
Computation is not Conceptually

Function Application

Ulisses Ferreira

e-mail: Ulisses.Ferreira@philosophers-fcs.org

Abstract. Given some recent advances in global/mobile computing, the
present paper shows that programs are conceptually different from func-
tions and, accordingly, computation is conceptually different from appli-
cations of functions.

1 Introduction

In 1999, after having left Edinburgh University, the present author
contacted CAPES, a Brazilian Sponsor, and sent an informal letter
about the nature of computation and new ideas that were coming
up, which allowed him to earn scholarship for two years. Within the
following 18 months, more than 450 pages on the subject were writ-
ten with minor mistakes but essentially textual mistakes, improved
in 2001 in the form of closely related articles and a synthesis. One
of the referred to articles that the author like most, specially for be-
ing didactic, was published in [4]. In particular, the idea of both the
present paper and [2], is a consequence of [4].

Excluding this introductory section, this article is organized as
follows: in 2, a few theorems are proved. After those theorems, in
section 3, there is some concluding remark.

2 Ferreira’s Theorem

One of the best definitions that I have seen regarding non-determi-
nistic Turing machine is in [6], and, here, I only reproduce it:

Definition 1. A Turing machine is an ordered system M = (Q, Σ,

Γ, δ, q0, B, F ) where Q is a finite set of states, Σ is the input alphabet,

Γ is the tape alphabet, Γ ∩ Q = ∅ and Σ ⊂ Γ , q0 ∈ Q is the initial



state, B ∈ Γ −Σ is the blank symbol, F ⊆ Q is the set of final states

and δ is the transition function,

δ : Q × Γ −→ P(Q × Γ × {L, R}).
2

By defining the codomain of δ as above, that is P(Q× Γ ×{L, R}),
the machine may be non-deterministic. Further, it can be shown
that non-deterministic Turing machines are equivalent to determin-
istic Turing machines. For a deterministic version, which I use in
this paper, δ can be redefined as δ : Q × Γ −→ Q × Γ × {L, R}.
It is known that, according to Alan Turing’s analogy, a Turing ma-
chine is supplied with an infinite tape divided into squares and one
write/read head. Each tape square contains one symbol in Σ.

sj

qi, sj, qk, sr, op

The present paper shows that programs are conceptually differ-
ent from functions and, accordingly, computation is conceptually
different from applications of functions.

In contrast with Church-Turing thesis[1], the present result is
the same as one in [2, 5], which is essentially based on observation
over the concept of mobile agents, but here it is in the context of
the theory of computability. In this way, this paper makes use of an
alternative path in comparison to [5].

Given the present context, the following has been referred to as
Ferreira’s Theorem:

Theorem 1. Computation is not necessarily a function application.

[Proof] Given that computation may be mobile, e.g. by using mobile
agents nowadays, computation is conceptually a physical process.

By theorem 1 in [3], the class of Turing machines is not iso-
morphic to the class of Turing-computable functions. Following this,



programs do not correspond to functions. Therefore, computation is
not really a function application.

2

Proposition 1 Let k ∈ N. For every k > 1, there exists a k-level

Turing-machine composition if and only if some representation of

the Universal Turing machine is not in the composition.

[Proof] Let U be a Universal Turing machine, M, N : N −→ N be two
Turing machines with corresponding Turing-computable functions
m, n : N −→ N, and x ∈ N, and X : N be the representation of x on
the tape.

The Universal Turing machine, by lemma 1 in [3], guarantees the
absence of unexpected effects at all levels of its parameters. I can
consider the composition M [N [X]]. It follows that U must have di-

rect control over the operations of N in such a way that, if N tries
to modify the operations in the M representation, U detects this
unexpected effect and intervenes, for instance, by moving physically
the representation of M or N to another place on the tape, to con-
tinue the computation of the composition keeping the isomorphism
between Turing machines and computable functions. Therefore, be-
cause U must have dynamic knowledge about the computation car-
ried out by N , U(M [N [X]]) is not really a function application, and
therefore some representation of U is not in the composition.

With respect to the converse, setting M 6= U ∧ N 6= U and
X 6= U , there exists a Turing-machine composition, e.g. respectively
M(N [X]) above, from which U is absent.

2

Remark 1. We can capture an intuitive and precise notion of Turing
machine model as follows: Let M be the set of all Turing machines, T

be the set of Turing-computable functions, U be the Universal Tur-
ing machine and u be the Universal Turing-computable function. Let
X : N be the null-computation Turing machine that corresponds to
the 0-ary function (i.e. without any input) that always results in
the same value x ∈ N. Therefore, u : P(T ) −→ N (where P is the
ordered power set of a given ordered set), in such a way that the ap-
plication m(n(x)) is equal to u(m(n(x))) and abstractly represented
as U({M, N, X}) or, more precisely, as U(s) where s denotes the



string that encodes M , N and X, together with the write/read head
and blank symbols, with the constraint that s does neither start nor
finish with the blank symbol. Furthermore, composition is part of the
notion of function, and such a representation does not capture the
composition of Turing machines U(M [N [X]]). However, there may
be applications as well as compositions involving U where there exist
such representations with U , both on the tape and outside the tape.
Therefore, there exist two different levels of functional abstraction
in the Turing machine model of computation.

