
Chiron: a Framework for Mobile Agent System∗

U. Ferreira

Abstract

In this paper, I introduce a complete and general solution for mo-

bile agent systems on global environments such as the Internet, in-

formally using a top-down approach without irrelevant details, and

discussing all problems as well as presenting connected sub-solutions.

The present solution is based on global computers and internets. In

particular, I believe that without centralizing the security problem

and closing the software from the public, one cannot guarantee a sat-

isfactory level of security to the users in a feasible way. This may be

viewed as an odd proposal as an academic work, but, in my opinion,

this proposal is realistic.

1 Introduction

Any subset of an Internet-like network can be abstractly seen as a very large,
inefficient and non-reliable computer, instead of a network. As an example,
[5] is an updated bibliography for data mining research whose approach is
clearly different from ours. Thus, one global computer[1] (GC) consists of
an homogeneous set of interpreters (also called virtual machines) on a global
network where application programs can run. I use here Programming for
a Global Computer (PGC) to stress particular features of such a network,
e.g. to be public. However, it is a good idea to keep in mind that a general
purpose programming language ought to consider a global environment.

To date, there are not many mobile agent languages and systems, and
information on them is easily found on WWW. Telescript[7, 8] by General
Magic is pioneering and probably the best example of mobile agent tech-
nology. However, in addition to being suitable for different programming
languages, the concept of identity in the present solution contrasts with the
solution adopted by Telescript, where identity is simply a name. More re-
cently, a few mobile agent technologies have been designed and implemented

∗Thanks and regards to my friend S. Eglen, who read a previous version.



atop the Java Virtual Machine (JVM), such as Aglets Workbench[4] by IBM.
However, because JVM is open, such systems are not secure enough for public
applications on the Internet.

Section 2 briefly discusses programming for a global computer. Section
3 presents a general model for computation on a global environment by dis-
cussing problems and introducing solutions, and section 5 contains some
concluding remarks.

2 Programming for a Global Computer

As global computers will never be so reliable nor efficient as local interpreters
only, traditional programming might not be appropriate for global environ-
ments. Decisions must be made very often on WWW due to some delay, and
this requires specific language constructs.

I recast here the characteristics of PGC from the programmers point
of view: long distances is the first characteristics of global computers, hence
delays. Programmers are aware of locations of resources. This not only allows
the use of resources spread out on the global computer but also allows the
control of distances between places, because the slowness of light is relevant
here in performance. The programmer should be able to set a time limit
under which his or her statement will wait for a remote operation to complete.
If the operation was not completed by then, his or her program can try the
same operation on a different site. Fault in connection is no longer regarded
as exception but instead as a normal situation. Other requirements of PGC
are security guaranteed by the underlying system, code mobility, robustness
and communication, both synchronous and asynchronous. Slowness of the
sequential computation is another characteristic. Heterogeneity of hardware
and operating systems have been mentioned as typical but they are irrelevant
in programming. Parallel computation is strongly suggested, in such a way
that computing in a global environment may become even more efficient
than local computation only.

I am regarding the above characteristics as being what defines PGC and,
hence, any programming language or system for general purpose must provide
at least all of those characteristics. Because of this, it turns out that no
programming language or system to date is suitable for global environments,
although there are languages on the top of mobile-code systems. Surprisingly,
concurrent programming is not one of the requirements for PGC.

2



3 Problems

In this section, I analyze problems together with their solutions, because
they are linked concepts and one solution to a problem may create other
subproblems and so on. On the other hand, key words are emphasized for
being searched.

I define provider a stationary agent in the present solution. Here, I define
Individual as a mobile agent to stress that an Individual moves and are
not split, although there are exceptional cases, as are explained later. To
generalize, I refer to either provider and Individual as agent or module. The
former is dynamic whereas the latter is static.

For philosophical reasons and to keep the solution uniform, both providers
and Individuals contain themselves, that is, they cannot be broken into
smaller modules but instead they are able to create other agents. The present
solution always guarantees a unique identity for different agent although
some attributes are shared after that creation. Moreover, providers do not
create Individuals, and Individuals do not create providers. Symmetrically,
providers and Individuals cannot be dynamically linked but instead they
often communicate, providers with Individuals. In addition, providers can
communicate with other processes designed by using different technologies.
Thus, I refer to providers and Individuals in this solution as self-contained
modules to distinguish them from mobile agents in some other solutions.

