
A Space-Time Logic

Ulisses Ferreira

e-mail: ulisses@philosophers-fcs.org

Abstract

It is well known that space and time are two primary notions that
have always been present in the human consciousness independently
of contexts. In this article, I propose a space-time logic with five
epistemic values, together with uncertainty. My work considers the
expressiveness of the language and, because of this, I also introduce
a deductive system for the present logic in the same syntax. The
present author’s final aim is mainly to introduce a general framework
for writing formal semantics of programming languages that support
code mobility e.g. mobile agents, among other more traditional appli-
cations such as knowledge representation.

Moreover, the present logic is powerful enough for representing more
sophisticated forms of reasoning, such as to weigh up possibilities.
For being able to make fair judgments one should consciously attach
honesty factors (in this case, floating-point numbers in [−1,+1]) to
diversified implications between premises and some conclusion in such
a way that that conclusion from weighing up possibilities can be based
on those factors. As it is well known, this is a very common form of
reasoning. Thus, the @-logic also provides uncertainty-based repre-
sentation combined with deduction for such purposes.

1 Introduction

For many years, I designed a programming language which is called Plain[38].
One of the general purposes of Plain is to provide a hybrid programming
paradigm. Since 1992, it has been clear that the idea is not the same as
multiple paradigm, and that is one of the novelties of Plain: Often, a multi-
paradigm programming language is just a union of two or more languages of

A Space-Time Logic, Ferreira, 2000 2

different paradigms, while a programmer may choose which one she is going
to use. Thus, from the present perspective, in contrast with the latter, the
hybrid paradigm of Plain has some high level of integration. Plain is also
based on knowledge-and-belief representation, and can be used for expert
systems over MYCIN confidence factors. From this, logic in my work has
always had a flavour that contrasted with Boolean logic, for instance. Even
in the very beginning of Plain, two values [40] were not nearly enough. A
value called uu has existed in Plain from start. Now, Plain had three
values: tt, ff, and uu: true, false and unknown, respectively, as well as a real
(or rational, in the end) range between −1 and +1, with four variables where
min,max, False, T rue : [−1,+1], and min ≤ max and False ≤ True, as
follows.

-1 0 +1False True

min max

A typical configuration representing uu.

Of course, every computer scientists is interested in logics. My particular
interest in logics started when I received an acceptance letter from the Com-
puting Department of the University of London stating that Dov M. Gabbay
was willing to supervise me. We do not know each other. However, in my
particular case, that was not a good moment of my life for that.

In 90’s, I made some design of a temporary language for representing
permissions of accesses by users at different levels, and, once I entered Sussex
University, there, ended up designing a three-valued logic programming [55,
56] language[39], called Globallog, and which in turn was initially referred
to as Kleene after Kleene’s death in 1994. I prefered to leave this name
for other logic programming languages designers, since the corresponding
language was already conceived for being no more than a subset of the hybrid
paradigm language, Plain. In any case, this language has been flexible in
such a way that programmers might write inconsistent predicates. From this,
there is now the need to think in terms of an inconsistent value which has
been called ii: the fourth value.

In 1996, there was a brief opportunity to study with supervision of some
particular Professor but for some reason I could not go. However, his interest
on closed-world assumption and negation by failure suggested me to think
about adapting some pioneering ideas from Prolog to the logical language,
Kleene at that time.

On the other hand, until the year 2000, the False and True thresholds
above were constants for each run[37], often False < True had hold in

A Space-Time Logic, Ferreira, 2000 3

projects, but soon I realized that, for more complex systems, False could
increase or True could decrease in such a way that False = True would
hold. Under this condition, a new value appeared and I called this value
kk: the fifth value, knowable but consistent. Now there are already the
ingredients required for a five-valued logic[53].

I consider a programming language as something slightly more than a
logic: there is control, flow, sometimes side effects and i/o operations, for
instance: lots of boring details at low level. Nonetheless, although the pieces
of knowledge for designing a logic and a programming language are different,
the skills seem to be the same. Thus, I started studying logics.

Since ML was one of the main programming languages by Edinburgh Uni-
versity (UoE), my work required some more knowledge and care to propose
Plain. In 1997, my first mobile agent in Plain run on the Internet with a
demonstration to friends, sending e-mail with partial results. Thus, my first
argument was that mobile agents[97] were not a suitable application on purely
functional languages[60]. Anyway, I presented 10% of what I wanted to do.
I would like to have presented more but had previously consulted an oracle
and its response was that 10% would be suitable for the purpose. At UoE, a
colleague of mine proposed a mobile calculus, and then an idea came up: a
spatio-temporal logic which could be used for physical aspects of computation,
for writing formal semantics of mobile agents as well as statements in pro-
gramming languages that supported them. I found that the spatio-temporal
logic ought to contribute to the general logic, and then did not propose a sep-
arate space-time logic, although a classical binary version was built in there
in the work. As an example, in terms of its expressiveness in comparison to
predicate logics, the whole logic would be able to make clear that the notion of
inconsistency is applied to the same place and to the same time only. In late
2000 and early 2001, having deduced the ingredients, I worked somewhat hard
on the @-logic while in Nothern Ireland, London, Dublin and a few places
around there. In short, a formula @s · t[P (x)] means P (x) at place s time t.
The announcement of the @-logic was sent via the types-l mailing list: See
www.cis.upenn.edu/˜bcpierce/types/archives/current/msg00677.html. Then,
I submitted my work on the @-logic for publication to journals such as Jour-
nal of Logic and Computation and have improved it in the details in parallel
to other original and published pieces of work. This is the end of the brief
story of what I present here.

Classical logics, in both propositional and predicate forms[19], tradition-
ally have been the most important logics since George Boole’s time[27],
with many contributions[28, 45, 95, 85, 89]. In the last century, a num-
ber of logics have been developed and established as alternatives to classical
logic. In particular, intuitionistic logics, in both propositional and predicate

A Space-Time Logic, Ferreira, 2000 4

forms, have increasingly attracted the attention of mathematicians and non-
mathematicians[12]. In fact, computers have played important rôle in many
logics with constructive proofs. As regards intuitionistic logic, since Brouwer
and Heyting[12], there have been many important contributions in the field.
In [26], for instance, the duality in Cartesian closed categories, λ-calculi, in-
tuitionistic and classical logics from syntactic and semantic viewpoints are
investigated, while, regarding philosophy of mathematics, in [13, 18], there
are two kinds of defense of classical view in mathematics and logic. The range
of subjects is broad. Regarding a more informal and philosophical literature,
logics and space-time together do not play lesser relevant rôles[90].

Recently, some other contributions to pure logics[49] have appeared. For
example, Arthur Prior[24, 77, 78, 79] and others[51] are some of the important
contributors to modal logics[21] and temporal logics. A reference on them is
[34].

The proposed language of the present logic is based on five values, ff, tt, uu,
kk, ii representing, briefly speaking, false, true, unknown, known and in-
consistent, an idea whose simplification is somewhat similar to the Belnap
four-valued logic[11] in the following sense: uu means “neither true nor
false” while ii means both. Lukasiewicz[44] introduced many-valued log-
ics or infinitely-many-valued logics, both based on a set of values from false
to true, e.g. {0/3, 1/3, 2/3, 3/3}. Stephen Kleene also introduced his many-
valued system[67], with some modifications on Lukasiewicz’s. Here, in some
sense, I do not adopt degrees of veracity but instead work on pairs of op-
posites, although I deal with degrees of veracity in another context of the
@-logic called uncertainty. On the other hand, the present calculus is some-
what similar to the Lukasiewicz three-valued logic or Kleene three-valued
logic as ¬ii also results in ii. The differences to those many-valued logics[70]
will become explicit in sections 2 and 2.2.

Some many-valued logics, as well as modal and temporal logics, were
introduced having as motivation the representation of forms of veracity re-
ferring to the future, i.e. propositions referring to the future are regarded as
neither true nor false[94]. Thus, we can regard the truth value of the proposi-
tions as unknown. However, there are many other uses for the representation
of lack of information. Here, I do not philosophically[66] discuss on whether
it is possible for one to have knowledge about the future. In any case, for
any event, unless we experience it somehow and in a particular situation,
we do not normally know whether this event happens or not. In space[20]
(a reference on spatial cognition is [46]), the need for the notion of lack of
information is essentially the same. We often know what somehow reaches
us by communication. Otherwise, events are normally unknown. Because of
this, the present space-time calculus is based on the present five-valued logic,

A Space-Time Logic, Ferreira, 2000 5

in particular, in one of the defined implications.
On the one hand, a number of temporal and spatial logics have been

introduced[4] for a number of purposes[43] with success, whereas spatial rea-
soning has been deeply studied. On the other hand, there has been a rela-
tively small number of spatial theories on predicate logics and other attempts
have been made. For instance, interval temporal logics are suitable for plan-
ning systems and scheduling[3, 6]. For time, we propose a more general
approach for representing time for actions, events and tasks, than that of
James Allen’s temporal logics, which is more at the AI or application level
than here[5]. His logic considers time as intervals, which is more general than
points and makes his calculus very suitable for planners. Thus, points can
be represented as [p1, p2] where p1 = p2. In the present work, dated back to
2000, both space and time are represented as sets, a more general form of
representation. If we want to represent cyclical events, we are able to do so by
considering unions between intervals, for instance. I mention other aspects,
for instance, concerning models and derivations, studied in [22, 30, 73, 92].
However, the present piece of work is in the scope of the emerging philoso-
phy of computer science, which is in (philosophical) foundations of computer
science, and models are not formalized such as using Kripke models[72], in
particular, since this article is long.

There are other pieces of work on applying logics in some areas in com-
puter science[50, 84]. Briefly, in addition to the literature on different logics[31,
35, 36], Girard’s linear logic[29, 57, 91] and labelled deductive systems[48]
are two of best examples of work that can be applied to computer science.
A very good paper on introduction to logics in computer science is in [86].

Little work has been done on spatial logical theories. The Region Con-
nection Calculus[80] is a predicate theory on space. On the other hand, the
author of [42] concentrates on a more detailed level of abstraction. There are
other approaches and spatio-temporal logics, such as [52], which is a logic for
multi-agent problem domains. A different approach for agents is shown in
[63]. My approach is to introduce a powerful and expressive language, while I
abstract details addressed in specific applications, e.g. AI systems. It seems
that, to date, there is no space-time logic, even good and recent literature,
e.g. book [88], does not contain relatively significant contribution combin-
ing both notions in one formal logic. Instead, in parallel to temporal logics,
there has been more specific work on the broad subject, for instance, spatio-
temporal databases[65], a model and language[96], predicate theories such as
RCC-8, in particular, those useful for AI. In contrast with particular space-
time logics, an updated bibliography for data mining research is [83]. In [23],
the authors observe the similarities between temporal and spatial structures,
but they did not collapsed both into sets. Like in [14] which applies rough

A Space-Time Logic, Ferreira, 2000 6

sets[76] to a spatio-temporal context, I collapse and generalize both notions,
although I use sets (according to that article, rough set theory[75] provides a
way of approximating subsets of a set when the set is equipped with a parti-
tion or equivalence relation. The same article contains another related issue.
It notes that unfortunately the exact location of spatio-temporal objects is
often indeterminate, which motivates the definition and interpretation of the
uu value, as well as the notion of uncertainty, in a space-time logic.), and
because I accept sets (hence intervals) for both space and time in a Cartesian
space representation, the present logic might also capture other notions such
as geometrical or geographical relational operations and so forth.

However, perhaps because technologies such as mobile-code languages,
e.g. Java[8, 61], are relatively recent, we have not had symmetry and balance
concerning attention to time and space. We have some temporal logics but,
to date, space has had little attention from the academic community with
rare exceptions such as [15]. Some proposals, in particular predicate theories,
have appeared but no space-time logic has been established. It seems that,
for various purposes, it would be desirable to combine both approaches, with
respect to space and time, in only one logic.

For this article, let C be the set of all formulae in the space-time logic i.e.
the language of the @-logic. Thus, to start explaining the subject, a classical
version of the space-time logic can be defined as follows:

Definition 1 Let ϕ and φ denote two formulae and α be a variable (a quan-
tifier). Thus, a classical @-logic language corresponds to ϕ (a non-terminal
symbol, in formal languages terms) in the grammar as the following:

ϕ 7−→ P | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ | ϕ⇔ ϕ | (∃α) ϕ | (∀α) ϕ
ϕ 7−→ @s · t[ϕ] | φ | @s · t[]
φ 7−→ @s · t[[ϕ]]
α 7−→ x | y | ...

where ϕ is the starting symbol, P stands for a proposition or predicate,
α denotes a quantified variable in C, s ∈ R3 or s ⊆ R3 and t ∈ R or t ⊆ R,
depending on the focus of attention, points or sets, sometimes intervals. The
author apologizes for this abuse of notation here. Let φ stand for semantics,
a function symbol with domain in C and semantic image. Both my syntax
and semantics are simple: if ϕ is a formula, then

@s · t[ϕ]

is a formula in the present logic, which is called @-logic, where s indicates
the place where ϕ holds, and t indicates the time when ϕ holds. A particular

A Space-Time Logic, Ferreira, 2000 7

case is
@s · t[]

which intuitively indicates that there is no assertion for space s and time
t. This notation is capable of representing an empty data base or theory.
Accordingly, by using a slightly different notation, we are able to express
@s · t[[ϕ]] as “the meaning of ϕ at place s and time t”.

Note that this language implicitly introduces a conjunction between the
space and the time, for every space-time formula. Now, for any expression,
everything happens intuitively in the same way as it would have happened
in the classical logics, except that now there are variables of space and time,
and that the classical logic expression in question is valid in the new context.

There are two standard variables, namely here and now that can be used
in space and time expressions, respectively. There is an alternative pair of
variables with the same meanings in symbols, namely ⊕ and ⊗, respectively.

The notion of space-time can be applied at more than one level. Thus,
in this article, I present a space-time deductive system that applies this pair
of concepts at two or three levels:

• Deduction (sequents)

• Logic (syntax)

• Object language (the semantics of) or application

A calculus is embeded in this system and vice-versa, in such a way that
I address the whole set of deductive rules as either. The present calculus is
called @-calculus and, accordingly, the logic that I define here is called @-
logic. Thus, I distinguish space and time referred to in the statements from
space and time where and/or when the derivation carries out, and from the
space and time referred to in nesting statements, i.e. the language permits
references to other epistemic levels of space-time.

The time component is based on a flow that can be represented by reals or
integer numbers, for instance, depending on one’s purpose. As an example,
if I set that i ∈ N represents the moment when I apply a logical rule, i +t 1
corresponds to the next step, no matter when this step is performed in the
real life. Thus, the structures for representing space and time can be two
parameters of the @-logic. In this way, if s ∈ N is the current bus or train
station, or the airport, s+s 1 can be the next, for instance.

In this article, the space-time logic is based on a five-valued logic in-
troduced here, without computational concerns such as decidability[93] and
complexity[10], nor proof search in backwards[59]. This calculus combines

A Space-Time Logic, Ferreira, 2000 8

natural deduction with sequent calculus although this yields redundancies:
the exclusion rules of the deduction correspond to the left rules of that cal-
culus as it is known. Briefly, my main concern is not the computerization
of this calculus, but instead, to introduce a language that can be used in
the formal semantics of mobile-code programming languages, as well as for
philosophical purposes.

For further work, properties of the present logic ought to be studied and
addressed in another paper. The referred to properties include soundness,
completeness and complexity.

