
Computation Is Not Conceptually
Function Application

Ulisses Ferreira
e-mail: u.ferreira@philofcs.com

36 Pirapora, 41770-220, Salvador BA Brazil

Abstract

Since Turing’s work, there have been attempts to refute Church-
Turing thesis by trying to discover any effectively calculable partial
recursive function that does not correspond to any Turing-calculable
partial recursive function. Here, I do not only aim at pointing out
an effect in the Turing machine model that has to do with Church-
Turing thesis but also to fix it. Nonetheless, before having fixed it,
the present author discovered a significant example which seems that
has challenged it, and this article shows the example in question.

1 Introduction

Since 1930’s, there has been very significant work into foundations of com-
puter science, in theory of computation[9], category theory[8, 15] as well as
in recursive function1 theory, functional programming[18] and other theoret-
ical subjects. Since Alan Turing, we can make references to many good re-
searchers, but, to date, nobody seems to have observed unexpected effects in
computations of compositions of Turing machines on the tape. Perhaps those
good researchers observed what I have called unexpected effects whereas I

1The standard use of the term recursive function includes the notion of function that
does not explicitly contain the operation called recursion, as presented and used in the
recursive function theory. I use both terms, i.e. function and recursive function, as re-
ferring to the same notion. Accordingly, the common use for the term partial function

includes the concept and semantics of total function, but since not all functions in the
present article are necessarily total, I simplify the language using both terms, function
and partial function, as referring to the same notion. Thus, in this article, functions and
partial recursive functions have the same meaning.

observed not only the unexpected effects but also the possible rôle of unex-
pected effects in one of the semantics of computation. Those compositions
are defined in [3]. Briefly and informally, let F and G be two Turing ma-
chines, and X be some input. I shall show that, if a programmer wants to
form a composition such as F (G(X)) with both machines on the tape, we
shall have to observe the dynamic possibility of G changing F for another
Turing machine, say F ′. Comparing F and G in this context, while G in this
context does not prove anything other than G(X), a Turing machine must
prove something more than F (G(X)), i.e. a Turing machine must prove that
the G calculation does not affect the F calculation. In this paper, we shall
see such details in a careful and more precise way. Variations on Universal
Turing machines have been proposed[10] but not much work has been carried
out in the only and traditional computability theory, which may cause the
impression that the original computability theory is established. The fact is
that, because of the parallel pioneering pieces of work by Church and Turing,
we still have what is called Church-Turing thesis[20], or even called Church
thesis[19].

In section 2 I present Turing machines from the operational standpoint2.
In section 3 I give interpretation of other notions used in the current paper
and, in section 4, I present my claims.

2 Turing machines

Perhaps the best definition that I have seen regarding non-deterministic Tur-
ing machine is in [11], and I reproduce it here with that notation, although
I do not further use that notation:

Definition 1 A Turing machine (TM) is an ordered system M = (Q, Σ,
Γ, δ, q0, B, F) where Q is a finite set of states, Σ is the input alphabet, Γ is
the tape alphabet, Γ∩Q = ∅ and Σ ⊂ Γ, q0 ∈ Q is the initial state, B ∈ Γ−Σ
is the blank symbol, F ⊆ Q is the set of final states and δ is the transition
function,

δ : Q × Γ −→ P(Q × Γ × {L, R}).
2

2In the present article, I prefer to use the term operational instead of the term inten-

tional, for the former suggests that the corresponding scope is the artificial computation.
Intention is a psychological notion more complex than operation. Although such words
are well established in the computer science community since philosophy of mathematics,
those from the community can also gradually reserve the latter for future use.

2

By defining the codomain of δ as above, that is P(Q × Γ × {L, R}), the
machine TM may be non-deterministic. Furthermore, it can be shown that
non-deterministic Turing machines are equivalent to deterministic Turing
machines. For a deterministic version, which I use in this thesis, δ can
be redefined as δ : Q × Γ −→ Q × Γ × {L, R}. In this section, however,
as a matter of convenience for the present purpose, I briefly define Turing
machines in a slightly different way, and this definition has also been used by
other authors such as [1, 2, 6, 7, 9, 12, 13, 14, 17, 21] as well as Turing. The
two differences are that, here, a Turing machine program is a set of tuples
(or a set of γ-transitions, as one may prefer to refer to) and there is one
tape. As many of these simple transitions produce some effect on the tape,
and this tape is shared by other programs, assuming Church-Turing thesis,
what necessarily corresponds to a function is ultimately the whole sequence
of Turing machines, including all machines that are interpreted, with the
involved compositions if the Universal Turing machine is not outside the
tape in order to guarantee that the computation is free from unexpected
effects. Indeed, this is one of the results in this paper: some assumptions
have to be added to this assertion.