Some mobile code technologies have been designed and implemented but
nowadays there are few applications that offer security in such a way that the
public feel secure. Extending from [6] to PGC, it becomes even more critical.
Thus, we provide security to protect agents and their interactions as follows:
communication between hosts and between CEs; the host from malicious
visitors; visitors from malicious hosts; communication between Individuals;
communication between an Individual and a provider; Individuals from being
bothered by other agents; Memory space. CPU from time abuse. However,
incoming agents do not need to be granted access rights, as will be explained
in this section.

The interpreter controls accesses by Individuals and providers to operat-
ing system calls.

The easiest and safest way to guarantee security in the solution is to ini-
tially forbid all critical operations and then allow only those operations that
are necessary and do not violate the security policy. Input/output opera-
tions are regarded as such. Thus, the system guarantees that no Individuals,
by definition, perform directly input/output operations, but instead, commu-
nicate with providers that may perform the operations for the Individuals.
Therefore, providers must be able to recognize Individuals, which in turn,

3



require the definition of the concept of agent identity, or identity for short.
Authentication of messages is easily solved by digital signature, but this

technique is used only when the sender is not the receiver. In the present
solution, at this level, we can safely regard the system as being both the
sender and the receiver, which simplifies the solution, also from the user’s
point of view. Here, there is no need for users to have public and private
keys to use the system, because the authenticity is already guaranteed by
the mobile agent system (MAS) by keeping one secret key (or pair of keys)
for the whole system. I call this key system key, from now on. This also
keeps the solution consistent because the person responsible for a host is not
necessarily responsible for the computations that are sent from his or her
host, as Individuals can move from host to host more than once. Notice that
an Individual is not a static document.

Researchers adopt the idea that incoming computations must be granted
access rights[6], which may be consistent but produces practical problems:
’access’ is a very broad concept when we talk about security in global com-
puters. The concept of access should not be limited to the level of operating
system but, instead, be extended to services at higher levels. To allow an
agent to access files is too risky, for example. We want to state a permission
such as “Abelardo is allowed to read xyz.abc file on Thursdays”, for example.
At such a level of detail and flexibility, there are typically many permissions
in an application system and, because of this, I do not adopt the approach
of giving permissions beforehand. Instead, this approach allows providers to
respond to Individuals requests in a programmable way, by accessing directly
their identities and checking authorization on demand. Thus, all levels of ac-
cess and services are controlled in a uniform way. Because there are typically
so many permissions, declarative knowledge bases, e.g. composed by logic
programming clauses, are natural candidates for representing such permis-
sions.

In the present solution, the system has to provide a way of distinguishing
Individuals from providers. This can be easily solved statically: if a program
contains some flyto statement, the statement that causes the Individual
proactive move, the compiler stamps the status of Individual in the generated
code. On the other hand, if there are critical operations in the program,
the compiler stamps the status of provider instead. A program cannot be
Individual and provider, and, in case of both kinds of operation in the same
program, the compiler reports an error message.

Because of the flyto special nature, it has to be a statement in the lan-
guage, neither a method nor a library function. The same is true in the
interpretable byte code: the flyto statement has to be generated as a cor-
responding virtual machine flyto instruction. This not only permits the

4



compiler and interpreter to distinguish Individuals from providers, but also
allows the interpreter to deliver Individuals to the local airport for departure.
A library function call does not normally provide information at that level
of detail. Therefore, all critical operations in providers are no longer tradi-
tional library functions or methods, no matter their syntaxes: the compiler
and interpreter have to be able to recognize such operations, otherwise the
system will probably not provide satisfactory security in the real world.

This creates another problem: how to protect the programming system
from potentially malicious compilers that generate critical operations in In-
dividuals. My solution is to hide the virtual machine architecture and the
Individuals format. Although this solution may cause surprise for being pro-
prietary, it closes the architecture to the world in the same way as purely
interpretable languages do. Furthermore, although it prevents other compiler
designers from implementing other programming languages directly on the
runtime system, it allows compilers to translate a program from another lan-
guage to the source language owner of the interpreter. Moreover, the present
solution does not require checking whether an Individual contains critical
operations.