In other words, on the one hand, we separate what is encoded on
the tape from what is outside the tape, by stating that only what is
outside the tape is free from unexpected effects, and hence, can be
functions. On the other hand, functions do not manipulate the op-
erations of any function. In this way, there are two different levels of
abstraction: at one level, only the Universal Turing machine is func-
tion and the encoded Turing machines on the tape form a one-level
parameter. At another level, there exists a Turing machine compo-
sition on the tape, and the encoded Turing machines correspond
to the computable functions because the Universal Turing machine
does not correspond to any function in the same space, in the sense
that U is capable of managing the tape and guaranteeing absence
of unexpected effects. Therefore, there exist two separate levels of
function abstraction in the Turing machine model of computation.

In the next proposition, as usual, I do not regard time as in the
concept of computation.

Proposition 2 There exists a Turing machine that can correspond

to more than one Turing-computable function.

[Proof] Let M be some Turing machine and x be its input. Let U be a
Universal Turing machine, and V be another Turing machine, which,
except for the existence of unexpected effects, produces the same out-
put as U : the only difference is that U calculates U(U [M [X]]), and V

calculates V (V [M [X]]) and sometimes calculates U(U [M [X]]), but
sometimes not, depending on the physical places where V and M rest
on the tape. Because the Turing machine composition V (V [M [X]])
can be placed at different places on the tape at different instants
and the computations receive different kinds of unexpected effects,
the same running Turing machine M can produce different results



for the same input x. Each particular result from x corresponds to
one Turing-computable function.

2

Corollary 1. There exists a Turing machine that can avoid receiv-

ing unexpected effects from its parameter.

[Proof] Universal Turing machines, as discussed in the theorem 1 in
[3], must ensure absence of unexpected effects.

2

3 Conclusion

I can draw functions f : D1 −→ D2 and g : D2 −→ D3 as well
as the corresponding composition h : D1 −→ D3, under the law
h = g(f(x)) as in the following picture:

D1

D2 Im(g(f(x)))

This holds for any function application.

? -

@
@

@
@

@
@

@
@

@
@R

(where Im(g(f(x))) ⊆ D3).

D1

D2

H(X)

F (G(X))

However, in addition to the Tm composition,

does it dynamically hold for any computation

of Turing Machine composition?

? -

@
@

@
@

@
@

@
@

@R



For answering the question, I individually consider the correspon-
dence between the functions f , g and h, and the Turing machines
F , G and H, respectively. The answer for the question, i.e. whether
the law of composition F (G(X)) = H(X) holds for every compu-
tation of composition of Turing machines, depends on the absolute
positions of the involved Turing machines, F and G, on the tape, as
well as on whether the only Turing machine outside the tape avoids
unexpected effects on the tape. However, both factors are external

to the machines that are on the tape and play rôles in the composi-
tion. As a consequence, the global view is a property of the Universal
Turing machines, in particular, it avoids what I discovered and refer
to as unexpected effects.

Acknowledgements

The present author would like to thank the people who kindly helped
towards the publication of this paper.

References

1. Richard L. Epstein and Walter A. Carnielli. Computability: computable functions,

logic, and the foundation of mathematics. Thomson Learning/Wadsworth, second
edition, 1999. Book with ’Computability and undecidability – a timeline (the story
of the development of computable functions and the undecidability of arithmetic to
1970, Richard L. Epstein)’.

2. Ulisses Ferreira. Computation is not conceptually function application. In Proceed-

ings of CIC–2004 International Conference on Computing, Mexico City, Mexico,
October 2004.

3. Ulisses Ferreira. A property for church-turing thesis. In Hamid R. Arabnia, Iyad A.
Ajwa, and George A. Gravvanis, editors, Post-Conference Proceedings of the 2004

International Conference on Algorithmic Mathematics & Computer Science, pages
507–513. CSREA Press, June 2004. Las Vegas, Nevada, USA.

4. Ulisses Ferreira. Mobility and computation. In Veljko Milutinovic, editor, Proceedigs

of IPSI-2005 HAWAII Conference. IPSI BgD, January 2005.
5. Ulisses Ferreira. On the foundations of computing science. In David L. Hicks, editor,

Proceedings of the Metainformatics Symposium MIS’03, number 3002 in Lecture
Notes in Computer Science, pages 46–65. Springer, September 2003, published in
2004.

6. Alexandru Mateescu and Arto Salomaa. Hanbook of Formal Languages, volume 1,
chapter Aspects of Classical Language Theory, pages 175–251. Springer-Verlag,
1997.