Without changing the notion, a Turing machine (TM) has also been
defined as a 6-tuple, M = (Q, Σ, T, P, q0, F) where Q is a finite set of
states {q0, q1, ..., qn}, Σ is the alphabet which is a finite set of symbols
{s0, s1, ..., sm}, where s0 is the blank symbol that I represent with ◦, T ⊆
Σ\{◦} is the set of input symbols, P is the Turing machine program, q0 ∈ Q
is what has been called initial state, and F ⊆ Q is a set of final states of this
Turing machine. According to Alan Turing’s analogy, a Turing machine is
supplied with an infinite tape divided into squares and one write/read head.
Each tape square contains one symbol in Σ.

sj

qi, sj, qk, sr, op

The diagram for Turing machine, with its tape squares

Given O = {L, R, S, H}, the program P is a set of nn transitions or γ-
transition functions, for 0 ≤ ii ≤ nn, γii : Q × S −→ Q × S × O to which
has been referred as a set of 5-tuples of form (qi, sj, qk, sr, op), op ∈ O, such

3

that each 5-tuple in P produces an effect that is described in the literature
in the following way:

As usual and in accordance with Alan Turing’s original analogy using
a tape, the write/read head is initially on the leftmost non-blank symbol,
which means the leftmost symbol of the input for the Turing machine. The
write/read head writes and reads symbols on the tape as it moves along the
tape, one square to the right or to the left, depending on the current state
of M and the current symbol, i.e. on which the write/read head is. For
the purposes of this discussion, without loss of generality, I can set that, in
the initial state q0 of M , the write/read head is on the leftmost non-blank
symbol of the tape. Thus, the machine works in the following way: for every
simple3 step of calculation, for some 5-tuple in P , if the machine is in state
qi and the write/read head is on the square which contains some symbol sj,
the machine substitutes sr for sj in the same square, substitute qk for the
current state, and perform one of the following actions:

• if op = L, the machine moves the write/read head one square to the
left.

• if op = R, the machine moves the write/read head one square to the
right.

• if op = S, the machine does not move the write/read head.

• if op = H, the machine halts.

Just a short note on notation used in the present paper, from now on:
given some Turing machine M as the first operand and some p which is
represented here as a letter in the set of symbols {F, P, Q, T, Σ} as the second
operand, I define the meta-language infix operator ? to denote a set from the
Turing machine, i.e. M ?p denotes the corresponding set in M . For instance,
M ? P refers to the program of M and M ? Q refers to the states of M .

As in the definition 1, a Turing machine does not have to have a tape or

a write/read head. Here, we can define the alphabet Σ2

def
= Σ∪ {�} and the

language T in Σ∗

2 where � /∈ Σ is the symbol that indicates that the next
symbol on the right of � is under the write/read head. Thus, the tape is
merely a string in Σ∗

2. To keep the comparison, the symbol � occurs only

3In this article, I use the term simple step for both Turing machines and effective
computation, although we only need to go a little more in detail here, as I am describing
Turing machines. In a modern sense of computation, a simple step can migrate an agent,
for instance, from one country to another because such an atomic operation is well defined
in some way. Therefore, nowadays that simplicity is subjective and not relevant, and,
because of this, I sometimes simply use the term step instead.

4

once in the string. Those strings are infinite but only one finite part of them
can contain non-blank symbols. Thus, so far the transition functions become:
0 ≤ ij ≤ nn, γij : Σ∗

2×Q −→ Σ∗

2×Q. Furthermore, because the state qi ∈ Q
together with the symbol on the right of � determine the transition function
γij, the function γij can be defined as: for Σ3 = Σ2 ∪ Q, Σ2 ∩ Q = ∅ : γij :
Σ∗

3 −→ Σ∗

3. A non-encoded Turing machine can be seen as a grammar.
I shall explain that, on a shared tape, the computation by the γ-transitions

of one encoded Turing machine may affect the γ-transitions of other encoded
Turing machines. Once Turing machines are encoded and placed on a tape,
they are still separate entities while now they share the same tape. Therefore,
in this paper, I am not going to view Turing machines as a form of rewriting
systems over strings, but, instead, from the operational standpoint, regarding
compositions between Turing machines and so forth. Furthermore, regarding
representation, I am going to use one tape and one write/read head, as ex-
plained in many books on computability theory since Alan Turing’s papers,
among others. I understand that this analogy with a physical machine is
necessarily sound and helps the explanation.

In this article, I introduce an example and observe one feature that is
present in one notion and absent from another. I use the notation M [X] to
stand for the computation of a Turing machine M that inputs x, where X is
the representation of x. To describe the computation of a Universal4 Turing
machine when simulating M [X], I denote U(M [X]) instead of U [M [X]]. Ac-
cordingly, the functional composition m(n(x)) from two Turing machines, M
and N , are denoted by M(N [X]). If there exists a Universal Turing machine
interpreting this composition, that is u(m(n(x))), I denote this situation by
U(M [N [X]]). In this way, I use parentheses at the outermost level and brack-
ets internally to make it clear that the former applying Turing machine is
not represented on the tape, but instead outside the tape, while the latter is
represented on the tape.

As notation for the computation of some composition, I make use of
the up arrow symbol as a prefix. For instance, ↑ M(N [X]) refers to the
computation of M(N [X]) in the present piece of work.

Below, I define the Universal Turing machine with the characteristics that
will be subsequently helpful in this article.

Definition 2 (Universal Turing machine) Let U be a Turing machine.

4In this article, I use both “a Universal Turing machine” and “the Universal Turing
machine” as meaning the same. I use the former when I want to refer to a class of
Universal Turing machines that universally interpret Turing machines, and use the latter
when I want to stress the result, i.e. the interpretation itself. In both cases, my view is
operational.

5

U is a Universal Turing machine if and only if, given any Turing machine
M : N −→ N encoded and placed on the tape, M corresponding to the Turing-
computable function m : N −→ N, and given any input X : N, which is some
representation of the natural number x ∈ N on the tape, U calculates the
value m(x).