Identity in the present solution allows the public to even identify the pro-
grammer of an Individual, if necessary, as compilers could also have identities
to be stamped in the generated code. The present solution does not discard
the possibility of having different worlds, say global computers, that commu-
nicate, each world with its own programming language and implementation.

When a message arrives at a site, a program of the system called airport
recognizes the format as an Individual, decrypts the incoming message by us-
ing the system key, verifies the Individual identity and verifies the integrity
of the Individual. If everything is correct, then the airport verifies the Indi-
viduals passport, updates the passport and keeps a record about that arrival.
If the message is not an Individual or the Individual integrity is not certified,
the airport records the event and ignores the message.

When an Individual departs, the airport updates its passport, keeps a
record about its departure, encrypts the Individual by using the system key,
adds some header, and finally sends the package.

I divide resources in three classes: temporal, material and service. The
first is CPU time plus some overhead due to instruction interpretation. The
second may be persistent data while the third corresponds to responses to
requests by agents. When an Individual arrives at a site, before running, the
runtime system assigns a time interval for the Individual to leave the host,
and this time is controlled by the system before interpreting every instruction.
Thus, when an Individual leaves the host, its intervals of time in the host,
including its effective time and total response time spent by providers, are

5



available. A similar solution is adopted for memory allocation, controlled by
the interpreter.

Another way to prevent from time abuse in some specific applications is to
allow or forbid, as a local policy, Individuals whose programs contain iterative
statements, such as while. Another policy is to inhibit some interpretable
operations, such as system library calls or method invocation. For example,
square roots might not be calculated on a host that offers a simple and public
commercial service. The airport can inspect for both policies at arrival time.

A kind of resource that can be regarded as both material and service
is executable code, which also can be delivered by agents as any material
resource. An Individual can carry and deliver such code in such a way that it
can be executed remotely as long as the parties wish. This partially solves the
problem of a few applications that require more efficiency than interpreters
can provide.

A particular case of porting executable code is when a new version of a
mobile agent system is released. Mobile agents can then visit sites to update
all copies as long as this is part of some contract. In other words, unlike
the real world, the approach does not prevent an Individual from carrying
the whole mobile agent system, including the interpreter and the airport,
installing it and even continuing running on it. In fact, an Individual can
install any application.

Identity is partially generated by the compiler, some other fields are filled
in when the computation starts, and passports are updated by airports when
Individuals arrive and depart. Therefore, the format of object code is not
the same as an Individual format.

Although some systems make use of passwords, for public applications,
identity is not intended to be explicitly passed by the caller as parameter but
instead its passing must be implicit and always guaranteed by the runtime
system. I initially define identity as an abstract data type that contains the
following fields:

Entity flag (whether Individual or provider); Program owner’s identifica-
tion; Home city; Internet Home Address (notice the country code); Postal
Home Address (optional); File name of the Individual at home; Initial in-
terpreter version; The initial interpreter Id; (Local) Date-Time when the
program started running; The initial interpreter time zone (optional); Lati-
tude and longitude of the first interpretation (optional); User’s cryptographic
key (optional); User’s password for the application (optional); Password of
the application (optional); The Individual passport (list of tuples about de-
parture or arrival).

Identity is a class in the adopted language. Notice that this concept of
identity is unchangeable and its presence is guaranteed by the present solu-

6



tion. This concept, however, is normally extended at the level of application,
which will depend on the set requirements for security. Agents use commu-
nication to identify others at the level of application. Here, passwords can
be used to identify Individuals.

An agent is not allowed to move an Individual but instead to request
the latter to move, because every Individual is the responsible for its move.
The exception is a situation when the MAS punishes an Individual because it
violated some security policy. For remote evaluation, a programmer can write
an Individual with enough code and data to accept the request and perform
the operation remotely, while another program simply invokes the Individual.
Therefore, there is no statement in the system for shipping an Individual.
Accordingly, in the present solution, there is no concept of downloading.

An Individual is globally referred to by the 〈Program owner’s Id, Internet
Home address, file name at home, sequence〉 tuple which is unique.