Finally, this article is organized as follows: section 2 introduces the propo-
sitional logic. In the whole @-logic, the space and time models are parameters
of the logic, i.e. one defines them for his or her specific purpose, as long as
they are refinements of sets. Since the @-logic is used here e.g. in the calcu-
lus, a plain space and time models are defined here for the referred to level
of derivations. In subsection 2.2, I present and discuss the five truth values
of the language, while in subsection 2.3 I present some motivating examples.
Section 2.4 presents some comparisons with interval temporal logic, by defin-
ing the primitives in the @-logic. In subsection 2.5, I interpret some tense
logic operators in the current logic. Finally, in subsection 2.7 I consider un-
certainty as well as analogy and belief. In terms of proof theory, section 3
introduces a pair of consequence relations, while section 4 directly deals with
deduction. Section 6 briefly introduces one way to roughly represent material
objects on the move, as well as resources. Finally, section 7 concludes the
article. The appendix A shows the language syntax using Backus normal
form. In appendix B, I show a classical binary formulation of the space-time
logic.

2 A five-valued propositional logic

The whole logic which I am introducing here is based on a five-valued logic,
with truth values represented in

C
def
= {uu, kk, ff, tt, ii}

In the present piece of work, as well as the well known ff and tt values, uu
stands for unknown or undefined, kk stands for (possibly) known, while ii
stands for inconsistent. I choose to work on inconsistency[9] because it often
appears in contexts of the real world. In this way, mobile agents, for instance,
ought to be able to decide and act even when it recognizes the presence of
an inconsistent predicate. I consider that ii is stronger than uu and also
stronger than kk in some kind of strict reasoning, but can be weaker than

A Space-Time Logic, Ferreira, 2000 9

either in some forms of lazy computation. I shall explain the “known value”,
kk, in section 2.2 together with reasons for having five values. In advance
here, it suffices to say that kk means “some other agent might know the truth
value” to necessarily exclude the person who reasons. More generally and
intuitively, the meanings of the values are the following:

• ff : (My partner and) I know that the value is false;

• tt: (My partner and) I know that the value is true;

• kk: I know that the value is either true or false, but I do not know
which of them. However, my partner might know which of them.

• uu: I do not know the Boolean value nor whether or not it is consistent.
My partner neither;

• ii: (My partner and) I know that there is some inconsistency in the
subject and, because of this, we two do not know whether the actual
value is true (nor whether the same actual value is false).

However, “my partner” here represents another agent, for example. Note
that kk or uu, for instance, can abstractly represent uncertainty in some
subset of domain R.

2.1 Semantics, notions of space and time

In many articles on interval temporal logics, time is often represented by
using real values where, as time goes by, the present moment corresponds
to a value which normally increases. For some applications, there can be
branches along these lines to represent possible “futures”. There are other
approaches, such as in [84] that can also be useful for applications, including
systems specification, and also to express natural sub-languages by using par-
ticular cases of modality. The underlying language here is both the natural
language[54] and mathematics whenever it suits well. I do not adopt tense
logics here. However, one can easily define some modal operators of tense
logic as in section 2.5.

As mentioned above, in this article I adopt a form of representing time by
making use of a flow. More precisely, I shall define an algebra[33, 64, 71] that
includes notions of time and space. Thus, I define T

.
= R (or alternatively

T
.
= P(R), the power set of R.) as an infinite set for representing temporal

moments. A temporal model is a structure of kind M = 〈T, <t,≤t,=t, 6=t,≥t

, >t〉 which is a flow of time with the present five-valued logical connectives

A Space-Time Logic, Ferreira, 2000 10

or operators, for each proposition p resulting in a value in C, the set of the
five truth values. The semantics of the five-valued connectives are described
in 2.2. There can be relational operators over time instants (the real numbers
or so). Let a, b, c, d ∈ T. Then,

• a <t b states “a happens before b”;

• [a, b] <t [c, d] states that “the interval [a, b] happens before the interval
[c, d]” (that is, a ≤t b <t c ≤t d). Other 12 relations of Allen’s interval
temporal logic[4] can also be used;

• a =t b states “a and b happen at the same time”;

• a ≤t b states a <t b ∨ a =t b.

Let Bool
def
= {tt, ff}. The operators defined in the algebra apply over T.

The signature for the above operators is T × T −→ Bool.
Forms of representation for points in space are slightly more complex

than in time. I normally consider T
.
= R and S

.
= R3 when I refer to

these notions, and, as notation, (∀i) si ≡ 〈xi, yi, zi〉, with i an index. When
more appropriate, I consider T

.
= P(R) and S

.
= P(R3) instead. Letting

Bool
def
= {tt, ff}, the relational operators in S, namely <s: S × S −→ Bool,

=s: S × S −→ Bool and ≤s: S × S −→ Bool can be defined as follows:

si <s sj
def
=

√

x2
i + y2

i + z2
i <

√

x2
j + y2

j + z2
j ∨

√

x2
i + y2

i + z2
i =

√

x2
j + y2

j + z2
j ∧

(xi < xj ∨ xi =s xj ∧ yi < yj ∨ xi = xj ∧ yi = yj ∧ zi < zj)

The precedence between coordinates can be, of course, different. Likewise,
definition for <s depends on the application and can have many different
ways. However, conjunctions have precedence over disjunctions as indicated
in appendix A. The other relational operators are the following:

si =s sj
def
= xi = xj ∧ yi = yj ∧ zi = zj

si ≤s sj
def
= si <s sj ∨ si =s sj

Definition 2 Let C be the set of all wffs of @-logic (its language) and C be
the set of the five truth values uu, kk, ff, tt, ii. The corresponding space-time
model m is a mapping of the type

m : C −→ C

A Space-Time Logic, Ferreira, 2000 11

together with an algebra (Notice that C and C are two different symbols).
For instance:

M
def
= 〈S,T,C,

<s,=s,+s,−s, <t,=t,+t,−t,
∪,∩, \, ...,
¬,�,∧, &,∨,O, ...〉

with, informally, the following semantics: M |= @s · t[ϕ] for s ∈ S and
t ∈ T, meaning the value of ϕ ∈ C at place s and time t, where C corresponds
to all formulae in the @-logic. I also interpret @ >s s · t[ϕ] and @s· >t t[ϕ],
or alternatively @s <s ·t[ϕ] and @s · t <t [ϕ] respectively, as shorthands
for (∃s′ ∈ S, s′ >t s) @s′ · t[ϕ] and (∃t′ ∈ T, t′ >t t) @s · t′[ϕ], respectively,
including the binding of the respective variable, and the constraints that the
variables, namely s′ and t′, are chosen in such a way that they are not used in
ϕ, or alternatively one renames variables in ϕ in a similar way. Accordingly,
I interpret @ <s s · t[ϕ] and @s· <t t[ϕ], or alternatively @s >s ·t[ϕ] and
@s · t >t [ϕ] respectively, as shorthands for (∃s′ ∈ S, s′ <s s) @s′ · t[ϕ] and
(∃t′ ∈ T, t′ <t t) @s · t′[ϕ], respectively, including the same observation and
constraints. That is, as well as the corresponding bindings, this relational
form of a formula in the @-logic is not interpreted as universally quantified
formula but instead as existentially quantified one.

Considering the hypothesis that the world was created at time B (the
Big Bang, for instance) and that the future will always exist, I can express
this consideration by the formulae (∃B ∈ T) (∀t ∈ T) B ≤t t and (∀t1 ∈
T) (∃t2 ∈ T) t1 <t t2, respectively. Because I am adopting T

.
= R, S

.
= R

3

here, I should consider the continuum property:

(∀t0, t1 ∈ T) t0 <t t1 ↔ (∃t ∈ T) t0 <t t ∧ t <t t1

(∀s0, s1 ∈ S) s0 <s s1 ↔ (∃s ∈ S) s0 <s s ∧ s <s s1

And for the same reason, for applications where space and time are linear,
both are also linear in the above algebra M . The following properties are
also in the present algebra:

(∀x, y ∈ S) x <s y v x =s y v x >s y

(∀x, y ∈ T) x <t y v x =t y v x >t y

If one wants to capture the idea of alternative pasts, x and y, in some
theory atop the @-logic, we write the following:

(∃x, y ∈ T) ¬(y <t x) ∧ ¬(y =t x) ∧ ¬(x <t y)

A Space-Time Logic, Ferreira, 2000 12

and/or the following, in some theory atop the @-logic, for representing alter-
native futures, x and y:

(∃x, y ∈ T) ¬(y <t x) ∧ ¬(y =t x) ∧ ¬(x <t y)

Or, alternatively and more succinctly, if one wants only one past

x <t ⊗ ∧ y <t ⊗ → x <t y ∨ x =t y ∨ x >t y

and/or no alternative futures

x >t ⊗ ∧ y >t ⊗ → x <t y ∨ x =t y ∨ x >t y

Clearly, this kind of choice depends not only on the application but also on
the speaker’s intention, and this does not necessarily include the philosophical
issue of fate versus free will. For here, in this article, like the way in which one
may represent space, it suffices to adopt only one straight line for representing
time, i.e. (∀x, y ∈ T) x <t y ∨ x =t y ∨ x >t y while I keep the present logic
general.

As regards the operators +s and −s, they can be defined precisely for
each theory, whereas +t and −t are normally interpreted as follows: t1 +t t2
represents the sum of a duration t2 to a time moment t1 and the expression
results in another time moment; and t1 −t t2 represents the interval duration
equivalent to the duration from a time moment t2 to another moment t1.
The operators +t and −t can be defined in a different way elsewhere, but
here these definitions suffice. For the calculus that I define in section 4, for
example, the temporal expression t+t 1 simply indicates the next step, if the
inference is in the forward direction, otherwise the previous step.

2.2 The five values

This section opens with the definition of the ontic and strongest five-valued
equivalence in the following way:

.
= u k f t i

u t f f f f

k f t f f f

f f f t f f

t f f f t f

i f f f f t

A Space-Time Logic, Ferreira, 2000 13

and similarly for discrimination: A
.
=/ B = ¬(A = B). In the @-logic, = is

the same as
.
= and we use both interchangeable in this text.

In this section, using the formal syntax defined in the appendix A, I
explain a hierarchy of veracity. There may be at least two kinds of unknown:
“unknown because one does not know the value in the problem domain” (uu)
or, alternatively, “unknown because the value is inconsistent” (ii). Thus, in
comparison with other logics such as Belnap’s, while ii may be interpreted
as “the inconsistent value”, the present uu and ii are not actually opposite
values as uu is the opposite of kk. In fact, there are two views and sets of
the connectives, ontic and epistemic. The present work is epistemic and the
logic also deals with the concepts of true and false as usual. While {¬,∧,∨}
are more ontic operators, {�, &,O} are more epistemic ones. To simplify
the language during the presentation, I shall refer to them as “ontic” and
“epistemic” connectives or operators, although this classification is relative,
as well as I am using “connectives” and “operators” with the same meaning,
for any reasoning. Thus, kk

.
= �kk and uu

.
= �uu, i.e., both formulae are

evaluated as true whereas ¬kk
.
= uu and kk

.
= ¬uu are valid and make use

of the @-logic ontic negation.
For propagating inconsistency, I state �ii ↔ ii, which means that, using

sense of humor, “if a formula is inconsistent let alone its negation”. The ontic
negation of ii would be the value “consistent”, which is absent from the logic,
for I do not regard this consistency value as interesting for my purpose. I
can demonstrate that �ii ↔ ii makes sense:

A ¬A

? ?

¬A A

In the above illustration, there exist two inconsistent formulae whose
negation is represented by one arrow. Notice that there is no involved con-
junction nor disjunction, and now I can represent the following structure of
truth:

f - 1 knows that sth is false.
t - 1 knows that it is true.
u - 1 does not know because 1 does not have enough knowledge.
i - 1 does not know because it obtains inconsistency.
k - 1 knows, although I do not know which in {ff, tt}.
kf - 1 knows f because 2 knows that it is false.
kt - 1 knows t because 2 knows that it is true.
ku - 1 knows u because 2 does not know because 2 does not

A Space-Time Logic, Ferreira, 2000 14

have enough knowledge.
ki - 1 knows i because 2 does not know because 2 sees inconsistency.
kk - 1 knows the value because 2 knows, but I do not know which.
kkf - 1 knows f because 2 knows f because 3 knows that it is false.
kkt - 1 knows t because 2 knows t because 3 knows that it is true.
kku - 1 knows u because 2 knows u because 3 does not know because

3 does not have enough knowledge.
and so on.

The numbers can indicate machines, for instance. In this setting, I am
assuming that numbers do not tell lies. Here, communication is suggested
in a sequential form of truth value. For example, to represent that, at time
t0, the machine m1 knows the veracity of A via machine m2 and, later, at
time t, the communication from the machine m2 to the machine m1 was not
letting m1 know the veracity of A for certain reasons, we can briefly state
this possibility as follows:

@∃ · t0[@m1 · ∃[A]
.
= kk&(@m2 · ∃[A]

.
= kk # @m1 · ∃[A]

.
= kk)] &

(∃t ∈ T) t >t t0&〈t〉(@∃ · t[@m2 · ∃[A]
.
= kk] & @∃ · t[@m1 · ∃[A

.
= uu]])

I introduce a few implications, e.g. # used above, the five-valued intuitionist
logic implication, in section 3. For such logics, there exist many truth tables
that can be interpreted as an implication, some stronger than others, and
I also introduce the implication `, which is a more general and weaker one
with all the necessary properties and, therefore, capable of supporting the
axioms and rules entirely. Thus, in the above example, in the presence of ∃
symbol, at the outer level of this formula, I am only concerned about time
while, at the inner level, I am only concerned about places.

In general, a truth value is in the form kλγ where λ is a natural number
that indicates the number of occurrences of k, and γ is a letter in {u, k, f, t, i}.
As a syntax sugar, we can also consider the form γk+1, e.g. kkkkt = ttttt
and kkku = uuuu. For example, in [41], the general form for k is explicitly
indexed by the entity that has the knowledge. Although this form in [41] is
statically more general, here space and time can be considered instead, which
can be used as such indexes together with nesting formulae.

While, for a person person, we state “according to 〈 person 〉”, the above
hierarchy of truths allows the representation of any indirect knowledge of
this simple kind. There exists a simplified and static view of the present five
values considering only the last letter as a truth value.

I now introduce the connectives of the first set as follows:

A Space-Time Logic, Ferreira, 2000 15

a ¬a ∧ u k f t i ∨ u k f t i

u k u u u f u u u u k u t i

k u k u k f k i k k k k t k

f t f f f f f f f u k f t i

t f t u k f t i t t t t t t

i i i u i f i i i i k i t i

a (a)L

u u

k i

f t

t f

i k

→ u k f t i ↔ u k f t i

u k k k t k u u u k u i

k u k u t i k u k u k i

f t t t t t f k u f f i

t u k f t i t u k f t i

i i k i t i i i i i i i

The L negation (notation L after Lukasiewicz) is left for further work, for
those who want to exploit a different feature of the @-logic. Because of this,
in the present piece of work, I do not make references to the latter negation,

 L, despite its relevance. A ↔ B
def
= (A → B) ∧ (B → A) is not usual, and

this operator is not used in this article either. → is placed here only for a
better comparison with the following set. The connective ∧ is commutative,
associative and has a neutral element, tt. The ∨ is commutative, associative
and has a neutral element, ff . For the equality connective that I shall define,
both De Morgan’s laws, ¬(A∨B) = ¬A∧¬B and ¬(A∧B) = ¬A∨¬B, as
well as both absorption laws, A ∨ (A ∧ B) = A and A ∧ (A ∨ B) = A, hold
in accordance with my automatic verifications. Furthermore, distributive
laws: A ∨ B ∧ C = (A ∨ B) ∧ (A ∨ C) and A ∧ (B ∨ C) = A ∧ B ∨ A ∧
C are valid. Note that the present logic binds conjunctions tighter than
disjunctions, in accordance with appendix A. The more epistemic connectives
are the following:

A Space-Time Logic, Ferreira, 2000 16

a �a & u k f t i O u k f t i

u u u u u f u i u u k u t i

k k k u k f k i k k k k t i

f t f f f f f i f u k f t i

t f t u k f t i t t t t t i

i i i i i i i i i i i i i i

� u k f t i �� u k f t i

u u k u t i u u u u u i

k k k k t i k u k k k i

f t t t t i f u k t f i

t u k f t i t u k f t i

i i i i i i i i i i i i

As the results of A ∧ B and A ∨ B are the same as A&B and AOB,
respectively, when A 6= ii ∧ B 6= ii, one can collapse both conjunctions
and both disjunctions above in another four-valued logic by dropping ii and
redefine a four-valued implication and equivalence, if we are sure that there
is no inconsistency.