2

To help the reader to understand this article, notice that the notion of
function exists if and only if the notion of composition exists as a property
(amongst the others). In this case, one cannot talk about functions without
considering compositions as one of the fundamental properties of any related
theory, in particular, theory of computation. Furthermore, let f : D1 −→ D2

and g : D2 −→ D3 be two total functions. There are at least the same num-
ber of Turing machines that assign to the values in D1 the values in D3

by implementing the g(f(x)) result (by concatenating corresponding Turing
machines or by any other means), than the number of Turing-computable
functions with the same results by concatenating corresponding Turing ma-
chines, whether or not there is one such a Turing-computable function. Thus,
this article shows that, more than that, depending on one hypothesis that I
shall observe, there can be those compositions of the referred to Turing ma-
chines that yield values outside D3. As an initial example of Turing machine
composition, following a convention, the composition M(B[A[X]]) can be as
in the following diagram:

X A B

M

A Turing Machine Composition

As a usual example of arrangement (among others), one would previously
establish that the input of a Turing machine is always on the left of its en-

6

coding and that they are separated by precisely one square. Furthermore,
after having finished interpreting a Turing machine, M clears the interpreted
Turing machine as well as its input, and then places the output of this in-
terpretation in the correct place before starting interpreting another Turing
machine, and so forth. Finally, in this example, one can establish that every
Turing machine in the composition has its reserved space on the tape on the
left of its input, but this is only a priori operational convention and, as such,
does not prevent unexpected effects. The important point is that M has to
prevent unexpected effects between Turing machines.

In category theory, for example, there are objects, arrows, functors, nat-
ural transformations, monads and many other concepts. Concepts are used
to define more sophisticated concepts, and the essence or basis is sets and
functions, as well as properties. Although the concept of monad[16] can
be used to justify mathematically input/output in functional programming,
that idea is far from refuting the present work on unexpected effects on Tur-
ing machines. One of the reasons is that all those computable functions
have signature N −→ N, sometimes represented with encoding the signature
N

k −→ N for some k ∈ N. The Turing machine theory is relatively simple,
and has been supported by programming. Likewise, the present refutation
should be as such, using the same signature N −→ N instead of more com-
plex functional notions. Moreover, the meanings of the term “unexpected
effect” are definitely not the same, with respect to functional programming.
An essential difference between the concept of side-effects in input/output
operations in functional programming and the term unexpected effect here
is that, in the former case, the operation is programmed. In other words,
there is control and intention. Here, unexpected effect during a computation
is unpredictable from the point of view of the programs. Concisely, some
unexpected effect appears during the computation (and possibly in books of
computability theory) depending on the following:

1. The absolute positions of Turing machines on the tape;

2. Whether or not one Turing machine represented on the tape, by chance,
affects another one represented on the tape;

3. Whether or not the Turing machine outside the tape avoids unexpected
effects. Both alternatives indeed exist.

3 Some interpretations

In this section I present the interpretations of the notions used in my theo-
rems. In a philosophical and insightful chapter [5] by Prof Galton, there is

7

a discussion on different interpretations of Church-Turing thesis, including
different assertions made for the thesis.

• Model of Computation - In this paper, because I review a well-
established model of computation only, it suffices to see computation as
simply a sequence of (possibly infinite) simple steps that belong to some
well-established model of computation. Additionally, computation is
carried out at some place and takes time. I do not redefine, intuitively
or formally, model of computation here. Instead, for comparisons, I
assume that λ-calculus is a model of effectively calculable functions.
As suggested, a computation may be empty.

• Effective Calculation - For any natural number k, a function h :
N

k −→ N is effectively calculable if and only if there exists some finite
procedure p represented in h, that is, a unique function ph(p) = h,
and a unique number-theoretic partial function g : N

k −→ N, such that
given x ∈ N

k, h calculates the value g(x) according to p.

A more precise definition is the following: Let MC be the set of all
models of effective computation, and P be the set of all simple steps
regardless of the model. Let P ∗ denote the infinite set of all sequences
of such simple steps, many of which are meaningless for they are steps
from different models, and many of these sequences of steps are infinite,
and let p ∈ P ∗ denote a finite sequence of steps that form an effective
procedure of some model M ∈ MC. Further, let p[x] denote the com-
putation of some procedure p given some value x, and S ∈ P ∗ denote
a (possibly infinite) sequence of simple steps carried out by the same
computation. Let S = p[x]. Therefore, given the above notation, for
any natural number k > 0, h : N

k −→ N is said to be an effectively
calculable function if and only if there exists a number-theoretic func-
tion g : N

k −→ N, a function f : MC × P ∗ × N
k −→ N, and a unique

function µ : MC ×P ∗ ×N
k −→ N×MC ×P ∗ and also µ(f, M, S) = h

(possibly many to one) for each (f, M, S, h), that denotes h, and for
every M ∈ MC and any x ∈ N

k, there exists a sequence of simple steps
S ∈ P ∗, S = p[x], and finally, the calculation of h(x) or f(M, S, x) is
in accordance with one of the following alternative cases:

– If the value of x is defined in g, the calculation follows a finite
sequence of simple steps S (halts), and both h(x) and f(M, S, x)
must result in the value of g(x).

– If the value of x is not defined in g, a situation commonly and for-
mally represented as g(x) = ⊥, the calculation follows an infinite

8

sequence of simple steps, i.e. |S| = ∞ and the application h(x) or
f(M, S, x) never halts.