For many applications, a provider normally sleeps and, when awaken by
another program, performs some operations and sleeps again. An Individual,
in its turn, moves to a host, requests some resources, perhaps it blocks while
services are being provided, pays for services, moves on to another host and
so on. Besides the communication is local to a host, I adopt a mechanism
somewhat similar to method invocation. But its granularity is wider, i.e.
the communication is between different agents, possibly written by different
companies, with no assumption about static type correctness, nor even the
existence of particular methods. Thus, compilers and linkers cannot see the
whole picture, and this helps make global MAS feasible. The lack of a static
global view is compensated by the ability to deal with partial information at
the programming level, which is very important in any case.

In this solution, the concept of identity also allows a flexible scheme for
porting material resources. As one example, an Individual I1 might migrate
from host H1 to host H2 without resources and, since at the destination,
requests H1 resources from a provider at H2 which, in its turn, sends an
Individual I2 to H1 that locally requests the resources from H1 and take
them back to H2. The provider finally delivers the resources to I1.

To date, almost all mobile-code languages adopt one or two fixed strate-
gies to manage resources. Because I am looking for generality, in the present
solution, whether the strategy is replication or sharing, or whether the repli-
cation is static or dynamic, or whether the latter is by copy or by move is
entirely up to the programmer. For example, the Individual I1 might migrate
from a host H1 to H2 taking the resources eagerly.

Still regarding communication between programs, it can be synchronous
or asynchronous. When the former is applied, it is possible for an Individual
to migrate as part of its response to some message, while the calling process,

7



the running interpreter, is waiting. If the Individual comes back before the
time has expired, it might give the response. Otherwise, the calling agent
receives the special signal indicating that the value is unknown. Global MAS
should take this mechanism into account. Thus, the solution guarantees
safety and robustness on communication and migration.

From the point of view of a provider, a simple comparison between two
references is enough to recognize an Individual, but some pattern matching
between the identity fields can also be done. Identity cannot be changed by
application programs at all, but it is public, which means that any program
can access the caller’s identity fields directly.

The Individual identity uniqueness is extremely important for both philo-
sophical and security reasons. By no means, the language allows assignment
to identity fields. Individuals never share identities and this is guaranteed
by the system clock along with other fields.

Each interpreter has its unique Id, which is generated when it is delivered,
and used by the system to authenticate Individuals flights. The same for
compilers, thus allowing programmer’s identification.

From the designer’s point of view, a dynamic search for symbolic names in
a program to identify the called object requires that the compiler writes the
identifiers of the interface in the agent. Although Individuals get fat with
so many names, it is a good idea for mobility and persistence to generate
all identifiers, to be used by the virtual machine when saving and restoring
contexts. Generating symbolically all identifiers also provides flexibility to
the language.

By accessing methods and fields declared in the dynamic interface, providers
and Individuals usually establish local communication according to the ap-
plication. This requires the concept of sender and its key identifier. In the
present language, Sender is used by the called program to refer to the call-
ing one in the same way, and the presence of this key identifier in the calling
program refers to the called one, i.e. the rôles are often reversed during
communication, thus establishing a synchronous protocol. Therefore, every
Individual or provider contains internally a stack of computations. In the
present solution, a response may modify values that are used later by other
responses.

Thus, the program interface (public objects, methods and fields) describes
the objects of the program that can be accessed by another agent, local to
the same host. This allows invocation of an external method that does not
exist, for example. The same for accessing an external variable. Thus, there
might be type mismatch between programs while they are running, and this
condition must be dynamically checked and reported to the calling program.
However, in the present solution, dynamic type mismatch is not regarded as

8



an error, although the corresponding operation is not performed.
The concept of home in Individual identity permits any agent to recog-

nize the person who is responsible for that Individual by his or her Internet
address. This person is also responsible for all messages sent by his or her
Individuals.