In the logic shown above, a possible interpretation for the operators is
with respect to the knowledge on the operands of an arbitrary operation,
typically in a programming language context. If one or more values are ff
or tt, the connective gives the corresponding intuitive negation, as above.
As an example, two of the tables above can be interpreted as permitting
strict and lazy evaluations, if we are a little careful in order to avoid confu-
sion. For instance, kk & uu can mean that, in a strict evaluation, the first
operand is known and that the second one (or, alternatively, the same one)
is completely unknown, whereas kk ∨ uu can mean the knowledge on the
first operand value or no knowledge on the value of the second (or, alter-
natively, the same) operand in a lazy evaluation. Thus, in accordance with
the tables, the first evaluation yields an unknown result whereas the second
(lazy) evaluation yields a known result. Here I consider that conjunction and
disjunction are commutative connectives. There are other interpretations
using these tables. The connective & is commutative, associative and has a
neutral element, tt. The O is commutative, associative and has a neutral
element, ff . De Morgan’s laws hold with the negations: ¬(AOB) = ¬A&¬B,
¬(A&B) = ¬AO¬B, �(AOB) = �A& � B, �(A&B) = �AO � B. Further-
more, AOB&C = (AOB)&(AOC) and AO(B&C) = (AOB)&(AOC) is one
more important property. However, because my purpose is to propagate ii

A Space-Time Logic, Ferreira, 2000 17

here, in contrast with the first scheme, AO(A&B) = A and A&(AOB) = A are
not tautologies. While → and ↔ are more ontic, whereas symbols such as�
and�� are more epistemic. While the ontic connectives can be seen as lazy,
the epistemic connectives can be seen as strict. A,B ∈ {ff, tt, uu, kk, ii},
i.e. for two logical formulae or operands, the first implication can be de-
fined as A → B = ¬A ∨ B whereas A � B = ¬AOB. Furthermore,
A ↔ B = ((A → B) ∧ (B → A)) whereas A �� B, a very epistemic equiva-
lence, cannot be defined in this brief way.

For comparison, I present the tables in Belnap four-valued logic. I present
the tables below without implication and equivalence, for Belnap did not
show them[11], and because of his work on entailment. His n value (none)
corresponds to this uu value (u in my truth tables here), the b value (both)
roughly corresponds to this kk value (k in my truth tables here). On the
other hand, for helping comparisons, I add the i value to Belnap logic, and
the usual properties are still valid between the three connectives, with some
exceptions, e.g. A ∧ ff = ff and A ∨ tt = tt no longer hold. I shall refer
to the resulting five-valued scheme as Belnap-based five-valued logic. The
tables become as follows:

a ¬a ∧ u k f t i ∨ u k f t i

u k u u f f u i u u t u t i

k u k f k f k i k t k k t i

f t f f f f f i f u k f t i

t f t u k f t i t t t t t i

i i i i i i i i i i i i i i

Belnap Four-Valued Logic joined with ii

In [62], in chapter 2, Gupta and Belnap illustrate with schemes for two,
three and four values. For the scheme with four values, they present the
above conjunction but with the same negation as �, except that I have one
additional value, ii. Therefore, both the present ¬ and � are in fact relatively
old connectives and exist since seventies, in the last century. Briefly, the key
difference between my truth tables and Belnap’s is uu∧kk = ff in his tables,
i.e. one difference between the @-logic and Belnap four-valued logic is that,
while his A ∧ B results in ff for A having value uu and B having value kk,
this operation with these values results in uu in the @-logic. The other
table results are exactly the same.

In the present five-valued logic, a formula is a tautology if and only if it
results in tt for all models. Similarly, a formula is a contradiction if and only

A Space-Time Logic, Ferreira, 2000 18

if it results in ff for all models. A formula is a contingency if and only if the
following holds: there exists some model from which the formula produces
value tt and there exists some model from which the formula produces value
ff . The present classification is not mutually exclusive. Obviously, since I
assume that the world is naturally consistent, a formula of the @-logic is said
to be consistent-valued if and only if it does not result in ii in any model,
and unknown-valued if and only if it results in uu in a model. A formula is
(possibly) known-valued if and only if one of the following two holds: either
it is a contingency and results in kk in the set of all models, or results in kk
in all models. In this article, the number of previous occurrences of k in that
complex and sequential truth values can be implicitly represented by nesting
space-time references, allowed by the logic grammar.

Even for an established logic, I consider that, if I initially define an equiva-
lence connective independent from the implication, and define the implication

as e.g. A⇒ B
def
= ¬A∨B ∨ (A⇔ B), a more general form is obtained. For a

version of five-valued implication that has the properties of a classical logic,
including the third-middle law, the truth table is the following:

(u k f t i

u t k k t k

k u t u t u

f t t t t t

t u k f t i

i t t t t t

However, the formulae A ∧ B (A, A&B (A, A (A ∨ B and A (
AOB, like the implications introduced above, are not tautologies for(. On
the other hand, a deontic logic can be informally conceived in the following
fashion: let ϕ be a formula of the @-logic and 	ϕ denote obligation on ϕ, M ϕ
denote permissibility on ϕ. Accordingly, ¬	 ϕ

.
= M ¬ϕ and 	¬ϕ

.
= ¬ M ϕ.

I than combine such modalities with the epistemic values, e.g. “one does not
know ϕ if and only if he or she does not know whether ϕ is obligatory (or
whether ϕ is permissible).” etc. Finally, the definitions in this paragraph
suffices for modality, while other authors can extend the present set of rules
with other more specific rules. Such modal operators are welcome to @-
logic. While 3 represents possibility, 2 does not represent necessity in the
real world, but instead sureness. The rules correspond to the implications
A ` 3A and 2A ` A in Gentzen’s style.

I shall introduce in a due course yet another implication symbol,#, which
has the properties of the intuitionistic logic, according to a well-known scheme

A Space-Time Logic, Ferreira, 2000 19

that I reproduce below, with some adaptation.Furthermore, the notion of ii
might be interesting in other contexts, including when one speaks regarding
space or time, for instance, one can choose a hotel or a restaurant: one
thinks “this one is suitable, that one is not so”. A ∧ ¬A is a particular case
of A∧B and, hence, not inconsistent for us as a principle, but inconsistency,
and not necessarily falsity or contradiction, might temporarily appear in the
inference, e.g. if someone refers to a larger place (or time) with the same
set of hotels or restaurants. I shall identify inconsistency in the @-logic as
follows: B ⇒ ¬A and B ⇒ A. I represent that A is inconsistent in the
@-logic as A

.
= ii.

2.3 Examples

In this section I present examples in the proposed language, that is formal-
ized in appendix A. Here, I attempt to demonstrate the suitability of the
@-logic as a language for representing knowledge and belief.Thus, as an ex-
ample, “day” and “night” are taken as vague variables, where ignorance and
inconsistency may arise in some possible form of knowledge representation.
Note that words whose first letter is lower-case can be variables or predicates,
except space or time variables which can be in either case. Words whose first
letter is upper-case can be constants or time or space variables.

The sun always shines everywhere:

@∀ · ∀[shines(Sun)]

John is working now:

@∃ · ⊗[isworking(John)]

Marry is now traveling from London to York:

(∃p, f ∈ T) @London · p <t ⊗[is(Mary)] ∧ @∃ · ⊗[travels(Mary)]
∧@Y ork · f >t ⊗[3is(Mary)]

All women were girls at some time in the past:

@∃ · ⊗[woman(x)] → (∃t <t ⊗) @∃ · t[girl(x)]

In addition to the pair of modal 2 and 3, one can define others[36].
Operators concerning space, such as:

[s]p = @∀ · t[p] for some moment of time t.

A Space-Time Logic, Ferreira, 2000 20

〈s〉p = ¬ [s]¬p

. . .and for time, such as:

[t]p = @s· ≥t ⊗[p] restricted to some particular place s.

〈t〉p = ¬[t] ¬p

John is standing up:

@s· <t ⊗[issitdown(John)] ∧ 〈t〉isstandup(John)

It is day in Brazil iff it is night in Japan:

(∀t) @Brazil · t[day]
.
= @Japan · t[night]

If someone orders a book, within five days he or she will receive

it:

(∀b, s) @s · t[orders(b)] → @s· ≤t t +t 5d[receives(b)]

If someone loses his or her passport, he or she will not receive

it within 15 days:

(∀p, s, t) @∃ · t[looses(s, p)] → @∃· <t t+t 15d[¬receives(s, p)]

Another example is a well-known puzzle explained by Melvin Fitting in
[41] which I briefly recast here in the logic including space and time. Then,
a child can be represented as space relative to time, although in general
this does not seem to be a very appropriate way of representing a person’s
knowledge. In the puzzle, the mother talks to both logician children, here
denoted by A and B, asking some questions to them over time from t0 to t7:

t0: “At least one of you have a muddy forehead”.
t1: - both children listen.
t2: “Does either of you know whether your own forehead is muddy?”
t3: - both children think.
t4: - nobody answers.
t5: “Does either of you know whether your own forehead is muddy?”
t6: - both children think.
t7: - both children answer “Mine is”.

A Space-Time Logic, Ferreira, 2000 21

Firstly, the following rules can be stated

(∀t, t′ ∈ T, t ≤t t
′) @x · t[ϕ]

.
= tt→ @x · t′[ϕ]

.
= tt

(∀t, t′ ∈ T, t ≤t t
′) @x · t[ϕ]

.
= ff → @x · t′[ϕ]

.
= ff

that express monotonicity with respect to knowledge over the time, i.e. that
both children’s knowledge was not forgotten after having learnt. Here I
present an ordinary reasoning without paying attention to details etc. Adopt-
ing m(A) and m(B) as propositions stating “A’s head is muddy” and “B’s
head is muddy”, respectively, one can represent either children’s knowledge
(A represents the child who thinks whereas B represents the opposite child)
as follows, according to what their mother says and what the children see:

(m(A) ∨m(B)) ∧m(B) ∧ @A · t1[m(A)
.
= kk]∧

@A · t4[@B · t4[m(B)
.
= kk]] ∧ @A · t6[m(A)] ∧ @B · t6[m(B)]

I further may express that what one says is understood by the others
immediately, that is, (∀i) @S ·ti[speak(W)] → @S ′ ·ti+1[W], and to represent
a truth state known by both children we have the following rule, x1:

x1 : (∀A ∈ S) ϕ→ @A · t[ϕ]

which is also a consequence of rule ∀swR of the calculus, present in section
4.3.3. Furthermore, I need a rule in the micro-theory as follows

x2 : ¬m(A) → @B · t3[m(B)]

which states that if B had seen that A’s forehead was not muddy, B would
have replied “Mine is” at t4. But since nobody replied, one can use modus
ponens at t6 over the contrapositional form of rule x2 as well as applying x1,
and from

¬@B · t6[m(B)] → (m(A) → @A · t6[m(A)])

we can infer that
@A · t6[m(A)]

2.4 RCC and Interval Temporal Logics

The RCC-8 region-region predicates[23] are the following:

A Space-Time Logic, Ferreira, 2000 22

DC(A, B) EC(A, B) PO(A, B)

B A

TPP (A, B)

B A

NTPP (A, B) EQ(A, B)

Together with two inverse predicates that are definable from the predi-
cates TPP and NTPP .

Considering RCC and only circular regions as a simplification of mine,
although in the original paper the predicates are generic and the regions are
circular as a choice for their diagrams, I define the primitives of the RCC-8
region-region relations in the @-logic as follows:

• A disconnected from B: DC(A,B)
def
= @A·∃[p]∧@B ·∃[q]∧(A∩B = ∅)

• A externally connected to B: EC(A,B)
def
= @A · ∃[p]∧@B · ∃[q]∧ (A∪

B 6= A∧A ∪B 6= B ∧A∩B 6= ∅ ∧ (a, b ∈ A ∩B → a = b)). Note that
this definition uses a property of circles. The following definition makes
use of a related property. In turn, the subsequent two definitions are
based on the present predicate.

• A partially overlapping B: PO(A,B)
def
= @A ·∃[p]∧@B ·∃[q]∧(A∪B 6=

A ∧ A ∪ B 6= B ∧ (∃a, b ∈ A ∩B) a 6= b)

• A tangential proper part of B: TPP (A,B)
def
= @A·∃[p]∧@B·∃[q]∧(A ⊂

B ∧ (∃C) EC(A,C) ∧ EC(B,C))

• A non-tangential proper-part of B: NTTP (A,B)
def
= @A · ∃[p] ∧ @B ·

∃[q] ∧ (A ⊂ B ∧ (∀C) EC(B,C) → DC(A,C))

• A equals B: EQUALS(A,B)
def
= @A · ∃[p] ∧ @B · ∃[q] ∧ (A = B)

Once again, the inverse relations are definable from the above. Non-
circular regions can be defined with the notion of a border as a subset for
each region. Notation: let s, A ∈ P(S), two spaces. Thus the notation s.b,
s.b ⊂ s, is used to denote the border of s with property (∀A) DC(A, s.b) ↔
A ⊆ (s \ s.b) v DC(A, s). Thus, the relations for different regions can be

A Space-Time Logic, Ferreira, 2000 23

defined as follows, and I write the predicates in lower-case letters, as this is
the standard in this article:

dc(A,B)
def
= dc(A.b, B.b) ∧ A ∩ B = ∅

ec(A,B)
def
= ec(A.b, B.b) ∧ A ∩ (B \B.b) = ∅ ∧B ∩ (A \ A.b) = ∅

po(A,B)
def
= (A \ A.b) ∩ (B \B.b) 6= ∅ ∧ A ∪ B 6= A ∧ A ∪ B 6= B

tpp(A,B)
def
= A ⊂ B ∧ A.b ∩B.b 6= ∅

ntpp(A,B)
def
= A ⊂ B ∧ A.b ∩B.b = ∅

In addition to the following deductive axioms, I can make deductions taking
into consideration that the above relations, including equals(A,B), undefined
above, are complete and mutually exclusive. In other words, if a region is
not related to another by five of these relations, then it is related by the
remaining relation.