Roughly, f(M, S, x) = g(x) = h(x), where x ∈ N
k, M ∈ MC and

S ∈ P ∗. More formally and using first-order predicate logic, and a
predicate ec that states whether a function is effectively calculable,

∀k ∈ N. ∀f : MC × P ∗ × N
k −→ N. ec(f) ≡

∃!(g : N
k −→ N). ∀(M ∈ MC). ∃(S ∈ P ∗). ∀(x ∈ N

k). f(M, S, x) = g(x)

where g is unique since the quantifier indicates.

To allow composition of functions I can repeat the parameter M for
the same model and sequences of steps S0 and S1,
f(M, S1, f(M, S0, x)) = g(g(x)) holds here because k = 1. However,
for k > 1, effectively calculable functions must accept and result in one
encoding number, e.g. a Gödel number, and, by temporarily reducing
k to 1, I do not loose generality. That is, every effectively calculable
function must decode x before its calculation and, before resulting its
final value, it must encode its result into a natural number. In the
present paper, after these definitions I shall use only functions with
k = 1. The next interpretation is a particular case of this one.

• Turing Computability and Calculable Functions -

For some partial and number-theoretic function g : N
k −→ N, some

numbering interpretation (some codification previously established) N
from a symbolic representation, for example including Gödel numbers,
a partial function t : MC × P ∗ × N

k −→ N is a Turing-calculable (or
simply computable, or calculable) function if and only if there exists a
Turing machine T such that, given the representation r(x) (according
to N) of the value x ∈ N

k and once r(x) is placed at some established
place in the tape for input by that machine, and given a sequence of
simple steps S ∈ P ∗, which is the program of T , the calculation of g(x)
by t is in accordance with one of the following cases:

– if x is defined in g, the calculation of t halts in a finite number
of simple steps S in a final state of T leaving the appropriate
representation of g(x), i.e. according to N , at the established
place of the tape for the result.

– if x is undefined in g, either the calculation of t does not halt or
it halts in a state s /∈ M ? F .

9

Intuitively and in a somewhat informal way, a predicate that states
whether f is a Turing-calculable function (asserted using the predicate
formula tcf(t)) is defined as follows: for all N ∈ I,

∀(k ∈ N). ∀(t : MC × P ∗ × N
k −→ N). tcf(t) ≡ ∃!(g : N

k −→ N).
∃(S ∈ P ∗). ∀(x ∈ N

k). N |= t(TM, S, x) = g(x)

where TM is constant which is a value in the domain MC, I denotes
the set of all possible codifications, and g is naturally unique.

From now on, I shall not write N in the formulae for the purpose of
simplification, as I have already stated that an interpretation always
exists and I simply assume that it is constant.

Thus, I shall demonstrate in proposition 2 that Turing machines do
not necessarily entail functions. I demonstrate that unexpected effects
introduce a problem that has a logical aspect and a conceptual one.

3.1 Unexpected effects

We can view unexpected effect as being the effect of some operation that a
Turing machine (or, more generally, a program) can perform that can possibly
change the representation of data or Turing machine on the tape (or of data
or program in a common memory device) and therefore its result, in such
a way that the effective effect depends on where the representations of the
Turing machines are placed on the tape, as well as secondary conditions. If
they are placed in different blocks in different runs, the results from these
occurrences of computations are possibly different. The notion of unexpected
effect is particularly important in any interpretation of Turing machine by
a Universal Turing machine, for the latter has to guarantee the absence of
unexpected effects, as we shall see. One can formally define the notion of
unexpected effect as follows:

More abstractly, there exist two instants, t0 6= t1, of time such that

TM, M ` @′ · t0[↑ M [X] = m] ∧ TM, M ` @′ · t1[↑ M [X] = n] ∧ m 6= n

TM, M ` se(↑ M [X])

The above definition is in terms of proof (if the results from the same Tur-
ing machine are different, I prove that there exists some unexpected effect).
Or alternatively as follows:

se(M [X]) ≡ @TM ·′ [@M · t0[M(X)] 6= @M · t1[M(X)] ∧ t0 6=t t1]

10

where M is a Turing machine, M(X) here denotes the same as M [X] and
both denote M running for some input x, TM is the Turing machine model
of computation, @′ · t[M [X]] is the result from computation M [X] at time t
and under some set interpretation of encoding results, and se(M [X]) is the
predicate that states the existence of unexpected effects in a Turing machine
application M [X].

Notice that unexpected effect is not a pure-mathematical notion regard-
less of its importance in computer science. Furthermore, M might produce
or receive unexpected effects. For the analysis in the next section, one can
interpret that an unexpected effect indeed replaces one Turing machine by
another one, while they are interpreted by a Turing machine that neither
detects nor treats unexpected effects. From this perspective for unexpected
effects, one alternatively interprets one unexpected effect as follows:

se(M [X])≡ @TM ·′ [(∃M, M ′) @s · t0[thereis(M)] ∧ @s · t1[thereis(M ′)]
∧M 6= M ′ ∧ M(x) 6= M ′(x) ∧ t0 <t t1]

where s denotes a place on the tape, thereis(M) is a predicate that de-
notes the existence of the Turing machine M . Notice that the above formula
makes use of the closed-world assumption.

4 A Refuting Example

In the following theorems of this paper, I prefer to use both terms computable
and calculable as meaning the same.

In my analysis, there exist two connections, namely, between Turing ma-
chines and Turing-computable functions, and between Turing-computable
functions and effectively computable functions. I am at showing that the
former one-to-one correspondence is broken, as well as their structural prop-
erties are not preserved because of the necessary notion of composition.

