the automatic checking, the weakest implication that
I discovered and that has all properties of the present
calculus and deductive system is as follows:

[uu kk ff tt ii

uu tt tt tt tt tt
kk tt tt tt tt tt
ff tt tt tt tt tt
tt uu kk ff tt ii
ii tt tt tt tt tt

fig 7 - the @-calculus implication

and now principles such as simplification, AABF A
or A&B + A for example, hold with the schemes
presented above. Because of ii, A F A®B is not a
tautology where A = ¢t and B = i, although both
(AFB)F(AFB®C)and (AFC)F (AF Bp(C)
are tautologies, which are useful in my definitions,
below, in the next section. Thus, for the following
calculus combined with a deductive system, | adopt
the above definition of F in figure 8.

The @-logic has another consequence relation, IF.
While I, also called weak sequent, yields weak proof,
I (the strong sequent) yields strong proof. - and I
yield derivations. Weak and strong proofs may form
a pair of novelties. Thus, (A Ik 4) ' (A +
A)&—(A F —A). Here | am assuming a closed world.

4. EXAMPLES

The uu value tends to be used when one does not know
about a particular subject and there is no potential for
discovery, or no interest in finding out it. In contrast,
let us suppose that John is expecting an e-mail message
from Ann on a day. He is going to check his e-mail.
While he does not do so, from his point of view, the
sentence “Ann sent the expected e-mail and it is in my
mailbox” has value k%, and later, the value becomes
either ff or tt as his knowledge accumulates.

A similar situation happens when a student will look
for the result of their examination: they will either fail
or succeed. This illustrate the meaning of kk.

5. DEDUCTION

In this section | initially concentrate on derivations.
Let A be a formula in the present language. As usual,
a proof for A here is a tree of steps from a set of valid
assumptions (the leaves) that leads us to conclude that
the logical formula A is true (the root) for all values
in any model. On the other hand, a derivation is a
more general notion. It does not imply that the assumed
formulae and the final formula are valid. A constraint
is that a valid premise cannot derive contradiction, in
accordance with figure 8.

The @-calculus works as follows: there is a set of
assumed formulae and one final formula, where each
variable can have one of the five values presented here:
{ff, tt, wu, Kk, ii}.

Deductions are based on axioms and rules of inference.
Rules are meta-level implication and here | assume the
@-logic F implication to follow the semantics of the
rules. As usual, | also represent rules of inference by
using fractional notation, where

A FC1 AxkFCo A, FChp
Ay, Ay AL EC
corresponds to, at a higher level,

A1 FCi1A

As + CoN

LA

ApFCn kA1 Ay, A FC

Here, | use comma instead of the U set operation as |
use multi-sets. Therefore, this notation does not impose
an order between two finite multi-sets of formulae, in
such a way that there is no need for the so called
exchange rule.
And here are the properties of the present calculus.
Reflexivity: s H A, {C} F C which captures inclusion:
CeA - (VseS,teT) stk AF C, another
property.
Monotonicity:

AFC

ATFC

The cut rule is computationally redundant, as demon-
strated in a theorem by Gentzen[1].

Axioms
Identity-1:
{C}FC
Identity-2:
AFA=A

Other axioms will be defined in specific contexts.
Structural Rules
In this section, | present the @-calculus structural rules
in Gentzen’s style as the following:
Hypothesis:

A{C}+C Y
The contraction rule is the following:
Contraction:

A{A A RC
A{AYEC

An essay on contraction is [10]. For proof theory
without contraction, excellent references, for example,
are [5], [6], [12].

Weakening:

cL

AFC
A{AYHC

Weakening explicitly expresses the monotonicity prop-
erty.

Logical Rules

In this section, the logical rules are presented. The
rules for ©, &, % and % are not presented since
the structures of the rules are equivalent to the rules
for -, A, V and —, respectively. More than this,
rules with £ are not presented for the same reason
with respect to —. Therefore, using F, 1 am going to
present rules for the ontological fragment but with =,
ie. {—, A, V, =, =}

w

Deduction:
AFA—-C A{A}FC
A,{A}I—C’DT AI—A—)CDJr

Excluded 6th:
~(AFA=k) ~(AFA=f)
ﬁ(Al—Aitt) —\(Al—Aiii)
AFA=uu

Introductions:

The introduction rules are part of the deduction as well

as the calculus.

Conjunction:

A {A}EC A {B}FC

A{AANB}FC A{AANB}FC
AFA THB
A, THFAAB

Similarly, for inconsistent deduction:
A {A} - C A {-A}EC
A{A=wul+C A{A=dw}-C
AFA TH=SA_ .,
arTrAza F

ANITLy ANILs

ANLR

Ziila Ziilo

Disjunction:
A {A}-C T,{B}+-C
AT, {AVB}+C
AFA A+ B
—— VIR 7A|—AVBVIR2
Unknown and Inconsistent Negations:
A{A=kK}+C AFA=Fk
A{-AZuwjrC " Ar oAz IR
A{A=wu}tC AFA=uu
A{-A= K} F ¢ MIL Ar Az MIR
A{—A=dulEC
A{A=u}-C
Also
A{A=v}FC
A {0A=v}+C
for the value v € {uu, k&, #i}.
Implication:
AFA T, {B}+C A+ B
AT, (AoBre ¢ Arass IR
Eliminations:

The elimination rules are part of deduction but not part
of the calculus.
Conjunction:

VIL

WIL ST GiIR
kA

OvIL 7_—1) OvIR

A{AAB}FC

A{ABYFC
AFAAB A+FAANB
—Ara NR A NERe

Similarly,

NEL

AfAZi} O

A{A-AYEC
AFA=1i.. AFA=1i..
TAFA R TRpog WERe

Disjunction:

A {AVB}+C A {AVB}+C
A{AIFC A {BJFC
AFAVB A1FAC AzFB—)CV

AALAFC

EL

VELL VEL,

ER

and also the following two rules:

A+FAVB AFAVB
Aravars'¢YR ArasarpVEBR
Unknown and Inconsistent Negations:
A{-A=uu}tC AF-A=uu
A{AzRiFC Y Arazm R
A{-A=kK}HC AF-A=k
AAZuu}r O WL R Az TER
A{-A=wut-C . AF-A=ii |,
AAZairC L Rraza @R
Also
A {0A=v}FC AFOA=v
AAzoire OVE Arazg OVER
for the value v € {uu, kk, i}

Implication:
A{A—5B}FC AFA THASC

ABrc ek Arrc R

The left rule, above, is not part of the linear logic or
relevance logic. The above right rule is what is often
called modus ponens.

6. CONCLUSION

Some automatic check on correctness was done over
the present logic. As regards completeness, since the
logic has been based on the definitions of previous
logic, it can be regarded as complete. No intention has
been had to state that to automate this logic is easy,
nor that my logic leads to efficient algorithms. It might
be inefficient. The present approach is to start from the
real world, then to define this logic, and finally to apply
and do some research on this logic.

The present author believes that this logic can be used
in many applications of computer science, in particular,
programming, artificial intelligence, epistemic pieces
of work, (mobile) agents systems and semantics of
computation.

APPENDIX - EXAMPLES

In this appendix, | present two examples of deduction
in the @-logic. For a recent book on proof theory, [14].

L {tt}+tt {B}FB

{BYFttAB
(BY - tt
{A, By Ftt
BIrAsu
FB—(A—tt)

A {A}F A
A {AJFLEA
A {A}F ~t—t—tA
A {A}Ft-t—t-A

{A=tt}FAV-A {A=ff}FAV-A
{A=ttvA=ff}FAV-A
since Av B— AV B.

{A}F AV -A
where the value of A can be wu or kk or ff or tt or

7. ACKNOWLEDGEMENTS

I would like to express gratitude to the reviewers,
editors and close friends who kindly sent me some
fruitful comments.

8. REFERENCES

[1] P. Aczel, H. Simmons, and S. S. Wainer, editors. Proof
Theory. Cambridge University Press, 1992.

[2] A. R. Anderson and N. D. Belnap Junior. Entail-
ment: The Logic of Relevance and Necessity, volume 1.
Princeton University Press, 1975.

[3] D. Batens, C. Mortensen, G. Priest, and J.-P. V. Ben-
degem, editors. Frontiers of Paraconsistent Logic, vol-
ume 8 of Studies in Logic and Computation. Research
Studies Press Ltd, 2000.

[4] N. D. Belnap Junior. A useful four-valued logic. In
J. M. Dunn and G. Epstein, editors, Proceedings of
the Fifth International Symposium on Multiple-Valued
Logic, Modern Uses of Multiple-Valued Logic, pages 8—
37. Indiana University, D Reidel Publishing Company,
1975.

[5] R. Bull. Logic and Reality: essays on the legacy
of Arthur Prior, chapter Logics without Contraction I,
pages 317-336. Oxford University Press, 1996.

[6] M. Bunder. Logic and Reality: essays on the legacy
of Arthur Prior, chapter Logics without Contraction I,
pages 337-349. Oxford University Press, 1996.

[7] J. M. Dunn. Handbook of Philosophical Logic, volume
I11: Alternatives to Classical Logic of Synthese library;
v. 166, chapter Relevance Logic and Entailment, pages
117-224. Kluwer Academic Publisher, 1986.

[8] U. Ferreira. The plain www page. URL

http://www.ufba.br/ plain, 1996-2003.

M. Fitting. Handbook of Logic in Artificial Intel-

ligence and Logic Programming, volume 1: Logical

Foundations, chapter Basic Modal Logic, pages 365—

448. Oxford University Press, 1993.

[10] A. Fuhrmann. An Essay on Contraction. Studies in
Logic, Language and Information. CSLI Publications
and FoLLlI, 1997.

[11] D. M. Gabbay. Labelled Deductive Systems, volume 1
of Oxford Logic Guides 33. Oxford University Press,
1996.

[12] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types.
Cambridge University Press, 1993.

[13] A. Gupta and N. Belnap Junior. The Revision Theory
of Truth, chapter 2 Fixed Points: Some Basic Facts,
page 43. The MIT Press, 1993.

[14] S. Negri and J. V. Plato. Structural Proof Theory.
Cambridge University Press, 2001.

[15] S. Read. Relevant Logic: a philosophical examination
of inference. Basil Blackwell, 1988.

[9

[}

