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Abstract— This short article demonstrates that
both the sets of real and complex numbers are actu-
ally denumerable, which means that those numeric
sets, as well as the set of natural numbers, actually
have the same cardinality, hence there exists a
unique transfinite number.
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Cantor’s diagonal process has been recognized
as one of the most significant methods, which
has been applied to the solution of important
problems in computing such as the unsolvabil-
ity of the halting problem[2]. Although Georg
Cantor died in 1918, let us suppose that Cantor
is playing a game with a machine M, which
is asked for producing a sequence of all real
numbers. Whenever M prints such a number,
Georg Cantor, by using his own diagonal process,
writes another number which is different from the
first number of the sequence by the first digit,
from the second number of the sequence by the
second digit, and so forth. As we know, this set in
infinite, but whenever M prints a number we ob-
tain a finite and countable set. In this way, Georg
Cantor always beautifully manages to write a
new number outside the sequence, no matter
what the numbers are which A produces. Thus,
he concluded that, by using that finite method,
the set of real numbers has greater cardinality
than the set of natural numbers because of the
transcendental numbers. Nonetheless, using the
decimal representation for the reals prevents M
to finish writing the first irrational number. In
other words, while producing an infinite set by
writing a sequence of its elements, there will
never be any time for refuting that. A question is
whether or not we should permit such a refutation
over infinite sets, although his proof is widely ac-
cepted. It is also known that |Q| = |N| (and also,
the set of odd numbers has the same cardinality
of the natural numbers), and the reason is simple
as explained, for instance, by [3]:
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or, diagrammatically as follows:

Ist 2nd 4th 7th 11th 16th
3rd 5th 8th 12th 17th

6th 9th 13th 18th

10th 14th ...

15th

In other words, the above triangular diagram[4]
shows the order of the fractions where each entry
corresponds to a fraction whose numerator is the
row number (abscissa) and the denominator is the
column number (ordinate), in order to present all
fractions diagonally and then prove |Q| = |N|.
Let us call this ordering technique triangular for
later reference.

Given a pair of indexes ¢,5 : N, positive
ones, perhaps the easiest way of finding the
corresponding position in the above one-one cor-
respondence with N is the following:

.5 =

+1-j

where ¢ here informs the referred to position in
the ordered bijection between the representation
of a set and N. Thus, if we have that position n
and wish to find the pair of indexes, we just use
the following formula:

h(n) = (i, j ), where...
i=f(0,n) - (g(f(0,n),1) —n)
J=9(f(0,n),1) —n+1

which in its turn uses the f, defined as follows:
_Ji+fl@+ Ly ifgl@+1,1)<y

The same setting holds for N—, in which
numbers can be paired with the corresponding
positive ones. In this way, by regarding the sums



between the numerators and the corresponding
denominators, M can make a one-one correspon-
dence between the rational numbers and the nat-
ural numbers. However, while M is printing the
numbers of this sequence, that is, while M has
printed the (n)th number of the sequence, that is
x,, its opponent can always anticipate and write
the following number of the sequence, i.e. x,,41.
In accordance with the criticism above, for the
sequence is infinite, this means that the opponent
of M has a finite method for always showing a
new number, different from any previous number
of the sequence. However, the rules of this game
is at least controversial. What such a procedure
refutes is the arrangement of the numbers in that
sequence, and based on the hypothesis that there
exists a kind of right by the person who uses
that method to have the final words in that logics
game, while the sequence is infinite, i.e. if the
game is not of two great moves only but instead
of infinite small moves, after the person produces
a different number, M can include this number
in its sequence, and so forth. In this way, one
proves and the other one disproves: that is, the
last player wins the (infinite) logics game.

Here, the present proof has the assumption
that if a number exists, there exists one or more
numeric functions that lead to that instanced
number, and that those functions have domains
which are the same or more primitive than their
images that contain the number. Together with
the final words in the logical game, we show a
different arrangement and different representation
of the real numbers that include the transcen-
dental numbers, and finally the arrangement can
be put into (or imagined to be in) a one-one
correspondence with N. Firstly, the present author
defines the types needed for defining and then
building the sequence:

L: RxL
or, alternatively,
L: e

where R means the set of real numbers whose
elements are in a proper representation. Further,
IL can be empty (by ¢) but sequences of type IL
will always be finite. A sequence of type L is
informally referred to here as list, and the list is
finite. We shall need another type definition as
the following:

M: NxN—QxL

Now let us make S : M be our solution,
indexed by two positive natural numbers,  and 7,

where each application S(z, j) refers to a rational
number ¢. More precisely,

. - = i -1#0
0 ifj—1=0

and a finite sequence (list) of real humbers. Call
this sequence F, i.e. S(i,j) = (¢, F) and, for
each pair ¢ and j, simply F(i,j). The formula
S(i,7)o is used to indicate ¢ (and its symmetric
value). Furthermore, inside S(z, j), the first ele-
ment of F (i, ) is denoted as elem(F(i,5),1);
the second element of F(i,7) is denoted as
elem(F(i,7),2); and so on, until the last element
of F(i,7), which is elem(F(i,j), |F(i,7)]). In
this way, a real number is represented by a tuple
of type Nx N x N and of the form (i, j, k), where
¢ and j indicate S(i, ), and together with & this
3-tuple indicates the real number in the following
way:

[ SGi. ) if k=0
"T\etem(F (i, ), k) ifk>0

Let us refer to each element of S as cell, i.e. for
every i and every j, S(i, j) is a cell. Furthermore,
let (¢, j) mean the indexes of the current cell from
now on.