Example 1

Let U be a Universal Turing machine, and let G and H be two Turing
machines that are placed on the tape. For my proofs, an example will suffice.
Thus, as an example, H calculates double its input, which is encoded in
binary and placed on the left of H, separated by, say, fifty blank symbols,
initially. Thus, H ? Σ = {◦, 0, 1} and H ? T = {0, 1}. In this example, let
H ? P be

(q0, 0, q2, ◦, R), (q0, 1, q1, ◦, R),
(q2, 0, q2, 0, R), (q2, 1, q2, 1, R)

11

(q2, ◦, q4, 0, L), (q4, 0, q4, 0, L), (q4, 1, q4, 1, L),
(q4, ◦, q5, 0, H),
(q1, 0, q1, 0, R), (q1, 1, q1, 1, R)
(q1, ◦, q3, 0, L), (q3, 0, q3, 0, L), (q3, 1, q3, 1, L),
(q3, ◦, q5, 1, H).

Thus, H ? Q = {q0, ..., q5}, n = 5, m = 2, and H ? F = {q5}.
Let G = (H?Q∪{qn+1, ..., qn+3+w}, H ?Σ, H ?T, Λ∪G?P, q0, H ?F \{q0})

be defined as follows:
G moves the write/read head an arbitrary number w of squares to either

left or right of r(G), and, for some s ∈ G ? Σ, writes s on the tape. In this
way, the Turing machine G is similar to H, except that G attempts to pro-
duce some unexpected effect on the tape. Without loss of generality, this can
be done in the following way, assuming that I choose to move the write/read
head to the right and that the write/read head is positioned at the leftmost
square of r(G) at q0:

∀γ ∈ H ? P , γ ≡ (qi, a, qj, c, d) : i 6= 0 ∧ j 6= 0 ⇒ γ ∈ Λ.
∀γ ∈ H ? P , γ ≡ (q0, a, qi, c, d) : γ /∈ Λ ∧ (qn+1, a, qi, c, d) ∈ Λ.
∀γ ∈ H ? P , γ ≡ (qi, a, q0, c, d) : γ /∈ Λ ∧ (qi, a, qn+1, c, d) ∈ Λ.
q0 ∈ H ? F ⇒ qn+1 ∈ G ? F .
(q0, s0, qn+2, s0, S) ∈ G ? P .
∀s ∈ Σ \ {s0} : (q0, s, q0, s, R) ∈ G ? P .
For some arbitrary w ∈ N:
∀i ∈ N (i < w) : (qn+2+i, s0, qn+3+i, s0, R) ∈ G ? P .
(qn+2+w, s0, qn+3+w, s1, L) ∈ G ? P .
∀i ∈ N (i < w) : ∀j ∈ N (1 ≤ j ≤ m) : (qn+3+i, sj, qn+3+w, s0, L) ∈ G ? P .
(qn+3+w, s0, qn+3+w, s0, L) ∈ G ? P .
∀s ∈ Σ \ {s0} : (qn+3+w, s, qn+3+w, s, L) ∈ G ? P .
(qn+3+w, s0, qn+1, s0, R) ∈ G ? P .

Notice that, like H, G finally halts in s5. That is, both (q4, ◦, q5, 0, H)
and (q3, ◦, q5, 1, H) are in G ? F . Therefore, G is an algorithm.

Now, given X : N, some Turing machine F : P ∗ × N −→ N, and se-
quences of simple steps S and S2, let U(F [G[X]]) be calculated: Suppose
for the present example that F calculates the integer division modulus four
of a number represented in binary digits (that is, F results in the two least
significant digits). I define F as

F ? Q = {q0, q10, q11, q12, q13, q100, q101, q102, q103, q1000, q1001}

and F ? F = {q1000, q1001}. Thus, F ? P can be defined as follows:

12

(q0, 0, q10, ◦, R), (q0, 1, q11, ◦, R),

(q10, 0, q10, 0, R), (q10, 1, q11, 1, R), (q10, ◦, q100, ◦, L),

(q11, 0, q12, 0, R), (q11, 1, q13, 1, R), (q11, ◦, q101, ◦, L),

(q12, 0, q10, 0, R), (q12, 1, q11, 1, R), (q12, ◦, q102, ◦, L),

(q13, 0, q12, 0, R), (q13, 1, q13, 1, R), (q13, ◦, q103, ◦, L),

(q100, 0, q100, ◦, L), (q100, 1, q100, ◦, L), (q100, ◦, q1000, 0, R),

(q101, 0, q101, ◦, L), (q101, 1, q101, ◦, L), (q101, ◦, q1001, 0, R),

(q102, 0, q102, ◦, L), (q102, 1, q102, ◦, L), (q102, ◦, q1000, 1, R),

(q103, 0, q103, ◦, L), (q103, 1, q103, ◦, L), (q103, ◦, q1001, 1, R),

(q1000, ◦, q1000, 0, H), (q1001, ◦, q1001, 1, H).

and then, supposing x = 93, we obtain the following situation in q0:

tape starts here −→|1011101 ◦ ...r(G) ◦ ...r(F) ◦ ...
�

where � is the write/read head.
Because some simple steps of calculation of G might modify the represen-

tation of any Turing machine placed on the tape, including of F , we could
obtain U(F [G[X]]) 6= U(F [H[X]]) from the calculation. The programmer
who writes F does not have prior knowledge on G nor H. That is, G might
change the representation of F if U allowed this. From the alternative view
for unexpected effects, a computation could start as U(F [G[X]]) and finished
resulting in U(F ′[G[X]]) since G might change the Turing machine F in such
a way that it would become F ′, if U allowed G to do so.