The above predicates can be used in space expressions, and, for some
work in the near future, I shall combine them with {uu, kk, ff, tt, ii} and
with {∪,∩, \}. Difference from a set to another will also be omitted here in
this article in the @-logic. I am now going to present the following scheme
for theories more refined than the @-calculus, with exportation, according to
my interpretation, which is different from [42]. Thus, for ⊥ meaning classical
falsity,

(1) : dc(A,B) → dc(B,A) (commutativity)
(2) : dc(A,B) → (tpp(C,B) → dc(A,B))
(3) : dc(A,B) → (ntpp(C,B) → dc(A,B))
(4) : ec(A,B) → ec(B,A)
(5) : ec(A,C) → (tpp(C,B) → (dc(A,B) →⊥))
(6) : ec(A,C) → (tpp(B,C) → (dc(A,B) ∨ ec(A,B)))
(7) : ec(C,D) → (tpp(C,A) → (tpp(D,B) → ec(A,B)))
(8) : ec(A,C) → (ntpp(B,C) → dc(A,B))
(9) : ec(A,C) → (ntpp(C,B) → ¬dc(A,B))
(10) : ec(A,C) → (ntpp(C,B) → po(A,B))
(11) : po(A,B) → po(B,A) (commutativity)
(12) : po(A,C) → (tpp(C,B) → po(A,B))
(13) : po(A,C) → (ntpp(C,B) → po(A,B))
(14) : tpp(C,A) → (tpp(C,B) →
(A 6= B → po(A,B) ∨ tpp(A,B) ∨ tpp(B,A) ∨ ntpp(A,B) ∨ ntpp(B,A)))
(15) : tpp(C,A) → (ntpp(C,B) →
(A 6= B → po(A,B) ∨ tpp(A,B) ∨ tpp(B,A) ∨ ntpp(A,B) ∨ ntpp(B,A)))
(16) : ntpp(C,A) → (tpp(C,B) →

A Space-Time Logic, Ferreira, 2000 24

(A 6= B → po(A,B) ∨ tpp(A,B) ∨ tpp(B,A) ∨ ntpp(A,B) ∨ ntpp(B,A)))
(17) : ntpp(C,A) → (ntpp(C,B) →
(A 6= B → po(A,B) ∨ tpp(A,B) ∨ tpp(B,A) ∨ ntpp(A,B) ∨ ntpp(B,A)))
(18) : tpp(A,B) → (tpp(B,C) → tpp(A,C) ∨ ntpp(A,C))
(19) : tpp(A,B) → (ntpp(B,C) → ntpp(A,C))
(20) : ntpp(A,B) → (tpp(B,C) ∨ ntpp(B,C) → ntpp(A,C))
(21) : ntpp(A,B) → (po(A,C) → po(C,B) ∨ tpp(C,B) ∨ ntpp(C,B))
(22) : dc(A,B) → (ec(A,B) →⊥)
(23) : dc(A,B) → (po(A,B) →⊥)
(24) : dc(A,B) → (tpp(A,B) →⊥)
(25) : dc(A,B) → (ntpp(A,B) →⊥)
(26) : ec(A,B) → (po(A,B) →⊥)
(27) : ec(A,B) → (tpp(A,B) →⊥)
(28) : ec(A,B) → (ntpp(A,B) →⊥)
(29) : po(A,B) → (tpp(A,B) →⊥)
(30) : po(A,B) → (ntpp(A,B) →⊥)
(31) : tpp(A,B) → (ntpp(A,B) →⊥)
(32) : tpp(A,B) → (ntpp(B,A) →⊥)
(33) : tpp(A,B) → (tpp(B,A) →⊥)
(34) : ntpp(A,B) → (ntpp(B,A) →⊥)
(35) : ntpp(A,B) → (ntpp(B,C) → ntpp(A,C)) (nttp transitivity)
(36) : po(A,C) → (tpp(C,B) → (dc(A,B) →⊥))
(37) : po(A,C) → (ntpp(C,B) → (dc(A,B) →⊥))
(38) : tpp(A,C) → (tpp(C,B) → (dc(A,B) →⊥))
(39) : tpp(A,C) → (ntpp(C,B) → (dc(A,B) →⊥))
(40) : (dc(A,B) →⊥) → (nttp(A,C) → (ec(B,C) →⊥))
(41) : po(B,C) → (tpp(A,B) → ((tpp(C,A) →⊥) ∧ (ntpp(C,A) →⊥)))
(42) : po(B,C) → (ntpp(A,B) → ((tpp(C,A) →⊥) ∧ (ntpp(C,A) →⊥)))
(43) : tpp(A,B) → (tpp(C,B) → (ntpp(A,C) →⊥))
(44) : ntpp(A,B) → (tpp(C,B) → ((tpp(C,A) →⊥) ∧ (ntpp(C,A) →⊥)))

I omit relations whose consequent is in the negative form, such as in
axiom (9) as an example. There are other more complex axioms or rules for
the above scheme.

Concerning interval temporal logics[2], there are 13 relations, six of which
are obtained from the six other relations, and one relation for equality. In the
present logic syntax and semantics, I can build those relations by defining
temporal predicates:

• A beforeB: BEFORE(A,B)
def
= @∃·[a0, af][A]&@∃·[b0, bf][B]&af <t b0

A Space-Time Logic, Ferreira, 2000 25

• A meets B: MEETS(A,B)
def
= @∃ · [a0, af][A]&@∃ · [b0, bf][B]&af =t b0

• A overlaps B: OVERLAPS(A,B)
def
= @∃·[a0, af][A]&@∃·[b0, bf][B]&a0 <t

b0 <t af <t bf

• A starts B: STARTS(A,B)
def
= @∃ · [a0, af][A]&@∃ · [b0, bf][B]&a0 =t

b0&af <t bf

• A contains B: CONTAINS(A,B)
def
= @∃·[a0, af][A]&@∃·[b0, bf][B]&a0 <t

b0&bf <t af

• A ends B: ENDS(A,B)
def
= @∃ · [a0, af][A]&@∃ · [b0, bf][B]&a0 >t

b0&af =t bf

• A equals B: EQUALS(A,B)
def
= @∃ · a[A]&@∃ · b[B]&a =t b

Thus, by using the above relations for time and space (for Region Connec-
tion Calculus is very similar in a sense), there is a unifying predicate theory
involving both notions formally.

As an example of representation of action or events, some information in
a domain that reasons about transportation of cargo can be extracted from
[5]:

• The train starts at the originating city S.

• The trip takes between 4 and 6 hours.

• The train will be on track segment A1 then it will cross junction J1,
and be on track segment A2 for the rest of the trip.

• The train will end up at destination city D.

Therefore, we can represent the train trip as follows:

• @S · t[Train]

• tf ∈ [t+t 4h, t+t 6h]

• (∀t1, t2, t3, t ≤t t1 <t t2 <t t3 ≤t tf) @A1 · t1[Train] ∧ @J1 · t2[Train] ∧
@A2 · t3[Train]

• @D · tf [Train]

A Space-Time Logic, Ferreira, 2000 26

2.5 Application: Tense logic operators

Although I do not adopt tense, I regard these operators as definable in the
following way:

Fϕ
def
= (∃t) @ ⊕ ·t >t ⊗[ϕ]: ϕ will be the case;

Pϕ
def
= (∃t) @ ⊕ ·t <t ⊗[ϕ]: ϕ was the case;

Gϕ
def
= (∀t) @ ⊕ ·t >t ⊗[ϕ]: ϕ is always going to be the case;

Hϕ
def
= (∀t) @ ⊕ ·t <t ⊗[ϕ]: ϕ was always the case.

2.6 Cycles: An Illustration

One can represent time in a somewhat subjective and flexible way using three
dimensions. If one chooses a spiral to represent a view of time, one of the
orthogonal projections of the spiral on the 2D plane is a circle. Thus time
goes by cyclically and here time is represented using an angle. On the other
hand, if one views a time line as a wave, one can perceive the infiniteness of
it. If one wants to get a straight line one projects the wave uniformly in one
of the dimensions.

The subjectivity and flexibility concerning this circle is that one can asso-
ciate angles to the daily life. Each angle is a fraction of an hour, for example.
In another form of representation, the same angle can be the same fraction
of a year, for example. Thus one obtains different spirals, each of which rep-
resents the current focus of attention. In this way, the observer is included
in the notion of time. The time variable represented by a single real number
can be easily converted from/to this tuple.

&%
'$

Two Views of the Time Flow

As an idea that is orthogonal to alternative pasts and alternative futures,
the above picture informally illustrates two different views for a common
notion of time. The choice between them does not change my formalism,
except for a few operators on angles, as they will be left here.

Thus, there can also be an alternative form of representation as follows:
a pair of real numbers where the second element is the angle while the first

A Space-Time Logic, Ferreira, 2000 27

element is the number of complete circles before that angle (the correspon-
dence between one circle and one unit of temporal notion that belongs to
the real world is implicit, e.g. one hour or week or year or other). Let π
represent here the well-known transcendental number, which corresponds to
the ratio of the circumference to its diameter. For 〈α, β〉 where α ∈ Z and
β ∈ [0, 2π), the straight line representation for the time is

t = 2π ×t α+t β

and thus one feels free to choose when to use α and when to use β, or both
(t).

2.7 Analogy, Belief and Uncertainty

Although computer scientists do not normally think on certainty factors while
writing the semantics of a programming language or writing some other aca-
demic pieces of work, sometimes scientists want to express uncertainty over
propositions. Thus, because the expressiveness of the @-logic is an approach
or mine, in this section, I introduce a notation that can capture analogy,
induction, belief as well as some models of uncertainty. This notation is
orthogonal to the rest of the logic and analogy and belief can be seen as or-
thogonal notions with respect to uncertainty, that is, these notions can help
each other in the expressiveness of the language.

If ϕ is a formula in @-logic, then ©ϕ is a formula in @-logic that means
“ϕ is believed to be true”. Properties: ¬ © ϕ

.
= ©¬ϕ, �© ϕ

.
= © � ϕ.

Knowledge is not dual to belief, and that pseudo duality does not hold among
the known modal logics. Both ¬ © ϕ ∧ ϕ and ¬ © ϕ ∧ ¬ϕ, as well as
¬© ϕ∧©¬ϕ, are often acceptable in natural languages. Moreover, ©©ϕ
seems to be more uncertain belief than ©ϕ, but that is subjective.

’Analogy’ is both a feature and a process of reasoning based on similar
features, when two objects are compared. Here I use the second meaning. In-
tuitively, I also understand that analogy is an instantaneous form of synthetic
reasoning based on intuition or a kind of personal perception, and, because
of this, I prefer not to define the semantics in a universal way. Instead, I
only standardize its symbol and syntax in the @-logic.

Thus, let ϕ1 and ϕ2 be two formulae. Then, to express that ϕ1 is anal-
ogous to ϕ2 I write ϕ1 1 ϕ2, or, alternatively for analogy is commutative,
one may also write ϕ2 1 ϕ1. 1 is probably commutative, associative and
distributive even over other operators. Although analogy is clearly commu-
tative, I do not do this, for I consider that analogy is personal. I have the
same attitude towards the following properties, usual for other operations:

A Space-Time Logic, Ferreira, 2000 28

Reflexive: ϕ1 1 ϕ1

Symmetric: ϕ1 1 ϕ2 → ϕ2 1 ϕ1

Transitive: ϕ1 1 ϕ2 ∧ ϕ2 1 ϕ3 → ϕ1 1 ϕ3

It is reasonable to state that 1 is reflexive and symmetric, but the tran-
sitive property does not universaly hold. Because of this, I leave the issue of
analogy half open, although analogy can be used together with uncertainty.

For induction, a sequence of formulae separated by comma with the “...”
symbol as its sufix indicates induction over the formulae. This induction is
not mathematical induction, but instead a non-valid form of reasoning that
humans make use in their lives. If a student submits his or her PhD thesis to
a panel, the panel will make the final decision based on this kind of induction
as follows:

E1, E2, ...→ Result

where Ei, i ∈ N, indicates any list of examiners and Result indicates the
result that the student obtains. To stress the importance of induction, any
practice of democracy is based on this form of reasoning, although mathe-
matically invalid.

For uncertainty, I initially have to define the truth values as a subset of
R: in this article, P = {x ∈ R : −1.0 ≤ x ≤ +1.0} plays this rôle. I use the
Greek letter ψ to denote an uncertainty formula, i.e. a ψ-formula, e.g. ψ(n ϕ)
for some formula ϕ, where n is a pair 〈x, y〉 : P × P where x, y ∈ P are the
certainty thresholds, false and true respectively, for ψ(n ϕ). The variables of
the pair n = 〈x, y〉 are individually denoted as n.x and n.y respectively. In
any case, n and ϕ allow the valuation system to know whether ψ(n ϕ) is true
or false, for example, where n.x ≤ n.y. In the present language, this result is
in {ff, tt, uu, kk, ii} in accordance with n, ϕ and a few rules. In advance, as a
simplified and informal example, the formula ψ(〈0, 0.5〉 ϕ) indicates that if ϕ
has certainty degree greater than or equal to 0.5, the formula is interpreted
as tt. On the other hand, if ϕ has certainty degree less than 0, the formula is
interpreted as ff . Otherwise, its resulting value is uu. This certainty degree
will be defined later in this section.

It is well known that, for more complex systems, the notation of n as well
as the interval can be different, e.g. [0, 1] is normally used for representing
probability[74].

With respect to the nature of veracity, it is easy to observe, for example,
that a car is German, and write the proposition “the car is German”. Then
another person can look at the car and easily state “that is true”. This may
happen because the nature of the information that can be represented is in a
sense objective (all that one needs to do is to recognize the German company).

A Space-Time Logic, Ferreira, 2000 29

Or, alternatively, the simplification that one makes on the information from
the real world converts a naturally subjective piece of information, given the
natural complexity of the world, to another objective piece of information in
a corresponding manner, e.g. one can still ask “yes, but how much in that
car is German?” even if the answer happens to be 100%, as the world can
be seen as fuzzy[68]. In this piece of work, I do not state the uncertainty
explicitly in any rule of the deductive system presented below, because that
is a matter of vocabulary in that purely deductive context. As long as there
is a mapping without loss of generality, the more simplified the language the
clearer its concepts and constructs. Different values and different certainty
thresholds can be assigned to different views of the same object, person etc
in the real world, and that is because the truth value of ϕ results from the
subjective nature of some object. The use of the ψ letter in the present
article is for suggesting a more subjective nature of human factors. A solely
fuzzy view of the universe is in [68].

With respect to the present sub-model of uncertainty, a truth value is a
pair of values, 〈v, n〉, where v is a value in {ff, tt, uu, kk, ii} and n is another
pair 〈α, ω〉 of values in P, where α means minimum and ω means maximum,
i.e. α ≤ ω (otherwise, the formula is said to be inconsistent). Thus, if V
is some logical value on uncertainty, I simplify this notation by making use
of V.α and V.ω to denote this pair of values. For a formula ψ(m ϕ), if ϕ
is evaluated and results in 〈v, n〉 here, or simply ϕ = 〈v, n〉 as a value of a
model, the resulting value of the whole evaluation of ψ(m ϕ) is one of the
resulting values as follows:

• 〈uu, n〉 iff n.α ≥ m.x ∧ n.ω < m.y ∧m.x < 0 ≤ m.y ∧ n.α ≤ n.ω

• 〈kk, n〉 iff (n.α < m.x ∨ n.ω ≥ m.y) ∧m.x < 0 ≤ m.y ∧ n.α ≤ n.ω

• 〈ff, n〉 iff n.ω < m.x ∧m.x < 0 ≤ m.y ∧ n.α ≤ n.ω

• 〈tt, n〉 iff n.α ≥ m.y ∧m.x < 0 ≤ m.y ∧ n.α ≤ n.ω

• 〈ii, 〈1,−1〉〉, otherwise.

