A Prolog-like Language for the Internet

Ulisses Ferreira

Abstract— This paper presents a three-valued logic
programming language which permits definitions of clauses
under closed-world assumption or without it, due to the presence
of a constant (referred to as uu) at the language level. A third
truth value is used to provide only one negation, defined here
as abstract negation, while Extended Logic Programs adopt two
kinds of negation. | present an operational semantics for both
propositional and the predicate forms, including variables. The
language can be seen as an adaptation of Prolog capable of
capturing lack of information. In particular, the language can
be viewed as as an appropriate compromise solution between
logic and a global structure such as the Internet. Little work
has been done combining logic with such a platform.

Keywords: partial, deduction, declarative, Al, programming
languages, distributed, system, Internet

I. INTRODUCTION

Since Prolog was designed, several programming lan-
guages, techniques and paradigms have been proposed and
developed. Much research work has been done combining
logic programming with other paradigms. A few examples in-
clude the languages AProlog[29] and LIFE[1], which combine
logic with functional programming. However, in spite of the
great importance of such work, no logic programming lan-
guage provides representation of lack of information together
with only one negation. The proposed language (Globallog)
has two relevant attributes, namely, the abstract negation
and the ability to distinguish a refutable clause from the
one which is not proven from a list of clauses. The need
for such a distinction has become increasingly relevant for
Internet programming, because connections sometimes fail and
programs must be robust enough to continue running. Thus,
in a distributed knowledge-based system over the Internet, a
remote query that is not able to prove some predicate results
in unknown instead of false.

Many important theoretical contributions[15], [16] have
been made to logic programming by researchers, including
well-founded semantics [17], [19] and stable models[31], also,
the work of Przymusinsky and Gelfond[21], Ginsberg[22]
among others. A more recent proposal is [5], which is a
semantics for Prolog programs based on a 4-valued logic.
Theories on negation have been proposed since the close-
world assumption (CWA)[32]. [4] presents a survey on this
subject. In general logic programs (GLP), negation as failure
(NAF)[8] is used to infer negative information. In fact, NAF
is a concept which depends on the CWA®. A GLP clause has
the form

Lol—ﬁl,...,ﬁm. (1)

1That is why the proposed negation is called “abstract negation” in the
sense that its use does not depend on whether the world is assumed to be
closed or not.

where — is an implication symbol (for instance the :— symbol
in Prolog), £;, for 1 <4 < m, is a literal possibly with the
not symbol, i.e. the negation as failure operator, while Lo does
not accept negation, although there has been some recent work
on this constraint[24].

A newer approach called Extended Logic Programming
(ELP) provides two forms of negation: NAF and explicit
negation[7], [11], [26]. As well as ELP, Gelfond and
Lifschitz[20] present a proposal which is based on the stable
model semantics and answer sets. The authors define an
extended logic program as being a sequence of clauses of the
form

Lo (—Ll, cey Lm; not Lm+17 ..., not L, (2)

where 0 < m < n and each L; is a literal, i.e. either a
predicate or the explicit negation (—) of a predicate, and not
is the negation as failure operator. Thus, in ELP, the CWA
for a predicate p can be represented by —p(X) + not p(X).,
which, although flexible, makes use of two kinds of negation.

Contributions have been done by Pereira[2], [30], Kowalski
and others[33], also in ELP. There are other new approaches,
such as [36] based on Well-Founded Semantics. However,
Globallog is outside the scope of ELP.

ELP was not conceived to allow programming under the
choice of open- or closed-world assumptions. If the program-
mer uses NAF in a predicate p, it means that he or she is
assuming a closed world. If he or she uses the explicit negation
instead, it means that he or she is assuming an open world for
that use of p. However, it is not clear how to use positive
predicates choosing either assumptions, which is exactly what
Globallog allows programmers to do. In other words, ELP is
more closely related to the negations than the assumptions.

Like ELP, there exist three possible results: false, true and
unknown. While what is stated as false is simply regarded
as false, what is not represented in the program (or what
is unable to be proven) is simply regarded, by default, as
unknown. The distinction between false and unknown allows
the inference machine (also called system here), not only the
application program, to recognize the need for learning. For
example, if a query from a predicate p results in unknown,
the system could ask the user whether he or she would like
to insert some definition in order to improve the knowledge
base.

There are some situations, however, in which CWA with
NAF are much more appropriate[3], [10]. For example, con-
sidering in Prolog the clauses for defining a member of a list,
one (the programmer) can write the following rules:

member(X, [X|]).
member(X, [-|Z]) :— member(X, Z).

Without the CWA, the programmer would have to explicitly