2

Definition 3 For this article, let k ∈ N, k ≥ 0, X : N be some input, and k+
1 Turing machines Fk : N −→ N. For any k > 0, a (k−level) Turing-machine
composition is a composition of k +1 Turing machines Fk[Fk−1[...[F0[X]]...]].
For any 0 < i ≤ k, Fi does not read or manipulate any Turing machine other
than Fi−1.

Lemma 1 (Universal Interpretation) For any k ∈ N, for any repre-
sentation X : N on the tape, and for any Turing machines F0, F1, ..., Fk,
let Fk[Fk−1[...[F0[X]] ...]] be a k-level Turing-machine composition. Then,
the Universal Turing machine is capable of reading the Turing machines
F0, F1, ..., Fk.

13

[Proof] To calculate any U(Fk[Fk−1[...[F0[X]]...]]), U interprets the oper-
ations of some of the involved Turing machines, i.e. some of F0, F1, ..., Fk, by
following either lazy or strict evaluation.

2

Lemma 2 Let X : N, U be the Universal Turing machine, M0, ..., Mk :
N −→ N be k + 1 Turing machines, and U(Mk[Mk−1[...[M0[X]]...]]) be a k-
level Turing-machine composition where k > 0. There exists a non-empty
set of transition functions in the Universal Turing machine that guarantees
absence of any unexpected effect at any level i ≤ k in Turing-machine com-
positions.

By example 1, a Universal Turing machine has to get round the problem
of unexpected effects. In this article, the way is not important, but it may
be done by manipulating the tape configuration whenever the calculation of
a Turing machine tries to modify another machine on the tape. That is, for
all sequences of steps, U must always guarantee ∀F, G, H : N −→ N, ∀X :
N, U(F [G[X]]) = U(F [H[X]]). Therefore, since the programmable part of a
Turing machine is in its set of transitions, there exists a non-empty set of
transitions S ⊂ U ? P that can solve this problem of unexpected effects.

2

Theorem 1 The class of Turing machines is not isomorphic to the class of
effectively computable partial recursive functions. Furthermore, neither the
former is necessarily equivalent to the latter, e.g. two Turing machines can
correspond to the same function, nor all structural properties of the class
of Turing machines correspond to the structural properties of the class of
effectively computable functions with respect to the notion of composition.

[Proof] By lemma 2, there exists a non-empty set of transition functions
S ⊂ U ? P that can solve the problem of unexpected effects. Now, let
U(U [G[X]]) be calculated, from which the reader obtains the following situ-
ation in U ? q0 and in G ? q0:

tape starts here −→|1011101 ◦ ...r(G) ◦ ...r(U) ◦ ...
�

and the final situation in G ? F containing the double value, 186, is

14

tape starts here −→|10111010 ◦ ...r(G) ◦ ...r(U) ◦ ...
�

although solution S might move the absolute positions of r(G) and r(U),
and hence changing the tape configuration. Thus, the computation of G(X)
is represented as follows:

q01011101◦ −→ ◦q1011101◦ −→ ◦0q111101◦ −→
◦01q11101◦ −→ ◦011q1101◦ −→ ◦0111q101◦ −→
◦01110q11◦ −→ ◦011101q1◦ −→ ◦01110q310 −→
◦0111q3010◦ −→ ◦011q31010◦ −→ ◦01q311010◦ −→
◦0q3111010◦ −→ ◦q30111010◦ −→ q3 ◦ 0111010◦ −→
q510111010 ◦ .

Assuming that there is no unexpected effects in the above computation.
Then let two Turing machines, U and V , exist such that, except for the
possibility of unexpected effects, U and V produce the same output: The
only difference is that U contains S and calculates U(U [G[X]]), and V does
not contain S and might calculate V (V [G[X]]) or V (U [G[X]]). As a pos-
sible example, V may sometimes calculate U(U [G[X]]) and sometimes not,
depending on the physical places where V and G rest on the tape. Assum-
ing that the class of Turing machines necessarily corresponds to the class of
effectively computable functions, for later contradiction (although my Exam-
ple 1 above clearly applies to any model based on functions), I can choose
λ-calculus, defined by Church himself, as a functional model of effective cal-
culability, denoted here by λ−calculus ∈ MC. Clearly, a simple case by
case analysis demonstrates that parameters in λ-calculi cannot modify the
operations of other functions (nor are able to replace a function application
by another one). That is, no λ-calculi operations, namely {β-reduction, α-
conversion, η-conversion} and higher-order function application, are capable
of doing this at all, as λ-expressions are always well formed. The same is valid
for any functional model. Thus, let sefu, sefv, sefg : MC × P ∗ × N −→ N

be the effectively computable functions which are supposed to correspond
to U , V and G, respectively, and their corresponding sequences of steps
Su, Sv and Sg. The three sequences of steps depend on their respective ef-
fectively computable functions. Finally, while the applications U(U [G[X]])
and V (V [G[X]]) do not always produce the same value for all G, the corre-
sponding applications sefu(λ−calculus, Su, sefg(λ−calculus, Sg, x)) = u(g(x))

15

and sefv(λ−calculus, Sv, sefg(λ−calculus, Sg, x)) = v(g(x)) always result
in the same values for all g, regardless of whether u(g(x)) = v(g(x)) or
u(g(x)) 6= v(g(x)) or not, since sefu and sefv are functions. By assumption,
the absence of one corresponding function for V (V [G[X]]) is a contradiction.