For example, two main interpretations for uu, and two main interpreta-
tions for kk, can be made: in the first and second items above, the evalutation
system regards the certainty degrees as public. For an interpretation with
private certainty degrees, I simply consider the following cases:

• 〈uu, 〈0, 0〉〉 iff n.α ≥ m.x ∧ n.ω < m.y ∧m.x < 0 ≤ m.y ∧ n.α ≤ n.ω

• 〈kk, 〈0, 0〉〉 iff (n.α < m.x ∨ n.ω ≥ m.y) ∧m.x < 0 ≤ m.y ∧ n.α ≤ n.ω

A Space-Time Logic, Ferreira, 2000 30

To allow the evaluation of ϕ as a pair I provide a notation for an uncertain
formula. Thus, if ϕ is a (possible ψ-) formula, the evaluation of an expression
ϕ?β is in accordance with the following:

〈v, 〈β × γ.α, β × γ.ω〉〉 if ϕ results in 〈v, γ〉

Here I define some helpful constructs, bearing in mind that they are
optional, by making use of the meta-level predicate of the form @∀ · t[[ϕ]] to
stand for “the meaning of the formula ϕ at time t”, in this case in the type
C × (P × P). I first formalize the construct ϕ ? β (β is its certainty factor),
as explained before:

@∀ · t1[[ϕ]] = 〈v, γ〉

@∀ · t2[[ϕ ? β]] = 〈v, 〈β × γ.α, β × γ.ω〉〉

where t1 <t t2, and this condition also holds throughout this section.
I still need a few more words on implication. I support the idea that

deductive logics are not capable of capturing a really relevance implication,
despite Belnap’s fantastic and historical work on relevance logic among oth-
ers. I observe that words such as “because” have a conjunctive component,
for example, if one says “Ann is using an umbrella because it is raining” is
different from if it rains Ann uses an umbrella. In the former, the person
who states indicates four important and conjunctive ideas, in addition to the
context: that Ann is using umbrella, that it is raining, her awareness that
it is raining, and her intention, which depends on cause-effect relationships.
There are some natural-language conditionals that, to be regarded as valid,
indicate that both the antecedent and consequent are false[69]. Moreover, in
the real world and using the natural language, we normally have causes be-
fore their consequences, often with a particular time interval as a constraint
between actions and/or events, and it may happen that the relationship is
not clear. On the one hand, logics is a study of reasoning in one of its broad-
est senses. On the other hand, temporal relations, which might seem to be
information outside logics, may be in the core of the meaning of conditional,
implication and/or entailment in the same sense of logics. Therefore, what is
the truth and logical meaning for such ordinary implications? I regard that
probably exist some stronger implications in comparison to others. Uncer-
tainty is a more general tool for defining connectives and the importance of
certainty factors in natural-language inferences seems to be clear. Although
I do not define implication as ¬A∨B, the rules for implication between two
uncertainty formulae can be as follows:

Intuitively, for two formulae A, B, and constant n ∈ R (0 ≤ n ≤ 1), a con-
ditional can be formalized as a 3-tuple of the form 〈A,B, n〉, and suggested
notation A

n
−→ B, together with the following property:

A Space-Time Logic, Ferreira, 2000 31

• Awereness of A happens before the awareness of B;

• If A
m
−→ B and B

n
−→ C, we obtain A

m×n
−→ C

with the following semantics:
first and second conditionals

@∀ · t1[[A]] = 〈v1, m1〉 @∀ · t1[[B]] = 〈v2, m2〉 v1, v2 ∈ {ff, tt}

@∀ · t2[[A
n

−→ B]] = 〈v1 → v2, 〈m1.α×m2.α× n,m1.ω ×m2.ω × n〉〉

third conditional

@∀ · t1[[A]] = 〈v1, m1〉 @∀ · t1[[B]] = 〈v2, m2〉 v1 = v2 = ff

@∀ · t2[[A
n

−→ B]] = 〈v1 → v2, 〈m1.α×m2.α× n,m1.ω ×m2.ω × n〉〉

for the case e.g. “if Ann had studied less she would not pass the exam”
where both the antecedent and consequent are interpreted as false for the
conditional be valid. This interpretation for conditionals are only two sug-
gestions.

As well as modus ponens, entailment is useful for applications such as
expert systems. For being sufficiently general, it ought to have a certainty
factor attached. As an example of interpretation,

v1, v2 ∈ {uu, kk, tt} @∀ · t1[[A]] = 〈v1, β1〉

@∀ · t1[[A
β2
−→ B]] = 〈tt, 〈+1.0,+1.0〉〉 @∀ · t1[[B]] = 〈v2, β3〉

@∀ · t2[[B]] = 〈v1 ∨ v2, 〈max(β1.α× β2, β3.α), max(β1.ω × β2, β3.ω)〉〉

and symmetrically for {uu, kk, ff} (although with some redundancy) and,
finally, one rule that propagates ii.

Another known operation may be called composition, which simulates
some form of inductive reasoning. The operations above make use of the
min and max functions, but there are contexts in which more than one
formula together should increase certainty. The more the pieces of evidence,
the greater the confidence should be. MYCIN[87] was the first expert system
that used a similar idea. Let the 2-ary φ be the following auxiliary function:

φ(x1, x2) =

x1 + (1 − x1) × x2 if 0 ≤ x1, x2 ≤ +1,

x1 + x2 if x1 < 0 ∧ x2 ≥ 0 ∨ x1 ≥ 0 ∧ x2 < 0,

x1 + (1 + x1) × x2 if −1 ≤ x1, x2 < 0;

The definition and syntax are: ϕ1 and ϕ2 are two formulae if and only if
{ψ : ϕ1, ϕ2} is an uncertainty formula called composition. More generaly, if
ϕ1 is a formula, then {ψ : ϕ1,Γ} is an uncertainty formula called composition,

A Space-Time Logic, Ferreira, 2000 32

where Γ is a non-terminal symbol which denotes a sequence of formulae in
the object (final) language. The semantics for composition is in accordance
with the following rules using φ:

Given the A and B formulae,

@∀ · t1[[A]] = 〈v1, β1〉 @∀ · t1[[B]] = 〈v2, β2〉

@∀ · t2[[{ψ : A,B}]] = 〈tt, 〈φ(β1.α, β2.α), φ(β1.ω, β2.ω)〉〉

For more than two formulae,

@∀ · t1[[A]] = 〈v1, β1〉 @∀ · t1[[{ψ : Γ}]] = 〈v2, β2〉

@∀ · t2[[{ψ : A,Γ}]] = 〈tt, 〈φ(β1.α, β2.α), φ(β1.ω, β2.ω)〉〉

For aall truth values in form 〈v, β〉, the certainty degree is simply obtained
as follows:

?〈v, β〉 = f(β) =
β.α + β.ω

2
where f is a locally defined symbol.

From now on I shall not make explicit use of uncertainty, except to intro-
duce a number of examples in the next paragraphs. Instead, I assume that
uncertainty can be implicit, as stated above, for all formulae. The axioms
and rules of the deductive system or the @-calculus deal with the final value,
i.e. I simply use the value in {uu, kk, ff, tt, ii}. That is, if ψ(a A) results in
〈v, α〉 where v ∈ {ff, tt, uu, kk, ii}, then v is simply used instead.

2.8 A Few More Examples

I present some examples that make use of knowledge representation with
uncertainty.

If one tosses d (a one-dollar coin) on a table T , one obtains 50% of prob-
ability of getting head after 10 seconds:

@T · t[toss(d)] → @T · t+t 10s[get(head)?0]

If the patient had x but now the test of x presents a degree of certainty
less than 0.1, the patient does not have x.

@s· <t ⊗[has(patient, x)] ∧ @s · ⊗[diagnose(patient, x) = y ∧ y < 0.1]
→ ¬@s· ≥t ⊗[has(patient, x)]

As another example, for a person who knows the Boolean value of A but
does not know the Boolean value of B, the formula A → B might result
in tt or uu, say, in equal probabilities. Thus, we can write the following
propositions:

A Space-Time Logic, Ferreira, 2000 33

• val(A) indicates the value of A.

• val(B) denotes the value of B.

• imp(A,B, r) represents that the result from A→ B is r.

• prob(x, y) denotes formula x with probability y.

In the @-logic, we can write as follows:

val(A) = kk ∧ val(B) = uu→
prob(imp(A,B, tt), 0.5) ∧ prob(imp(A,B, uu), 0.5)

The above example does not require uncertainty. However, observe the
following: there is one diagnosis d and three symptoms s1, s2, s3 with cer-
tainty factors 0.3, 0.6 and unknown, respectively, together with one rule
with more details:

〈tt, 0.3〉 → s1 〈tt, 0.6〉 → s2 〈uu, 0〉 → s3

ψ(〈−0.5,+0.9〉 {ψ : s1?0.8, s2?0.5, s3?0.3}) → d

3 Sequents

In [48], Gabbay states a scheme for a linear logic in Hilbert style and using
the classical implication symbol:

Identity: A⇒ A
Commutativity: (A⇒ (B ⇒ C)) ⇒ (B ⇒ (A⇒ C))
Prefixing: (C ⇒ A) ⇒ ((B ⇒ C) ⇒ (B ⇒ A))
Suffixing: (C ⇒ A) ⇒ ((A⇒ B) ⇒ (C ⇒ B))

The relevance logic[7, 81] is based on the schema above plus

(A⇒ (B ⇒ C)) ⇒ ((A⇒ B) ⇒ (A⇒ C))

The intuitionistic logic is based on the relevance logic scheme plus

A⇒ (B ⇒ A)

and, finally, by adding the following schema

((A⇒ B) ⇒ A) ⇒ A.

A Space-Time Logic, Ferreira, 2000 34

to the previous one, we obtain the schema for classical logic. The original
approach on the @-logic was to choose the calculus for one of the above logics,
and then correct problems. There are rules of inference that are specific for
the values other than true and false.

In this way, if I let A, B be formulae, the axioms in the classical logic
(A ⇒ B) ⇒ ((A ⇒ (B ⇒ ff)) ⇒ (A ⇒ ff)) and A ⇒ ((A ⇒ ff) ⇒ B)
had not been tautologies if I would want to propose a paraconsistent and
relevance logic[32], together with some extra rules in the calculus. The latter
axiom is also the sixth axiom above, that one which complements the scheme
for intuitionistic logic.

In the present logic, there is not a single notion of contradiction as a
primitive because there are five values (including ff and ii) and two differ-
ent consequence relations: weak and strong. The proposal of a pair of two
consequence relations is probably a novelty.

An implication with the properties of the above scheme for intuitionistic
logic is the following:

u k f t i

u t k f t i

k u t f t i

f t t t t t

t u k f t i

i u k f t t

In advance, the # implication, as well as most implications, do not sup-
port entirely the @-calculus, only a few rules. However, I introduce a weaker
implication for the present calculus that has the properties of the classical
scheme as well as makes the rules tautologies with the first tables (i.e. the
connectives {¬,∧,∨}. ` is also tautological for the truth tables of the second
scheme if there is no inconsistency in the calculus presented later), for the
principle of contraposition does not need to hold in the above schemes.

` u k f t i

u t t t t t

k t t t t t

f t t t t t

t u k f t i

i t t t t t

A Space-Time Logic, Ferreira, 2000 35

and now principles such as simplification, A ∧ B ` A or A&B ` A for
example, hold with the schemes presented above. However, because of ii,
A ` AOB is not a tautology where A = tt and B = ii, although both (A `
B) ` (A ` BOC) and (A ` C) ` (A ` BOC) are tautologies. Furthermore,
A ` A ∨ B, for example, is a tautology. Thus, for the present deductive
system together with the @-calculus, I propose the above definition of `.

Space can be seen as an abstract notion whereas a sequent in the calculus
is also an expression of one of the following alternative forms

• ∆ ` C iff both time and space can be represented implicitly, or

• @s · t0[∆] ` @s · t1[C] or, equivalently, @∆ · [t0, t1][C], as long as s is
not used in ∆, C, t0 or t1.

In the second form, s and [t0, t1] explicitly state the space and time where
and when the expression ∆ ` C takes place, respectively. Thus, here, there
is no mobile derivation. Further, I can simplify my notation here by writing
@s · t[∆ ` C] or @∆ · t[C] that indicates that a derivation makes use of the
assumption ∆; starts at some time in which I am not interested, and finishes
at time t.

The @-logic has another consequence relation, . While `, also called
weak sequent, yields weak proof, (the strong sequent) yields strong proof.
` and yield derivations. Weak and strong proofs may form a pair of

novelties. Thus, (∆ A)
def
= (∆ ` A)&¬(∆ ` ¬A).

4 Deduction

In this section I initially concentrate on derivations. Let A be a formula in
the present language. As usual, a proof for A here is a tree of steps from a set
of valid assumptions (the leaves) that leads us to conclude that the logical
formula A is true (the root) for all values in any model. On the other hand,
a derivation is a more general notion. It does not imply that the assumed
formulae and the final formula are valid.

The @-calculus works as follows: there is a set of assumed formulae and
one final formula, where each variable or formula can have one of the five
values presented here: {ff, tt, uu, kk, ii}.

Deductions are based on axioms and rules of inference. A Rule is a meta-
level implication and here I assume the @-logic ` implication to follow their
semantics. As usual, I also represent rules of inference by using fractional
notation, where

@∆1 · t1[C1] @∆2 · t2[C2] ... @∆n · tn[Cn]

@∆1,∆2, ...,∆n · t[C]

A Space-Time Logic, Ferreira, 2000 36

corresponds to, at a higher level,

@∆1 · t1[C1] ∧ @∆2 · t2[C2] ∧ ... ∧ @∆n · tn[Cn] ` @∆1 ∪ ∆2 ∪ ...,∆n · t[C]

I use comma instead of the ∪ set operation as I use multi-sets.
Here, I introduce the properties of the present calculus.
Reflexivity: @s · t[∆, {C} ` C] which captures inclusion: C ∈ ∆ →

(∀s ∈ S, t ∈ T) @s · t[∆ ` C], another property.
Monotonicity:

@∆ · t[C]

@∆,Γ · t+t 1[C]

Premise Commutativity:

For any rule, since time is relevant here, I include an axiom for exchanging
premisses considering the evaluation time as follows:

@∆ · t[A] @Γ · t+t 1/2[B]

@∆,Γ · t+t 1[C]
.
=

@Γ · t[B] @∆ · t+t 1/2[A]

@∆,Γ · t+t 1[C]

As usual, the premises are also associative.
The cut rule is computationally redundant, as demonstrated in a theorem

by Gentzen[1].
For the @-logic, I regard that derivations have place and also work as

time goes by.
As an example of notation for interpretation of derivation, the rule for

the introduction of the implication operator is shown:

@s · t1[A]
:
·

@s · t[C]

@s · t+t 1[A→ C]

where t1 <t t. In the above case, I assume A, obtain C and deduce
A → C. That is, this holds because the rule is sound with respect to the
five-valued truth table for the implication symbol (here, if the premise is tt,
the conclusion is tt).

Here I am assuming that derivations do record the sequence of applica-
tions of the rules in such a way that the sequence of steps is the output from
its computation

In both structural and logical rules, the time is placed explicit, every rule
should be stated only as implication.

Negative and Positive Wholeness

A Space-Time Logic, Ferreira, 2000 37

In natural language, both space and time can be referred to to mean ex-
istentially or with wholeness. So far, expressions of the @-logic form, such
as @s · t[ϕ], do not allow deductions, unless I am more precise in the space
or the time expressions. Alternatively, a more practical terminology for for-
malization is set: positive and negative wholeness, respectively.

In the following picture on the left, the rectangles will represent the scopes
of two formulae, @s · t[A] and @s′ · t[A] with the same time (ordinate) and
a common place (abscissa). On the right, a more general situation: two for-
mulae with a little common space and a little common time.

∀s

∀s′

∀
t
′

∀
t
′
′

To indicate that the place (or time) indicates the negative wholeness, one
places the symbol ∃ before the space (or time) expression. Accordingly, one
places ∀ before the space (or time) expression to indicate that the notion
is positive. Although @s · t[ϕ] without ∃ or ∀ is a valid expression in the
@-logic, it does not allow deductions.

As an example of the positive wholeness, on the one hand, if one knows
that in the state of São Paulo (in Brazil) citizens have the habits h1, e.g.
they like sports, formally @∀SP · ∃[habits(p, h1)], one is allowed to deduce
that, in Santos city, which in turn is in the state of São Paulo, citizens have
habits h1, that is, @∀Santos · ∃[habits(p, h1)]. On the other hand, if one un-
derstands that in the state of São Paulo citizens have the habits h2, possibly
the same ones but with negative wholeness, say @∃SP · ∃[habits(p, h2)], one
is allowed to deduce that, in Brazil, citizens have habits h2, say @∃Brazil ·
∃[habits(p, h2)]. The expression @∃SP · ∃[habits(p, h2)] formally states that
it is allowed to deduce that, in South America for instance, or even in Amer-
ica in some sense, there are citizens who have habits h2. However, by using
the last formula, one cannot deduce that, in São Paulo city , which is located
inside São Paulo state, there are citizens who have habits h2.