The system can provide security against tempered interpreters and air-
ports, although total security cannot be guaranteed. I adopt the following
solution: one who develops the system has his or her own police. He or
she often sends an Individual to each host that has an interpreter and then
performs a privileged operation in the same programming language that per-
mits access to the interpreter byte code, the same for the airport. Such
Individuals can run an algorithm that checks whether the interpreter (or the
airport) was tempered and then returns to the police host with the result
along with some other pieces of information, such as the interpreter identity.
The algorithm to check interpreters and airports can vary along the time.
The checking result together with date and time is also of general interest
because it certificates that the former host was not tempered at that time.
Because many Individuals might wish to consult the police before critical
transactions, the police itself should be organized in hierarchy, that is, the
developer’s police should be spread out over the network in such a way that
every interpreter host belongs to some geographical region which is under
its local police. Indeed, the police can provide a sophisticated and efficient
distributed mobile system for the whole network.

In order to protect Individuals from malicious hosts, there can be two
alternative solutions in this framework. In the first solution, the runtime
system keeps a unique file of contexts for all blocked agents. While saving
and restoring agents, the MAS always encrypts and decrypts the file by using
the system key. The only kind of attack that can be done is to delete the
file (therefore all saved agents at once), but the airport records information
on both arrivals and departures of every Individual. The airport file is also
encrypted and decrypted by using the system key, although the information
is available by queries, both locally and remotely. The second solution for the
problem of protecting Individuals from malicious hosts consists in assigning
each Individual to one running interpreter, both forming one process of the
operating system. Thus, two Individuals run in two processes, and so on.
When an Individual sleeps, the whole process sleeps and the security of the
Individual is shifted to the operating system level. It is desirable that new
versions of operating systems will provide the concept of public process and
forbid the normal user to kill it. Only privileged users ought to be able to
kill such processes. I tend to adopt the latter solution.

In the security sub-model, I suggest that virtual machines and Individ-

9



uals format should be hidden, at least from normal users. In this way, the
system protects Individuals against malicious hosts and malicious implemen-
tations. If operating systems provide and manage public process and for-
bid normal users to kill such processes running locally, then Individuals are
pretty protected from malicious hosts, although not totally protected from
malicious interpreters. The latter protection lies on that interpreters are
general programs whose object code can be acquired from a public Network
and that their developers are publicly known. Thus, this solution centralizes
the responsibility of security towards MAS, while propose diversity. While in
different models[2] encryption is seem as almost pointless if it is intended to
protect the agent from the interpreter, here there is only one key for the whole
system, to be used when it encrypts and decrypts agents, besides application
keys. In security, I make use of the concept of centralization which consid-
erably simplifies the solution because all users assume that the mobile-code
system itself is reliable. In this way, some applications that require security
do not normally require an extra agent to act as a trusted third party (TTP).

To protect Individuals while they are flying, airports encrypt them before
departure key and decrypt them after arrival.

Privacy is another issue in this setting. Solutions that have been adopted
by other programming systems can be used, for example, Java type modifiers
are adopted as part of the present solution. In this scenario, privacy is also
guaranteed at runtime. Dynamically, each variable (method) is public or
otherwise.

For applications among known partners, programmers can write pass-
words in the flyto statement that is checked at arrival. This solution is
similar to a login session on FTP, which can be anonymous or not, depend-
ing on the Internet account. Depending on the system implementation, this
password may be encrypted and sent in some message before sending the
whole Individual, as part of the system protocol.

Another problem that arises from programming for a global computer is
naming, that is, to use services, the user who writes an Individual must know
beforehand names in the interface of the providers that he or she will use in
his or her program. If the Individual visits many hosts it must keep different
names for the same service. On the other hand, a provider that wants to
control accesses of resources by different kinds of Individuals, it has to keep
a large database (or knowledge base) of identities and authorizations. This
is a concern on programming languages design or AI techniques[3].

I consider parallel computation as one of the requirements for a general
programming system for global environments and the reason is straightfor-
ward. Because communication to some Individual can be asynchronous, a
provider may trigger more than one Individual that fly over the Internet to

10



run in parallel. It makes strong mobility one of the requirements.
One of the criticisms to the mobile agent paradigm is the fact that agents

do not maintain connections upon migration. I do not think that this is a
problem: first, connection is a matter of abstraction, that is, a connection
that was interrupted at a lower level might be rescued in such a way that, for
an upper level of abstraction, the interruption did not even occur. Therefore,
an Individual can keep states of a connection at a lower level of programming
in order to maintain the corresponding connection at a higher level. Although
connections are not implicitly maintained by agents during migration at the
language level, conceptually, what is more important is communication. I
think that mobile agents is the most general paradigm, also when communi-
cation is the concern. Some remote communication can be indirect by local
communication with providers that might perform the requested communi-
cation. This scheme improves security. Because Individuals can move more
than once, in some cases, another alternative for keeping connections is to
move the Individual to the host in order to communicate locally where the
resource is.