2

Briefly, from the presented alternative view of unexpected effects, while
in the computation of the Turing-machine composition V (V [G[X]]) the com-
putation of the Turing machine G might replace the inner occurrence of the
Turing machine V by another Turing machine V ′ and, therefore, the outer-
most occurrence of V might compute V (V ′[G[X]]) instead, neither the steps
Sg nor the function sefg can replace any function, in particular, neither sefu

nor sefv.

Theorem 2 If each Turing machine implies one partial function, then the
class of Turing-computable functions is not isomorphic to the class of effec-
tively computable functions.

This theorem is another way of seeing the theorem 1.
2

Because the models of effectively computable functions provide ways of
defining functions that result in any number as we wish, then for all k ∈ N,
for all (x, y) ∈ N

k ×N, intuitively, there must exist an effectively computable
function which calculates y from x in a few steps. However, as I have shown,
Turing machines are not necessarily functions. As already mentioned, unex-
pected effects introduce a problem with two aspects: logical and semantic.
I solve the logical aspect of the problem by proposition 2, and I solve the
semantic aspect of the problem by regarding Turing machines that produce
different answers under different physical conditions as non-functional ma-
chines. Thus V is a Turing machine which does not have any corresponding
function. Furthermore, it is easy to see that Turing-computable functions are
still linked to Turing machines where unexpected effects are forbidden. No-
tice that this corollary holds for both intensional and extensional standpoints,
as we can also view unexpected effect as an action or effect of replacing one
Turing machine by another with different results.

Theorem 3 Computation is not conceptually function application.

[Proof] Given that computation may be mobile, e.g. by using mobile
agents nowadays, given some insight of the present author in Edinburgh
(1999), computation is conceptually a physical process.

16

On the other hand, by theorem 1, the class of Turing machines is not
isomorphic to the class of Turing-computable functions. Following this, pro-
grams do not correspond to functions. Therefore, computation is not con-
ceptually function application.

2

Proposition 1 Let k ∈ N. For every k > 1, there exists a k-level Turing-
machine composition if and only if some representation of the Universal Tur-
ing machine is not in the composition.

[Proof] Let U be a Universal Turing machine, M, N : N −→ N be two Tur-
ing machines with corresponding Turing-computable functions m, n : N −→
N, and x ∈ N, and X : N be the representation of x on the tape.

The Universal Turing machine, by lemma 2, guarantees the absence of un-
expected effects at all levels of its parameters. I can consider the composition
M [N [X]]. It follows that U must have direct control over the operations of N
in such a way that, if N tries to modify the operations in the M representa-
tion, U detects this unexpected effect and intervenes, for instance, by moving
physically the representation of M or N to another place on the tape, to con-
tinue the computation of the composition keeping the isomorphism between
Turing machines and computable functions. Therefore, because U must have
dynamic knowledge about the computation carried out by N , U(M [N [X]])
is not really a function application, and therefore some representation of U
is not in the composition.

With respect to the converse, setting M 6= U ∧N 6= U and X 6= U , there
exists a Turing-machine composition, e.g. respectively M(N [X]) above, from
which U is absent.

2

Remark: We can capture an intuitive and precise notion of Turing
machine model as follows: Let M be the set of all Turing machines, T be
the set of Turing-computable functions, U be the Universal Turing machine
and u be the Universal Turing-computable function. Let X : N be the
null-computation Turing machine that corresponds to the 0-ary function (i.e.
without any input) that always results in the same value x ∈ N. Therefore, u :
P(T) −→ N (where P is the ordered power set of a given ordered set), in such
a way that the application m(n(x)) is equal to u(m(n(x))) and abstractly
represented as U({M, N, X}) or, more precisely, as U(s) where s denotes
the string that encodes M , N and X, together with the write/read head
and blank symbols, with the constraint that s does neither start nor finish
with the blank symbol. Furthermore, composition is part of the notion of
function, and such a representation does not capture the composition of

17

Turing machines U(M [N [X]]). However, there may be applications as well
as compositions involving U where there exist such representations with U ,
both on the tape and outside the tape. Therefore, there exist two different
levels of functional abstraction in the Turing machine model of computation.

In other words, on the one hand, we separate what is encoded on the tape
from what is outside the tape, by stating that only what is outside the tape is
free from unexpected effects, and hence, can be functions. On the other hand,
functions do not manipulate the operations of any function. In this way, there
are two different levels of abstraction: at one level, only the Universal Turing
machine is function and the encoded Turing machines on the tape form a one-
level parameter. At another level, there exists a Turing machine composition
on the tape, and the encoded Turing machines correspond to the computable
functions because the Universal Turing machine does not correspond to any
function in the same space, in the sense that U is capable of managing the
tape and guaranteeing absence of unexpected effects. Therefore, there exist
two separate levels of function abstraction in the Turing machine model of
computation.

In the next proposition, as usual, I do not regard time as a factor in the
computation.

Proposition 2 There exists a Turing machine that can correspond to more
than one Turing-computable function.

[Proof] Let M be some Turing machine and x be its input. Let U be
a Universal Turing machine, and V be another Turing machine, which, ex-
cept for the existence of unexpected effects, produces the same output as
U : the only difference is that U calculates U(U [M [X]]), and V calculates
V (V [M [X]]) and sometimes calculates U(U [M [X]]), but sometimes not, de-
pending on the physical places where V and M rest on the tape. Because the
Turing machine composition V (V [M [X]]) can be placed at different places
on the tape at different instants and the computations receive different kinds
of unexpected effects, the same running Turing machine M can produce dif-
ferent results for the same input x. Each particular result from x corresponds
to one Turing-computable function.