One may argue that, in a formula, the syntactical positions for space
and for time are rigid and, therefore, if one wants to combine the positive
and negative wholeness, one loses flexibility. That opinion is not a good
standpoint, for space and time expressions themselves do not bind variables,
and where both indicate that the inner formula is the scope. In this way,

A Space-Time Logic, Ferreira, 2000 38

the following expression (∀s ∈ S) (∃t ∈ T) @s · t[ϕ] and the expression (∃t ∈
T) (∀s ∈ S) @s·t[ϕ] are not equivalent, while the expression @s·∃[@∃·t[ϕ]]

.
=

@∃ · t[@s · ∃[ϕ]] holds. In nesting formulae, the positive wholeness of space or
time does not have priority over the negative wholeness and vice-versa. For
example, depending on the interpretation, the formula @∃s · ∀t[@∀s · ∃t[ϕ]]
might not imply @∀s · ∀t[ϕ]. Alternatively, one may want to write @∃s ·
∀t[ϕ] ∧ @∀s · ∃t[ϕ] instead or, better, @∀s · ∀t[ϕ] ∧ @∃s · ∃t[ϕ].

The following picture demonstrates possible combinations of space and
time wholeness, respectively,

@∀s · ∀t[A] @∀s · ∃t[A] @∃s · ∀t[A] @∃s · ∃t[A]

��

��

��

��

4.1 Axioms

Identity:

@{C} · t[C]

The other axioms are defined in specific contexts.

4.2 Structural Rules

In this section, I present the structural rules of the @-calculus. Other space-
time logics can be obtained by removing some of structural rules[82]. The
structural rules almost in Gentzen’s style are the following:

Hypothesis:

@s · t[∆, {C} ` C]
Y

Here, I use comma instead of the ∪ set operation as I use multi-sets.
Therefore, this notation does not impose an order between two finite multi-
sets of formulae, in such a way that there is no need for the so called exchange
rule. The contraction rule is the following:

Contraction:
@∆, {A,A} · t[C]

@∆, {A} · t+t 1[C]
CL

An essay on contraction is [47]. For proof theory without contraction,
references, for example, are [16, 17, 59].

A Space-Time Logic, Ferreira, 2000 39

Weakening:
@∆ · t[C]

@∆, {A} · t +t 1[C]
W

Weakening explicitly expresses the monotonicity property.

4.3 Logical Rules

In this section, the logical rules are presented. The rules for �, &, O and
� are not presented since the structures of the rules are equivalent to the
rules for ¬, ∧, ∨ and →, respectively. More than this, rules with(are not
presented for the same reason with respect to →. Therefore, I am going to
present rules for the fragment {¬, ∧, ∨, →}.

Deduction:

@∆ · t[A→ C]

@∆, {A} · t +t 1[C]
D↑

@∆, {A} · t[C]

@∆ · t +t 1[A→ C]
D↓

Excluded 6th:

¬@∆ · t[A
.
= kk] ¬@∆ · t+t 1/4[A

.
= ff]

¬@∆ · t +t 1/2[A
.
= tt] ¬@∆ · t +t 3/4[A

.
= ii]

@∆ · t +t 1[A
.
= uu]

but all sequences of formulae in the premise can appear in any order.

4.3.1 Introduction:

The introduction rules are part of the deduction as well as the calculus.
Conjunction:

@∆, {A} · t[C]

@∆, {A ∧ B} · t+t 1[C]
∧ IL1

@∆, {B} · t[C]

@∆, {A ∧ B} · t+t 1[C]
∧ IL2

@∆ · t[A] @Γ · t+t 1/2[B]

@∆,Γ · t +t 1[A ∧ B]
∧ IR

Similarly, for inconsistent deduction:

@∆, {A} · t[C]

@∆, {A
.
= ii} · t+t 1[C]

IiiL1

@∆, {¬A} · t[C]

@∆, {A
.
= ii} · t+t 1[C]

IiiL2

@∆ · t[A] @Γ · t +t 1/2[¬A]

@∆,Γ · t +t 1[A
.
= ii]

IiiR

A Space-Time Logic, Ferreira, 2000 40

Disjunction:

@∆, {A} · t[C] @Γ, {B} · t +t 1/2[C]

@∆,Γ, {A ∨B} · t +t 1[C]
∨ IL

@∆ · t[A]

@∆ · t +t 1[A ∨ B]
∨ IR1

@∆ · t[B]

@∆ · t +t 1[A ∨B]
∨ IR2

Negation:

@∆ · t[A]

@∆, {¬A} · t+t 1[ii]
¬IL

@∆, {A} · t[ff]

@∆ · t +t 1[¬A]
¬IR

Implication:

@∆ · t[A] @Γ, {B} · t+t 1/2[C]

@∆,Γ, {A→ B} · t +t 1[C]
→ IL

@∆ · t[B]

@∆ · t +t 1[A→ B]
→ IR

4.3.2 Elimination:

The elimination rules are part of the deductive system but not part of the
calculus.

Conjunction:
@∆, {A ∧B} · t[C]

@∆, {A,B} · t+t 1[C]
∧ EL

@∆ · t[A ∧ B]

@∆ · t+t 1[A]
∧ ER1

@∆ · t[A ∧ B]

@∆ · t +t 1[B]
∧ ER2

Similarly,
@∆, {A

.
= ii} · t[C]

@∆, {A,¬A} · t+t 1[C]
iiEL

@∆ · t[A
.
= ii]

@∆ · t+t 1[A]
iiER1

@∆ · t[A
.
= ii]

@∆ · t +t 1[¬A]
iiER2

Disjunction:

@∆, {A ∨ B} · t[C]

@∆, {A} · t +t 1[C]
∨ EL1

@∆, {A ∨ B} · t[C]

@∆, {B} · t+t 1[C]
∨ EL2

@∆ · t[A ∨ B] @∆1 · t +t 1/3[A→ C] @∆2 · t+t 2/3[B → C]

@∆,∆1,∆2 · t+t 1[C]
∨ ER

and there also exist the following two rules:

@∆ · t[A ∨B]

@∆ · t[A] ∨ @∆ · t[B]
∨ E ∨ R

@∆ · t[A ∨ B]

@∆ · t[A]O@∆ · t[B]
∨ EOR

A Space-Time Logic, Ferreira, 2000 41

Negation:

@∆, {¬A} · t[ff]

@∆ · t +t 1[A]
¬EL

@∆, {A} · t[ff]

@∆ · t+t 1[¬A]
¬ER

Implication:

@∆, {A→ B} · t[C]

@∆, {B} · t+t 1[C]
→ EL

@∆ · t[A] @Γ · t+t 1/2[A→ C]

@∆,Γ · t +t 1[C]
→ ER

The left rule, above, is not part of the linear logic or relevance logic. The
above right rule is what is often called modus ponens.

4.3.3 Space and Time:

From now on, for the following axioms and deductive rules, s, s′ ⊂ S; t′, t′′ ⊂
T, while t ought to remain as before: t ∈ T.

¬A1 ¬@∀s · ∀t′[A]
.
= @∃s · ∃t′[¬A]

¬A2 ¬@∀s · ∃t′[A]
.
= @∃s · ∀t′[¬A]

¬A3 ¬@∃s · ∀t′[A]
.
= @∀s · ∃t′[¬A]

¬A4 ¬@∃s · ∃t′[A]
.
= @∀s · ∀t′[¬A]

∧AP @P ·Q[A] ∧ @P ·Q[B]
.
= @P ·Q[A ∧B]

∨AP @P ·Q[A] ∨ @P ·Q[B]
.
= @P ·Q[A ∨B]

The above axioms can be used as two-way rules. I present the set of rules
with an implicit correspondence between uu and empty space:

Space ∪ introduction

@∆, {@∀s · t′[A],@∀s′ · t′[A]} · t[C]

@∆, {@∀s ∪ s′ · t′[A]} · t +t 1[C]
∀s ∪ IL

@∆ · t[@∀s · ∀t′[A]] @Γ · t +t 1/2[@∀s′ · ∀t′[A]]

@∆,Γ · t+t 1[@∀s ∪ s′ · ∀t′[A]]
∀s ∪ IR

A Space-Time Logic, Ferreira, 2000 42

or

@∆, {@∃s · t′[A]} · t[C] @Γ, {@∃s′ · t′[A]} · t+t 1/2[C]

@∆,Γ, {@∃s ∪ s′ · t′[A]} · t+t 1[C]
∃s ∪ IL

A rule for expansion:

@∆ · t[@∃s · t′[A]]

@∆ · t +t 1[@∃s ∪ s′ · t′[A]]
∃s ∪ IR

and, for both ∃s and ∀s, an alternative and interesting rule for

or

follows:

@∆ · t[@s · ∀t′[A]]

@∆ · t+t 1[@∃s ∪ s′ · ∀t′[A]]
s∀ ∪ IR

Space ∩ introduction

A Space-Time Logic, Ferreira, 2000 43

@∆, {@∃s · t′[A],@∃s′ · t′[A]} · t[C]

@∆, {@s ∩ s′ · t′[A]} · t +t 1[C]
s ∩ IL

@∆ · t[@∀s · t′[A]]

@∆,Γ · t+t 1[@∀s ∩ s′ · t′[A]]
∀s ∩ IR

@∆, {@∃s · t′[A],@∃s′ · t′[A]} · t[C]

@∆, {@∃s ∩ s′ · t′[A]} · t +t 1[C]
∃s ∩ IL

It can be somewhat interesting to observe that the formula @∃s∩s′ · t′[A]
does not follow from @∃s·t′[A]∧@∃s′ ·t′[A], but instead from ∀∃swR, defined
later.

Space ∪ elimination

@∆, {@∀s ∪ s′ · ∀t′[A]} · t[C]

@∆, {@∀s · ∀t′[A],@∀s′ · ∀t′[A]} · t+t 1[C]
∀s ∪ EL

@∆ · t[@∀s ∪ s′ · t′[A]]

@∆ · t +t 1[@∀s · t′[A]]
∀s ∪ ER

@∆, {@∃s ∪ s′ · t′[A]} · t[C]

@∆, {@∃s · t′[A]} · t +t 1[C]
∃s ∪ EL

A Space-Time Logic, Ferreira, 2000 44

@∆, {@∃s ∪ s′ · ∀t′[A]} · t[C]

@∆, {@s · ∀t′[A]} · t +t 1[C]
s∀ ∪ EL

��

��

��

��

��

��

��

��

��

��

��

��

@∆ · t[@∃s ∪ s′ · t′[A]]

@∆ · t[@∃s · t′[A]] ∨ @∆ · t[@∃s′ · t′[A]]
∃s ∪ ER

Space ∩ elimination:

@∆, {@∀s ∩ s′ · t′[A]} · t[C]

@∆, {@∀s · t′[A]} · t +t 1[C]
∀s ∩ EL

@∆ · t[@∀s ∩ s′ · t′[A]]

@∆ · t+t 1[@∃s · t′[A]]
∀∃s ∩ ER

@∆ · t[@∃s ∩ s′ · t′[A]]

@∆ · t +t 1[@∃s · t′[A]]
∃s ∩ ER

Space weakening - At the same time:

@∆, {@∃s ∪ s′ · t′[A]} · t[C]

@∆, {@∃s ∩ s′ · t′[A]} · t +t 1[C]
∃swL

@∆ · t[@∃s ∩ s′ · t′[A]]

@∆ · t+t 1[@∃s ∪ s′ · t′[A]]
∃swR

@∆, {@∀s ∩ s′ · t′[A]} · t[C]

@∆, {@∀s ∪ s′ · t′[A]} · t+t 1[C]
∀swL

@∆ · t[@∀s ∪ s′ · t′[A]]

@∆ · t+t 1[@∀s ∩ s′ · t′[A]]
∀swR

A Space-Time Logic, Ferreira, 2000 45

Different Spaces and Times

For the following rules, s 6= s′ ∧ t′ 6= t′′.

@∆, {@∀s · ∃t′[A]} · t[C] @Γ, {@∀s · ∃t′[A]} · t +t 1/2[C]

@∆,Γ, {@∀s ∪ s′ · ∃t′ ∪ t′′[A]} · t +t 1[C]
∀s∃t ∪ IL

@∆ · t[@∀s ∪ s′ · ∃t′ ∪ t′′[A]]

@∆ · t+t 1[@∀s · ∃t′[A] ∨ @∀s · ∃t′[A]]
∀s∃t ∪ ER

@∆, {@∃s · ∀t′[A]} · t[C] @Γ, {@∃s · ∀t′[A]} · t +t 1/2[C]

@∆,Γ, {@∃s ∪ s′ · ∀t′ ∪ t′′[A]} · t +t 1[C]
∃s∀t ∪ IL

@∆ · t[@∃s ∪ s′ · ∀t′ ∪ t′′[A]]

@∆ · t+t 1[@∃s · ∀t′[A] ∨ @∃s · ∀t′[A]]
∃s∀t ∪ ER

@∆, {@∀s · ∀t′[A],@∀s′ · ∀t′′[A]} · t[C]

@∆, {@∀s ∪ s′ · ∀t′ ∪ t′′[A]} · t+t 1[C]
∀stIL >

@∆ · t[@∀s · ∀t′[A]] @Γ · t +t 1/2[@∀s′ · ∀t′′[A]]

@∆,Γ · t+t 1[@∀s ∩ s′ · ∀t′ ∩ t′′[A]]
∀stIR >

@∆, {@∀s ∩ s′ · ∀t′ ∩ t′′[A]} · t[C]

@∆, {@∀s · ∀t′[A],@∀s′ · ∀t′′[A]} · t +t 1[C]
∀stEL>

@∆ · t[@∀s ∪ s′ · ∀t′ ∪ t′′[A]]

@∆ · t +t 1[@∀s · ∀t′[A]]
∀stER >

although @∀s∪ s′ · ∃t′ ∪ t′′[A] does not imply @∀s · ∃t′[A] or @∀s′ · ∃t′′[A].
Accordingly, @∃s∪ s′ · ∀t′ ∪ t′′[A] does not imply @∃s · ∀t′[A] or @∃s · ∀t′[A].

Time ∪ introduction

Since time is symmetric to space, it turns out that to repeat similar
diagrams here are unnecessary. Instead, I place the rules without comments.