Another characteristic of global computers is the existence of failures and
delays. Developers want to program for such environment considering that
failure or delay may be the result from remote operations. A similar problem
that can be solved by this special value is due to special conditions during the
communication between agents, for example, type mismatch or absence of
symbolic identifier in an external program. The solution for these problems
consists of adding a special value for each data type. uu in this context means
that a value in the problem domain is not available at moment for some
specific reason. The reason can be available as a MAS variable. Thus, unlike
many distributed systems, I shift failures and delays to the programming
level, and hence I provide language constructs for that.

In order to program with delays, timeouts are part of all language con-
structs that perform external operations.

4 Communication Between Individuals

As I discuss problems of dealing with resources here, communication may also
be viewed as a kind of resource. In fact, communication is one of the keywords
with respect to agents at the level of application, such as AI agent systems.
Here I introduce a general solution for systems and, therefore, communication
at such a level of application is outside the scope of the present paper. For
my proposal, at the language level, to consider communication a resource
suffices, while without going into those details.

11



Mobile agent communication is one of the issues where AI has much to
contribute, and also because of this reason, now I leave the problem almost
untouched.

However, briefly speaking, communication can be represented by repre-
senting curiosity properly for AI systems. Curiosity generates communica-
tion. It is a relatively complex task which I dare not comment here in this
paper

5 Conclusion

I define a global computer in terms of its requirements. Taking them, it turns
out that no programming language or system to date has been suitable for
this kind of distributed computer.

In particular, I think that,

• by centralizing the sub-system for security,

• by making the agent format be private to the developers,

• and by closing the architecture of the global computer,

developers may provide the only feasible way to guarantee a satisfactory level
of security on an open environment. In particular, it is desirable that the
organization who propose their “club” also act as the unique trusted third
party.

The present solution is based on a metaphor and describes typical situa-
tions with which travelers are used to dealing. Airports, arrivals, departures,
passports, security and such natural concepts are in the present solution.
Because the metaphor is based on modern life, it is expected that its im-
plementation will be easy to use. Except for communication and language
concepts and constructs, almost all problems were addressed here with a solu-
tion. In general, systems suggest or impose programming language concepts
and constructs, and the present solution is no exception. However, I believe
that I have explained the solution at such a level of detail that implemen-
tors can write other systems based on this original description, in particular,
providing at least the same level of security as described.

References

[1] L. Cardelli. Global computation. ACM Computing Surveys, 28A(4), 1996.

12



[2] W. M. Farmer, J. D. Guttman, and V. Swarup. Security for mobile agents:
Issues and requirements. In Proceedings of the 19th National Information
Systems Security Conference, pages 591–597, Baltimore, Md., Oct. 1996.

[3] U. Ferreira. Intelligent agents for the internet. In Proceedings of XIX
Congress of SBC, ENIA’99-SBC. Sociedade Brasileira de Computação,
July 1999.

[4] D. B. Lange and M. Ishima. Program and Deploying Java Mobile Agents
with Aglets. Addison-Wesley, 1998.

[5] J. F. Roddick, K. Hornsby, and M. Spiliopoulou. An updated bibliog-
raphy of temporal, spatial, and spatio-temporal data mining research.
In Temporal, Spatial and Spatio-Temporal Data Mining, volume LNAI
2007 of Lecture Notes in Artificial Intelligence, pages 147–163. Springer,
September 2000.

[6] J. Vitek, M. Serrano, and D. Thanos. Security and communication in
mobile object systems. In Mobile Object Systems: Towards the Pro-
grammable Internet, pages 177–200. Springer-Verlag, Apr. 1997. Lecture
Notes in Computer Science No. 1222.

[7] J. White. Telescript Technology: the Foundation for the Electronic Mar-
ketplace. General Magic, Inc., 1994.

[8] J. E. White. Telescript technology: Mobile agents, 1996. Also available
as General Magic White Paper.

13