2

Corollary 1 There exists a Turing machine that can avoid receiving unex-
pected effects from its parameter.

[Proof] Universal Turing machines, as discussed in the theorem 1, must
ensure absence of unexpected effects.

18

2

I can draw functions f : D1 −→ D2 and g : D2 −→ D3 as well as the
corresponding composition h : D1 −→ D3, under the law h = g(f(x)) as in
the following picture:

D1

D2 Im(g(f(x)))

This holds for any function application.

? -

@
@

@
@

@
@

@
@

@
@R

(where Im(g(f(x))) ⊆ D3).

D1

D2

H(X)

F (G(X))

In addition to the Tm composition,

does it dynamically hold for any computation

of Turing Machine composition?

? -

@
@

@
@

@
@

@
@

@R

Compositions

For answering the question, I individually consider the correspondence be-
tween the functions f , g and h, and the Turing machines F , G and H,
respectively. The answer for the question, i.e. whether the law of composi-
tion F (G(X)) = H(X) holds for every computation of composition of Turing
machines, depends on the absolute positions of the involved Turing machines,
F and G, on the tape, as well as on whether the only Turing machine outside
the tape avoids unexpected effects on the tape. However, both factors are
external to the machines that are on the tape and play rôles in the composi-
tion. As a consequence, the global view is a property of the Universal Turing
machines, in particular, it avoids what I discovered in 2000 and refer to as
unexpected effects.

19

In this article, as well as in [4], the term algorithm is used to mean a
program which always halts, and not necessarily a total function. A decision
had to be made.

References

[1] G. S. Boolos and R. C. Jeffrey. Computability and Logic. Cambridge
University Press, third edition, 1989.

[2] N. Cutland. Computability: an introduction to recursive function theory.
Cambridge University Press, 1980. This book was reprinted.

[3] U. Ferreira. On Turing’s proof of the undecidability of the halting prob-
lem. In H. R. Arabnia, I. A. Ajwa, and G. A. Gravvanis, editors,
Post-Conference Proceedings of the 2004 International Conference on
Algorithmic Mathematics & Computer Science, pages 519–522. CSREA
Press, June 2004. Las Vegas, Nevada, USA.

[4] U. Ferreira. A property for Church-Turing thesis. In H. R. Arabnia, I. A.
Ajwa, and G. A. Gravvanis, editors, Post-Conference Proceedings of the
2004 International Conference on Algorithmic Mathematics & Computer
Science, pages 507–513. CSREA Press, June 2004. Las Vegas, Nevada,
USA.

[5] A. Galton. Machines and Thought: The Legacy of Alan Turing, vol-
ume 1 of Mind Association ocasional series, chapter The Church-Turing
Thesis: Its Nature and Status, pages 137–164. Oxford University Press,
1996.

[6] N. D. Jones. Computability Theory: An Introduction. ACM Monograph
Series. Academic Press, New York and London, 1973.

[7] N. D. Jones. Computability and Complexity: from a programming per-
spective. Foundations of Computing. The MIT Press, 1997.

[8] S. M. Lane. Categories for the Working Mathematician. Graduate texts
in mathematics. Springer, second edition, 1998. Previous edition: 1971.

[9] H. Lewis and C. H. Papadimitriou. Elements of the theory of computa-
tion. Prentice-Hall, Inc., second edition, September 1997.

[10] M. Margenstern. On quasi-unilateral Universal Turing machines. The-
oretical Computer Science, 257(1–2):153–166, April 2001.

20

[11] A. Mateescu and A. Salomaa. Handbook of Formal Languages, volume 1,
chapter Aspects of Classical Language Theory, pages 175–251. Springer-
Verlag, 1997.

[12] M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall
Series in Automatic Computation. Prentice-Hall International, Inc. Lon-
don, 1972. Original American publication by Prentice-Hall Inc. 1967.

[13] C. H. Papadimitriou. Computational Complexity. Addison-Wesley Pub-
lishing Company, 1995. Reprinted with corrections.

[14] I. C. C. Phillips. Handbook of Logic in Computer Science, volume 1:
Mathematical Structures, chapter Recursion Theory, pages 79–187. Ox-
ford University Press, 1992.

[15] B. C. Pierce. Basic Category Theory for Computer Scientists. Founda-
tions of Computing Series. The MIT Press, 1993. Second print.

[16] A. Poigné. Handbook of Logic in Computer Science, volume 1: Mathe-
matical Structures, chapter Basic Category Theory, pages 413–640. Ox-
ford University Press, 1992.

[17] M. Sipser. Introduction to the Theory of Computation. PWS Publishing
Company, 1997.

[18] S. Thompson. Haskell: The Craft of Functional Programming. Addison-
Wesley Publishing Company, second edition, 1999. Paperback.

[19] J. V. Tucker and J. I. Zucker. Handbook of Logic in Computer Science,
volume 5: Logic and Algebraic Methods, chapter Computable Functions
and Semicomputable Sets on Many-Sorted Algebras, pages 317–523. Ox-
ford University Press, 2000.

[20] A. M. Turing. Computability and λ-definability. Journal of Symbolic
Logic, 2:153–163, 1936.

[21] A. Yasuhara. Recursive Function and Logic. Academic Press, Inc, 1971.

21