@∆, {@s · ∀t′[A],@s · ∀t′′[A]} · t[C]

@∆, {@s · ∀t′ ∪ t′′[A]} · t+t 1[C]
∀t ∪ IL

@∆ · t[@∀s · ∀t′[A]] @Γ · t+t 1/2[@∀s · ∀t′′[A]]

@∆,Γ · t +t 1[@∀s · ∀t′ ∪ t′′[A]]
∀t ∪ IR

@∆, {@s · ∃t′[A]} · t[C] @Γ, {@s · ∃t′′[A]} · t+t 1/2[C]

@∆,Γ, {@s · ∃t′ ∪ t′′[A]} · t +t 1[C]
∃t ∪ IL

@∆ · t[@s · ∃t′[A]]

@∆ · t+t 1[@s · ∃t′ ∪ t′′[A]]
∃t ∪ IR

A Space-Time Logic, Ferreira, 2000 46

@∆ · t[@∀s · t′[A]]

@∆ · t+t 1[@∀s · ∃t′ ∪ t′′[A]]
t∀ ∪ IR

Time ∩ introduction

@∆, {@s · ∃t′[A],@s · ∃t′′[A]} · t[C]

@∆, {@s · t′ ∩ t′′[A]} · t+t 1[C]
t ∩ IL

@∆ · t[@s · ∀t′[A]]

@∆,Γ · t+t 1[@s · ∀t′ ∩ t′′[A]]
∀t ∩ IR

@∆, {@s · ∃t′[A],@s · ∃t′′[A]} · t[C]

@∆, {@s · ∃t′ ∩ t′′[A]} · t+t 1[C]
∃t ∩ IL

Time ∪ elimination

@∆, {@∀s · ∀t′ ∪ t′′[A]} · t[C]

@∆, {@∀s · ∀t′[A],@∀s · ∀t′′[A]} · t+t 1[C]
∀t ∪ EL

@∆ · t[@s · ∀t′ ∪ t′′[A]]

@∆ · t+t 1[@s · ∀t′[A]]
∀t ∪ ER

@∆, {@s · ∃t′ ∪ t′′[A]} · t[C]

@∆, {@s · ∃t′[A]} · t+t 1[C]
∃t ∪ EL

@∆, {@∀s · ∃t′ ∪ t′′[A]} · t[C]

@∆, {@∀s · t′[A]} · t+t 1[C]
t∀ ∪ EL

@∆ · t[@s · ∃t′ ∪ t′′[A]]

@∆ · t[@s · ∃t′[A]] ∨ @∆ · t[@s · ∃t′′[A]]
∃t ∪ ER

Time ∩ elimination

@∆, {@s · ∀t′ ∩ t′′[A]} · t[C]

@∆, {@s · ∀t′[A]} · t+t 1[C]
∀t ∩ EL

@∆ · t[@s · ∀t′ ∩ t′′[A]]

@∆ · t+t 1[@s · ∃t′[A]]
∀∃t ∩ ER

@∆ · t[@s · ∃t′ ∩ t′′[A]]

@∆ · t+t 1[@s · ∃t′[A]]
∃t ∩ ER

Time Weakening - At the same place:

@∆, {@s · ∃t′ ∪ t′′[A]} · t[C]

@∆, {@s · ∃t′ ∩ t′′[A]} · t+t 1[C]
∃twL

@∆ · t[@s · ∃t′ ∩ t′′[A]]

@∆ · t+t 1[@s · ∃t′ ∪ t′′[A]]
∃twR

@∆, {@s · ∀t′ ∩ t′′[A]} · t[C]

@∆, {@s · ∀t′ ∪ t′′[A]} · t+t 1[C]
∀twL

@∆ · t[@s · ∀t′ ∪ t′′[A]]

@∆ · t+t 1[@s · ∀t′ ∩ t′′[A]]
∀twR

A Space-Time Logic, Ferreira, 2000 47

Space-Time ∀ and ∃:

@∆, {@s · t′[A]} · t[C]

@∆, {@∀ · t′[A]} · t+t 1[C]
∀sIL

@∆ · t[@∀ · t′[A]]

@∆ · t +t 1[@s · t′[A]]
∀sER

@∆, {@s · t′[A]} · t[C]

@∆, {@s · ∀[A]} · t +t 1[C]
∀tIL

@∆ · t[@s · ∀[A]]

@∆ · t+t 1[@s · t′[A]]
∀tER

@∆, {@∃ · t′[A]} · t[C]

@∆, {@s · t′[A]} · t+t 1[C]
∃sEL

@∆ · t[@s · t′[A]]

@∆ · t+t 1[@∃ · t′[A]]
∃sIR

@∆, {@s · ∃[A]} · t[C]

@∆, {@s · t′[A]} · t+t 1[C]
∃tEL

@∆ · t[@s · t′[A]]

@∆ · t+t 1[@s · ∃[A]]
∃tIR

Wholeness and Nesting Formulae:

@∆, {@∃s · t′[A]} · t[C]

@∆, {@∀s · t′[A]} · t+t 1[C]
∃∀swL

@∆ · t[@∀s · t′[A]]

@∆ · t+t 1[@∃s · t′[A]]
∀∃swR

@∆, {@s · ∃t′[A]} · t[C]

@∆, {@s · ∀t′[A]} · t +t 1[C]
∃∀twL

@∆ · t[@s · ∀t′[A]]

@∆ · t+t 1[@s · ∃t′[A]]
∀∃twR

Some theories on the @-logic might have rules for nesting formulae. I
present some axioms only as an example:

∀∀sN : @∀s · t′[@∀s · t′[A]]
.
= @∀s · t′[A]

∃∃sN : @∃s · t′[@∃s · t′[A]]
.
= @∃s · t′[A]

∀∀tN : @s · ∀t′[@s · ∀t′[A]]
.
= @s · ∀t′[A]

∃∃tN : @s · ∃t′[@s · ∃t′[A]]
.
= @s · ∃t′[A]

5 A Space-Time Operational Semantics

In this section, I illustrate an application of the present logic to operational
semantics of programming languages. Informally, I adopt the following con-
ventions:

• σ: a state of the computation, seen as a set.

• σ(m/X): σ, in particular, X = m ∈ σ.

• 〈true, σ〉: tt in state σ.

• 〈false, σ〉: ff in state σ.

A Space-Time Logic, Ferreira, 2000 48

• @s · t[[A]]: the meaning of A (it requires that A
.
= tt) at place s and

time t.

• n,m: two real numbers.

• ε: time spent to execute the referred to operation.

• : evaluation of some operation and its meaning is obtained.

Traditionally, the formal semantics of programming languages do not re-
quire one to state the space-time components. For a semantic rule, it is
assumed that the antecedents refer to executions before the execution of the
statement that appears in the consequent in the rule. However, for mobile
code languages, it becomes important to make it explicit that such state-
ments do not change the locality while some other statements do change
locality. Moreover, time becomes a major issue in global environments such
as the Internet.

The @-logic can be used as a Space-Time semantics for more general
purpose programming languages, or simply for those languages that support
code mobility.

Here, I present an operational semantics of the well known while lan-
guage, extracted from [98] with slight changes in addition to the present
author’s notation, to make it explicit that their constructs do not change
locality.

5.1 The evaluation of Boolean expressions

@s · t[[〈true, σ〉]] @s · t +t ε[[true]] @s · t[[〈false, σ〉]] @s · t +t ε[[false]]

where ε is the time for executing the operation.

@s · t0[[〈a0, σ〉]] @s · t0 +t ε0[[n]] @s · t0 +t ε0[[〈a1, σ〉]] @s · t0 +t ε0 +t ε1[[m]]
n = m

@s · t0[[〈a0 = a1, σ〉]] @s · t0 +t ε0 +t ε1[[true]]

Notice that the present author’s notation allows the semantics to make
explicit that a0 is performed before a1. For a parallel version, the rule would
be slightly different from the one above.

@s · t0[[〈a0, σ〉]] @s · t0 +t ε0[[n]] @s · t0 +t ε0[[〈a1, σ〉]] @s · t0 +t ε0 +t ε1[[m]]
n 6= m

@s · t0[[〈a0 = a1, σ〉]] @s · t0 +t ε0 +t ε1[[false]]

A Space-Time Logic, Ferreira, 2000 49

For the less than or equal to operator, there exist two extra rules such as:

@s · t0[[〈a0, σ〉]] @s · t0 +t ε0[[n]] @s · t0 +t ε0[[〈a1, σ〉]] @s · t0 +t ε0 +t ε1[[m]]
n ≤ m

@s · t0[[〈a0 ≤ a1, σ〉]] @s · t0 +t ε0 +t ε1[[true]]

@s · t0[[〈a0, σ〉]] @s · t0 +t ε0[[n]] @s · t0 +t ε0[[〈a1, σ〉]] @s · t0 +t ε0 +t ε1[[m]]
n > m

@s · t0[[〈a0 ≤ a1, σ〉]] @s · t0 +t ε0 +t ε1[[false]]

More two rules for the negation:

@s · t0[[〈b, σ〉]] @s · t0 +t ε0[[true]]

@s · t0[[〈¬b, σ〉]] @s · t0 +t ε0 +t ε1[[false]]

@s · t0[[〈b, σ〉]] @s · t0 +t ε0[[false]]

@s · t0[[〈¬b, σ〉]] @s · t0 +t ε0 +t ε1[[true]]

Conjunction:

@s · t0[[〈b0, σ〉]] @s · t0 +t ε0[[α]]
@s · t0 +t ε0[[〈b1, σ〉]] @s · t0 +t ε0 +t ε1[[β]]

@s · t0[[〈b0 & b1, σ〉]] @s · t0 +t ε0 +t ε1 +t ε2[[α & β]]

Disjunction:

@s · t0[[〈b0, σ〉]] @s · t0 +t ε0[[α]]
@s · t0 +t ε0[[〈b1, σ〉]] @s · t0 +t ε0 +t ε1[[β]]

@s · t0[[〈b0 ∨ b1, σ〉]] @s · t0 +t ε0 +t ε1 +t ε2[[α ∨ β]]

5.2 The execution of commands

In this section, I present an operational semantics of the commands in the
while language.

Atomic commands:

@s · t[[〈skip, σ〉]] @s · t+t ε[[σ]]

@s · t0[[〈a, σ〉]] @s · t0 +t ε0[[m]]

@s · t0[[〈X := a, σ〉]] @s · t0 +t ε0 +t ε1[[σ(m/X)]]

Sequencing:

A Space-Time Logic, Ferreira, 2000 50

@s · t0[[〈c0, σ〉]] @s · t0 +t ε0[[σ′′]]
@s · t0 +t ε0[[〈c1, σ

′′〉]] @s · t0 +t ε0 +t ε1[[σ′]]

@s · t0[[〈c0; c1, σ〉]] @s · t0 +t ε0 +t ε1[[σ′]]

Conditionals[25]:

@s · t0[[〈b, σ〉]] @s · t0 +t ε0[[true]]
@s · t0 +t ε0[[〈c1, σ〉]] @s · t0 +t ε0 +t ε1[[σ′]]

@s · t0[[〈if b then c1 else c2, σ〉]] @s · t0 +t ε0 +t ε1[[σ′]]

@s · t0[[〈b, σ〉]] @s · t0 +t ε0[[false]]
@s · t0 +t ε0[[〈c2, σ〉]] @s · t0 +t ε0 +t ε1[[σ′]]

@s · t0[[〈if b then c1 else c2, σ〉]] @s · t0 +t ε0 +t ε1[[σ′]]

While-loops:

@s · t0[[〈b, σ〉]] @s · t0 +t ε[[false]]

@s · t0[[〈while b do c, σ〉]] @s · t0 +t ε+t ∆t[[σ]]

@s · t0[[〈b, σ〉]] @s · t0 +t ε0[[true]]
@s · t0 +t ε0[[〈c, σ〉]] @s · t0 +t ε0 +t ε1[[σ′′]]

@s · t0 +t ε0 +t ε1[[〈while b do c, σ′′〉]] @s · t0 +t ε0 +t ε1 +t ε2[[σ′]]

@s · t0[[〈while b do c, σ〉]] @s · t0 +t ε0 +t ε1 +t ε2[[σ′]]

6 Mobility and Resources

In this section, I demonstrate how the @-logic can capture material resources
and mobility of objects. The issue of matter is discussed in other contribu-
tions such as [14].

To achieve this purpose, let Obj denote the set of all physical objects in
the real world. Therefore, the property of uniqueness of its elements can be
written as:

∀(o1, o2 ∈ Obj, t ∈ T, s1, s2 ∈ S). (s1 ⊂/ s2 ∧ s1 ⊃/ s2) ∧
(@∃s1 · ∀t[o1] ∧ @∃s2 · ∀t[o1] → s1 = s2)∧
(@∀s1 · ∀t[o1] ∧ @∀s1 · ∀t[o2] → o1 = o2)

Thus, in the world described above, I can also represent mobility of an
object slower than the speed of light in the following abstract way:

↗ (x, 〈p0, t0〉, 〈p1, t1〉)
def
= @p0 · t0[x] ∧ @p1 · t1[x]

A Space-Time Logic, Ferreira, 2000 51

where p0, p1 ∈ S, and x asserts the existence of some particular object,
or, more abstractly,

↗ (x, p0, p1)
def
= ∃t0, t1 ∈ T. (t0 <t t1) ∧ @p0 · t0[x] ∧ @p1 · t1[x]

or, given the above property, one can represent mobility graphically, from
p0 to p1 during t1−t t0 interval, that is @[p0, p1] · [t0, t1][x], in accordance with
the following space-time diagram:

which is in the same style of interpretation as the other space-time dia-
grams, presented above.

One can build a theory that would be aware of resources. I observe that
space and time have always been resources, since prehistory. I can generate
material resources from both notions as I do in the following illustration: I
have five dollars (D) and, for this price, I can either order (O) one pizza (I)
or pasta (A). By letting t be the time for the action of buying one of these
meals, I can formalize this situation as follows:

@P · <t u[D ≥ 5] ∧ @∃ · [u, t][O] ∧ @P · >t t[] ∧ @hand· >t t[I v A]

where P indicates a content (e.g. the pocket), v is the exclusive or, and
I can generate a rule for that transaction itself:

(∀d, u)((@P · t[D = d ∧ d ≥ 5]∧
(∃κ) (κ = u ∧ @∃ · [t, κ][O])) → @P · >t u[D = d− 5] ∧ @hand· >t u[I v A])

This example is based on [58].

7 Conclusion

The combination of physical and psychological notions of mobility, space,
time and knowledge is so common in the daily life that it is not difficult to
find good examples of it: while an observer is sitting down in a café, she
can see two men starting to shake hands, then a bus stops between her and
the scene blocking her view. Then, she no longer knows when the men stop

A Space-Time Logic, Ferreira, 2000 52

shaking hands, but can guess that it is not for so long, depending on the
place of that scene and her cultural background. The present calculus and
deduction can be somewhat uselful.

When weighing up possibilities in any situation, one thinks carefully in
order to make use of importance factors from premises to some associated
conclusion. For performing such an inference, uncertainty is appropriate
and provided in the @-logic. In this way, negative factors tend to refute
hypotheses while positive factors tend to prove them. Thus, the result from
reasoning means the average of the negative and positive results, and this is
a significant skill for mobile agents.

The notions of space and time can be viewed as either abstract or physical.
For example, the Pascal assignment instruction a := a + b can be easily
expressed as

@a · t[value = a′]&@b · t +t 1[value = b′]&@a · t +t 2[value = a′ + b′]

where t ∈ Z.
The grammar is expressive enough to represent sequents using sets of

formulae as notion of space as exemplified here, such as @∆ · t[C], although,
for the @-calculus, one can make use of the form @s · t[∆ ` C].

For further work, one can move the mobility operation from the appli-
cation level to the level of structural rules, and then one obtains mobile
derivations. In this way, one cannot make use of a formula at some place P
until the formula arrives at P . On the other hand, once the formula is used
in some derivation, it cannot escape to another place, for the operation that
causes mobility is explicit. Now, the notion of time is not relative to the rule,
but instead to the whole derivation. These features simulate the behavior of
mobile code systems abstracting details of uncertainty and other variables in
the real world.

A Space-Time Logic, Ferreira, 2000 53

References

[1] Peter Aczel, Harold Simmons, and Stanley S. Wainer, editors. Proof
Theory. Cambridge University Press, 1992.

[2] James Allen. An interval-based representation of temporal knowledge.
In Proceedings of 7th IJCAI, pages 221–226, 1981.

[3] James Allen. Towards a general theory of action and time. Artificial
Intelligence, 23:123–154, 1984.

[4] James Allen. Time and time again: The many ways to represent time.
International Journal of Intelligent Systems, 6(4):341–355, July 1991.

[5] James Allen and George Ferguson. Actions and events in interval tem-
poral logic. Journal of Logic and Computation, 4(5), 1994.

[6] James Allen and James Hendler, editors. Readings in Planning. Rep-
resentation and Reasoning. Morgan Kaufmann, San Mateo, California,
1990.

[7] Alan Ross Anderson and Nuel D. Belnap Junior. Entailment: The Logic
of Relevance and Necessity, volume 1. Princeton University Press, 1975.

[8] Ken Arnold and James Goslin. The Java Programming Language.
Addison-Wesley Publishing Company, 1996.