In this way, it is known that there exists a finite
sequence of arithmetic functions (including all
basic operations), typically with arity 1 (that is,
R — R functions) and 2 (thatis, Rx R — R
functions). In any case, a 3-ary function can be
written as a binary composition with another bi-
nary function and, in this way, all n-ary functions
can be thought of as a kind of composition. Fur-
ther, if any argument or parameter is outside the
domain of the function, the result of that function
application is simply not represented. Now, let us
consider that all arguments and parameters are in
the corresponding domain of the functions during
their applications:

o The applications of unary functions, say
there exist n,, such arithmetical functions,
occupy n, positions in any F(i,j) for all
possible 7,5 : N and for each argument-
parameter match. The corresponding real
numbers that are represented are obtainable
by applying these functions to all numbers
in the previously defined cell (p) only, in-
cluding the rational number that has been
obtained by applying the above ¢ equation,
while, for some indexes i, j, some elements
of F(i,7) are rational (e.g. cos 7 = —1). In
the case where the first cell is being defined,



this list is empty. Otherwise, for the unary
functions only, |F(i,7)| = ny, x |F(a,b)]
where (a,b) = h(g(i,j) — 1) is a pair, as
defined above.

« The application of binary functions, say
there exist n; such arithmetical functions,
occupy the subsequent positions in the same
list 7 (i, j), from the (n, x |F(a,b)|+1)’th
position on where (a,b) = h(g(i,j)—1)isa
pair, as defined above. Since these functions
are binary, for any cell ¢ from the first cell
on, we just pair p (previous cell) with all
elements of the cell ¢ from the first cell,
S(1,1), to the previous cell, p, if there exists
such lists, and let the corresponding nu-
meric representations be the last numbers of
F(i,7) during the process. There may exist
some rational numbers in this list, likewise
the unary case but here as natural results
from two real numbers. Further, we can
represent other numbers by permuting these
pairs, which are arguments, and, finally, for
any cell, any value, we carry on counting
the real numbers including both symmetric
rational values. Finally, F(1,1) is empty
and F(1, 2) contains only representations of
unary functions applications where the only
argument is S(1,1)o.

Again, the same procedure is applied with the
symmetric rational numbers in S(i, j)o that have
been written already, according to the indexes
1,7,

Here, given that fractions with different nu-
merators or denominators can be equivalent to
a unique rational number (see above), a reason-
able lemma is as follows: Given D, which is a
denumerable set, and FE such that £ c D. If
D\ E is an infinite set, D \ E is denumerable.
Proof. Using a previous illustration, by removing
the odd numbers from N we obtained a particular
denumerable set, that is, the set of even numbers.
On the other hand, by removing one element from
any denumerable set, we obtain another denumer-
able set (by shifting all those subsequent numbers
to one side). Thus, by removing any finite subset
of a given countable set, we obtain a countable
set. By repeating the removal process infinitely
for an infinite subset, we shall obtain either a
finite set (and this case is discarded here) or an
infinite subset, that is, in accordance with the
above illustration which produced even numbers,
which in turn is regarded as denumerable. In the
latter case, the short number of rules, for being
general, uniformly yield that the infinite resulting

sets are either denumerable or non-denumerable.
However, since the illustration with the set of all
odd numbers gives a denumerable set, D \ E is
denumerable only.

Note that the final ordering of the real
numbers is not an ascending order in terms
of magnitude, that is, there are some cases
where elem(F(i,7), k) > elem{(F(m,n),p) for
elem(F(i,7), k) prior to elem(F(m,n),p) in
the final triangular ordering from S.

The obtained object does not really represent
R since there are repetitions of elements in the
representation. However, by applying this lemma
removing the occurrences of all repetitions and
fixed points, as we should do with fractions e.g.
1/2,2/4,3/6, ... for representing Q, we obtain
a proper and denumerable representation of all
elements of R. Finally, the present author has
proved that |[R| = |N|, which means that R is
denumerable.

Finally, since a complex number of the form
a+byv/—1 is equivalent to a pair, (a, b) for a,b €
R for all such numbers, it is shown that C (and
any such a set) is denumerable, e.g. by using the
above triangular technique after the denumeration
of R.

As a concluding remark, Leibniz was abso-
lutely right for having declared to be no good
insisting on investigating the infinite, like Cantor
did later, in 1891.

Friendly thanks to Professor Gosula. Further
thanks to the colleagues of the present author for
the nice time while we were studying computer
science at the University of Edinburgh.
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