[9] Diderik Batens, Chris Mortensen, Graham Priest, and Jean-Paul Van
Bendegem, editors. Frontiers of Paraconsistent Logic, volume 8 of Stud-
ies in Logic and Computation. Research Studies Press Ltd, 2000.

[10] Paul W. Beame and Samuel R. Buss, editors. Proof Complexity and
Feasible Arithmetics: DIMACS Workshop 96, volume 39 of DIMACS
series in discrete mathematics and theoretical computer science. Amer-
ican Mathematical Society, 1996.

[11] Nuel D. Belnap Junior. A useful four-valued logic. In J Michael
Dunn and George Epstein, editors, Proceedings of the Fifth International
Symposium on Multiple-Valued Logic, Modern Uses of Multiple-Valued
Logic, pages 8–37. Indiana University, D Reidel Publishing Company,
1975.

[12] Paul Benacerraf and Hilary Putnam, editors. Philosophy of Mathemat-
ics: selected readings. Prentice-Hall, Inc., 1964.

A Space-Time Logic, Ferreira, 2000 54

[13] Paul Bernays. Philosophy of Mathematics, chapter On Platonism in
Mathematics, pages 274–286. Prentice-Hall, Inc., 1964.

[14] Thomas Bittner. Rough sets in spatio-temporal data mining. In Tem-
poral, Spatial and Spatio-Temporal Data Mining, volume LNAI 2007 of
Lecture Notes in Artificial Intelligence, pages 89–104. Springer, Septem-
ber 2000.

[15] Wayne D. Blizard. A formal theory of objects, space and time. The
Journal of Symbolic Logic, 55(1):74–89, March 1990.

[16] Robert Bull. Logic and Reality: essays on the legacy of Arthur Prior,
chapter Logics without Contraction I, pages 317–336. Oxford University
Press, 1996.

[17] Martin Bunder. Logic and Reality: essays on the legacy of Arthur Prior,
chapter Logics without Contraction II, pages 337–349. Oxford University
Press, 1996.

[18] John P. Burgess. Proof, Logic and Formalization, chapter Proofs About
Proofs: a Defense of Classical Logic. Part I: the aim of classical logic,
pages 8–23. Routledge, 1992.

[19] Stanley N. Burris. Logic for Mathematics and Computer Science. Pren-
tice Hall, Inc., 1998.

[20] Luca Cardelli and Andrew D. Gordon. Foundations of Software Sci-
ence and Computational Structures, volume 1378 of Lecture Notices in
Computer Science, chapter Mobile Ambients, pages 140–155. Springer-
Verlag, 1998. Also Proceedings of FoSSaCS’98.

[21] Alexander Chagrov and Michael Zakharyaschev. Modal Logic, volume 35
of Oxford Logic Guides. Oxford University Press, 1997.

[22] C. C. Chang and H. J. Keisler. Model Theory, volume 73 of Studies in
Logic and the Foundations of Mathematics. North-Holland Publishing
Company and American Elsevier Publishing Company, Inc., 1973.

[23] A. G. Cohn, J. M. Gooday, and B. Bennett. A comparison of structures
in spatial and temporal logics. Philosophy and the Cognitive Sciences,
1994. Also http://www.comp.leeds.ac.uk/spacenet/gooday.html.

[24] B. J. Copeland, editor. Logic and Reality: essays on the legacy of Arthur
Prior. Oxford University Press, 1996.

A Space-Time Logic, Ferreira, 2000 55

[25] G. Crocco and Luis Farias del Cerro. Conditionals: from philosophy to
computer science. Studies in Logic and Computation. Clarendon Press,
Oxford University, 1995.

[26] Tristan Crolard. Subtractive logic. Theoretical Computer Science,
254(1–2):151–185, March 2001.

[27] Martin Davis. The Universal Computer: the road form Leibniz to Tur-
ing, chapter 2 Boole Turns Logic into Algebra, pages 21–40. W. W.
Norton & Company, 2000.

[28] Martin Davis. The Universal Computer: the road form Leibniz to Tur-
ing. W. W. Norton & Company, 2000.

[29] Giorgio Delzanno and Maurizio Martelli. Proofs as computations in
linear logic. Theoretical Computer Science, 258(1–2):269–297, May 2001.

[30] Kees Doets. Basic Model Theory. CSLI International: Center for the
Study of Language and Information and FoLLI: the European Associa-
tion for Logic, Language and Information, 1996.

[31] Michael Dummett. The Philosophy of Mathematics, chapter The Philo-
sophical Basis of Intuitionistic Logic. Oxford Readings in Philosophy.
Oxford University Press, 1996.

[32] J. Michael Dunn. Handbook of Philosophical Logic, volume III: Alter-
natives to Classical Logic of Synthese library; v. 166, chapter Relevance
Logic and Entailment, pages 117–224. Kluwer Academic Publisher,
1986.

[33] John R. Durbin. Modern Algebra: an introduction. John Wiley & Sons,
Inc., fourth edition, 2000.

[34] E. Allen Emerson. Handbook of Theoretical Computer Science, volume
B Formal Models and Semantics, chapter 16 Temporal and Modal Logic,
pages 995–1072. The MIT Press/Elsevier, 1990.

[35] Richard L. Epstein. Predicate Logic. Oxford University Press, 1994.

[36] Richard L. Epstein. The Semantics Foundations of Logic. Oxford Uni-
versity Press, second edition, 1995.

[37] J. U. Ferreira, P. S. Nicolletti, and Hélio M. Silva. Tratamento de in-
certezas na linguagem lidia. In Proceedings of VI Simpósio Brasileiro de
Inteligência Artificial. Brazilian Computing Society, 1989.

A Space-Time Logic, Ferreira, 2000 56

[38] Ulisses Ferreira. uu for programming languages. ACM SIGPLAN No-
tices, 35(8):20–30, August 2000.

[39] Ulisses Ferreira. A prolog-like language for the internet. In Proceedings
of CAITA-04, Purdue, Indiana, USA, July 2004. IPSI Belgrade.

[40] Melvin Fitting. Kleene’s logic, generalized. Technical report, City Uni-
versity of New York, Lehman College, Department of Mathematics and
Computer Science, New York, 1990.

[41] Melvin Fitting. Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 1: Logical Foundations, chapter Basic Modal
Logic, pages 365–448. Oxford University Press, 1993.

[42] Margaret M. Fleck. The topology of boundaries. Artificial Intelligence,
80(1):1–27, January 1996.

[43] Wan Fokkink. Introduction to Process Algebra. Texts in theoretical
computer science. Springer-Verlag, 2000.

[44] Jan Lukasiewicz. Jan Lukasiewicz Selected Works. Series on Studies
in Logic and Foundations of Mathematics. North-Holland Publishing
Company and PWN - Polish Scientific Publishers, 1970.

[45] Gottlob Frege. The Basic Laws of Arithmetic: exposition of the system.
University of California Press, 1964.

[46] Christian Freksa, Wilfried Brauer, Christopher Habel, and Karl F. Wen-
der, editors. Spatial Cognition II: Integrating Abstract Theories, Empir-
ical Studies, Formal Methods and Practical Applications, volume 1849
of Lecture Notes in Artificial Intelligence. Springer, 2000.

[47] André Fuhrmann. An Essay on Contraction. Studies in Logic, Language
and Information. CSLI Publications and FoLLI, 1997.

[48] Dov M. Gabbay. Labelled Deductive Systems, volume 1 of Oxford Logic
Guides 33. Oxford University Press, 1996.

[49] Dov M. Gabbay. Elementary Logics: A Procedural Perspective. Prentice
Hall Series in Computer Science. Prentice Hall Europe, 1998.

[50] Dov M. Gabbay and Ian Hodkinson. Logic and Reality: essays on
the legacy of Arthur Prior, chapter Temporal Logic in the Context of
Databases, pages 69–87. Oxford University Press, 1996.

A Space-Time Logic, Ferreira, 2000 57

[51] Dov M. Gabbay, Ian Hodkinson, and Mark Reynolds, editors. Temporal
Logic: mathematical foundations and computational aspects, volume 1.
Oxford University Press Inc., New York, 1994.

[52] Denis Gagné, Wanlin Pang, and André Trudel. Spatio-temporal logic
for 2d multi-agent problem domains. Expert Systems with Applications,
12(1):141–145, 1997.

[53] L. T. F. Gamut. Logic, Language and Meaning, volume 1 Introduction to
Logic, chapter Beyond Standard Logic, pages 156–194. The University
of Chicago Press, 1991.

[54] L. T. F. Gamut. Logic, Language and Meaning, volume 2 Intensional
Logic and Logical Grammar. The University of Chicago Press, 1991.

[55] Michael Gelfond and Vladimir Lifschitz. Logic programs with classi-
cal negation. In Proceedings of 7th International Conference on Logic
Programming, pages 579–597, Cambridge MA, 1990. The MIT Press.

[56] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation Computing. Ohmsha
Ltd and Spring-Verlag, pages 365–385, 1991.

[57] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[58] Jean-Yves Girard. Advances in Linear Logic, chapter Linear Logic: its
syntax and semantics, pages 1–42. Cambridge University Press, 1995.

[59] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types.
Cambridge University Press, 1993.

[60] Andrew D. Gordon. Functional Programming and Input/Output. Distin-
guished Dissertations in Computer Science. Cambridge University Press,
1994.

[61] James Gosling and H. McGilton. The java language environment: A
white paper. Technical report, Sun Microsystems, October 1995.

[62] Anil Gupta and Nuel Belnap Junior. The Revision Theory of Truth,
chapter 2 Fixed Points: Some Basic Facts, page 43. The MIT Press,
1993.

[63] John F. Horty. Agency and Deontic Logic. Oxford University Press,
2001.

A Space-Time Logic, Ferreira, 2000 58

[64] Thomas W. Hungerford. Algebra, volume 73 of Graduate Texts in Math-
ematics. Springer-Verlag, 1974. Corrected eighth printing, 1996.

[65] Christian S. Jensen, Markus Schneider, Bernhard Seeger, and Vassilis J.
Tsotras, editors. Advances in Spatial and Temporal Databases, volume
2121 of Lecture Notes in Computer Science. Springer, July 2001.

[66] Immanuel Kant. Logic. Bobbs-Merrill, Indianapolis, 1974. Original in
German Logik. Translation with an introduction by Robert S Hartman
and Wolfgang Schwarz.

[67] Stephen C. Kleene. Introduction of Metamathematics. D. Van Nostrand,
Princeton, 1952.

[68] Bart Kosko. Fuzzy Thinking: The New Science of Fuzzy Logic. Harper-
CollinsPublishers, Flamingo, 1994.

[69] William G. Lycan. Real Conditionals. Oxford University Press, 2001.

[70] Grzegorz Malinowski. Many-Valued Logics. Number 25 in Oxford Logic
Guides. Claredon Press, Oxford University, 1993.

[71] K. Meinke and J. V. Tucker. Handbook of Logic in Computer Science,
volume 1: Mathematical Structures, chapter Universal Algebra, pages
189–411. Oxford University Press, 1992.

[72] John C. Mitchell. Foundations for Programming Languages, chapter
Categories and Recursive Types, pages 490–505. Foundations of Com-
puting. The MIT Press, 1996. Section 7.3 Kripke Lambda Models and
Functor Categories.

[73] Sara Negri and Jan Von Plato. Structural Proof Theory. Cambridge
University Press, 2001.

[74] Zoran Ognjanovic and Miodrag Raškovic. Some first-order probabil-
ity logics. Theoretical Computer Science, 247(1–2):191–212, September
2000.

[75] Z. Pawlak. Rough sets. International Journal Comput. Inform, 11:341–
356, 1982.

[76] Lech Polkowski and Andrzej Skowron, editors. Rough Sets and Cur-
rent Trends in Computing: first international conference / RSCTC’98,
volume LNAI 1424 of Lecture Notes in Artificial Intelligence. Springer,
Warsaw, Poland, June 1998. Proceedings.

A Space-Time Logic, Ferreira, 2000 59

[77] Arthur Prior. Formal Logic. Oxford University Press, 1955.

[78] Arthur Prior. Past, Present and Future. Oxford University Press, 1967.

[79] Arthur Prior. Logic and Reality: essays on the legacy of Arthur Prior,
chapter Two Essays on Temporal Realism, pages 43–51. Oxford Univer-
sity Press, 1996.

[80] David Randell, Zhan Cui, and Tony Cohn. A spatial logic based on
regions and connection. In Proceedings 3rd International Conference on
Knowledge Representation and Reasoning, pages 165–176, San Mateo,
1992. Morgan Kaufmann.

[81] Stephen Read. Relevant Logic: a philosophical examination of inference.
Basil Blackwell, 1988.

[82] Greg Restall. An Introduction to Substructural Logics. Routledge, 2000.

[83] John F. Roddick, Kathleen Hornsby, and Myra Spiliopoulou. An up-
dated bibliography of temporal, spatial, and spatio-temporal data min-
ing research. In Temporal, Spatial and Spatio-Temporal Data Mining,
volume LNAI 2007 of Lecture Notes in Artificial Intelligence, pages 147–
163. Springer, September 2000.

[84] Rita Rodriguez and Frank Anger. Logic and Reality: essays on the legacy
of Arthur Prior, chapter Prior’s Temporal Legacy in Computer Science,
pages 89–105. Oxford University Press, 1996.

[85] Bertrand Russell. Logic and Knowledge: essays 1901-1950. Routledge,
1997.

[86] Mark Ryan and Martin Sadler. Handbook of Logic in Computer Science,
volume 1: Mathematical Structures, chapter Valuation Systems and
Consequence Relations, pages 1–78. Oxford University Press, 1992.

[87] E. H. Shortlife. Computer-Based Medical Consultations: MYCIN. New
York, 1976. Elsevier.

[88] John F. Sowa. Knowledge Representation: logical, philosophical, and
computational foundations. Brooks/Cole, 511 Forest Lodge Road, Pa-
cific Grove,CA, 2000.

[89] N. I. Styazhkin. History of Mathematical Logic from Leibniz to Peano.
The M.I.T. Press, 1969.

A Space-Time Logic, Ferreira, 2000 60

[90] Beverley Tasker. The Logic of Space-Time: (Zero Infinity Becoming),
volume 22 of The Loebertas Series of Philosophical Monographs. Loe-
bertas, 1998.

[91] Anne Sjerp Troelstra. Lectures on Linear Logic. Number 29 in CSLI lec-
ture notes. Center for the Study of Language and Information, CSLI/SRI
International, 1992.

[92] Anne Sjerp Troelstra and H. Schwichtenberg. Basic Proof Theory, vol-
ume 43 Basic Proof Theory of Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 1996.

[93] Alan M. Turing. The Undecidable - basic papers on undecidable proposi-
tions, unsolvable problems and computable functions, chapter On Com-
putable Numbers, With an Application to the Entscheidungsproblem,
pages 115–151. Raven Press, Hewlett, New York, 1965. A correction,
pages 152–154.

[94] Alasdair Urquhart. Handbook of Philosophical Logic, volume 3: Alterna-
tives to Classical Logic of Synthese library; v. 166, chapter Many-Valued
Logic, pages 71–116. Kluwer Academic Publishers, 1986.

[95] Jean van Heijenoort. From Frege to Gödel. Harvard University Press,
1967.

[96] Michalis Vazirginiannis and Ouri Wolfson. A spatiotemporal model and
language for moving objects on road networks. In 7th International
Symposium, SSTD 2001, pages 20–35. Springer, July 2001. LNCS, 2121.

[97] Jan Vitek, editor. Mobile Object Systems: towards the programmable
Internet. Number 1222 in Lecture Notes in Computer Science. Springer-
Verlag, 1997.

[98] Glynn Winskel. The Formal Semantics of Programming Languages: an
introduction. The MIT Press, fourth edition, 1997.

