
Intelligent Agents for the Internet:
a programming language approach

ULISSES FERREIRA

ulisses@ufba.br

Universidade Federal da Bahia
Departamento de Ciência da Computação

Av. Adhemar de Barros s/n, Ondina,
Salvador, BA, 40.170-110, Brasil

The University of Edinburgh
Division of Informatics

James Clerk Maxwell Building
King’s Buildings, Mayfield Road

Edinburgh, EH9 3JZ, Scotland

Abstract. This article outlines some particular programming language features for development of Intel-
ligent Agents on the Internet, stressing an approach that may support this kind of application and others in
a straightforward way, as well as the ability to deal with partiality. At the end of this article it is briefly
described an implemented programming language that adopts such approach.

1 Introduction

It is amazing how the Internet has grown during the last
few years, and this growth rate will probably continue to
be high along the next few years. Nowadays, almost ev-
erybody who has access to any university in Brazil has
a personal e-mail account and uses a web browser, and
many more people use the Internet. Some mobile-code
languages[6], such as Java, have been recently designed
for this new platform. Yet, the increasing complexity of
software Intelligence naturally demands their behaviour
to become closer to humans’, which in turn demands higher-
level languages and tools.

Apart from the Internet, since Prolog was designed,
several programming techniques and paradigms have been
proposed and developed. Not only this, but hardware
has speeded up dramatically, memory has grown con-
siderably, prices have fallen and the memory abstraction
models for programming have changed. Nowadays, any
object-oriented language may be used efficiently in any
personal computer.

However, up to now, almost all languages designed
for the Internet are not declarative and, because of this,
are not very suitable for some sorts of complex systems
that represent some knowledge, reason about it and are
able to learn. Flexibility and simplicity are important
advantages of declarative languages. This is one of the
reasons that support the idea that, new programming lan-
guages and tools for global systems, including Agents[18],
are natural solutions for some kinds of problems. Another

reason is the idea of moving computation: not only of
moving program code but also the computational state.
Thus, a program that starts running on some site may
move on to another site, perform some tasks, move on
to a third site, perform some other tasks and so forth.

In terms of programming languages and tools for In-
telligent Systems, up to now much implementation work
has been done using traditional languages, such as Lisp,
Prolog and their derivatives. At a secondary level, special
tools for expert systems and some imperative languages,
such as POP-11[3], have been used. Some languages
and tools make use of the object-oriented approach, some
make use of production systems, some with certainty fac-
tors attached to rules, and some others were designed for
other tasks, such as STRIPS[2] for planning. In almost
all cases, it can be observed that list is one of the basic
types supported by these languages and tools. Besides
lists, most of them provide some sort of pattern matching
and many of them does not provide types, which suggest
flexibility of their programs. On the other hand, some
A.I. programs require quick behaviour, which suggest ef-
ficient languages, such as Fortran and C, which may be a
surprise.

The Closed-World Assumption (CWA) of Logic Pro-
gramming may be generalised to programming. For in-
stance, since Pascal, many languages have claimed to be
strongly typed, which means that their compilers guar-
antee that the programs are correct with respect to the
language type system. However, in the context of global

Anais do II ENIA (1999) 1–?

2 ULISSES FERREIRA

computation, where pieces of code may be linked on the
fly[11], although compilers may catch almost all type er-
rors, type safety at compiling time is no longer possible.
The programmer no longer sees the whole system as a
closed world because his or her program will probably
make use of someone else’s code and data. Therefore,
in the context of global computation, new metaphors and
paradigms should emerge for programming.

Agent is a term that has been used in several senses
in the literature. However, almost all of them agree that
Agents have a high degree of autonomy and hence should
contain a helpful amount of knowledge. In this article,
although not an exhaustive list, a programming language
for Agents should support systems that may have the fol-
lowing abilities: Agents have their own identity, carry
out plans and act physically on the environment; Agents
are aware of their own resources and may carry them;
Agents migrate, interact locally and learn; Agents recog-
nise other agents and generate new ones; Agents deduce;
Agents search the environment, and are aware of other
agent’s resources; Agents induce and make synthesis; A-
gents make plans, may be organised in hierarchies and
certainly have a contribution to the whole environment;
Agents cooperate in groups; Agents reason over beliefs,
incomplete information and uncertainty. Resources[4]
are pieces of passive data that are spread out on the Inter-
net. With the above abilities and others, a question arises:
what kind of programming language would be best for
development of Intelligent Agent Systems on a new plat-
form such as the Internet?

2 Related Work

Pontelli and Gupta have proposed W-ACE[27], a logic
language for Intelligent Internet programming, although
limited to the context of Logic Programming. The project
is being carried out by the Laboratory for Logic and Databases
at New Mexico State University.

As the Internet is a new platform, there is not much
implementation work already done in programming lan-
guages and tools for Intelligent Agents on it. Only a
few languages, such as Agent Tcl[17], Telescript[32] and
Tycoon[21][20] implement strong mobility[10], which is
the ability of running programs to move on to another site
by performing the migrate instruction. Java and Obliq
provide weak mobility, which is the ability of a running
program to link to a coming code previously requested by
the program.

Apart from mobility, some research work has been
carried out in the combination of logic with object-orien-
ted programming[22], and some languages which com-
bine both paradigms have appeared, such as ObjLog[12],
Coral++[28] and Prolog++[25], while others, such as

�
-

Prolog[26] and Mercury[31], combine logic with func-
tional programming. Parlog[8] is a Prolog extension which

includes parallel computation. However, in spite of the
great importance of these languages, none of them pro-
vide representation of incomplete information. LIFE[1]
is another important language, which combines Logic,
Inheritance, Functions and Equations. Despite its power,
it also fails to represent lack of information.

Still concerning integration between paradigms, there
are some object-based languages which support concur-
rent programming, such as Java, Modula-3 and others,
while other logic programming languages contain

�
-terms,

such as
�

-Prolog and its extension Forum[23], which is
based on linear logic.

3 Language Support for Intelligent Agents

In the presence of global computation[5], some of the
characteristics of current languages and tools should be
revisited. As an example, the CWA[29], supported by
Prolog, sometimes seems to be inadequate as sometimes
connections fail and users want programs to carry on run-
ning without information, and to give answers or to act
accordingly. In Prolog, what is not present in the se-
quence of clauses is regarded as false, which contrasts
with the idea of global computation, where the Internet
may be seen as a huge and unreliable computer instead of
a network. On the other hand, CWA is still very useful,
e.g. to write a relation that informs whether an element
is member of a given list. As another example, object-
oriented languages as they have been traditionally con-
ceived, are not very suitable for implementing globally
mobile Agents[7] because the Internet is a public network
where security[13] is a critical issue and hence Agents
need to negotiate and agree before performing tasks. In
particular, while objects perform tasks for free, Agents
are able to provide services, perhaps charging for them.

In order to design a programming language suitable
for Agents, some language support should be considered.
A hybrid paradigm may be a politically correct attitude
towards programming. Besides mobility, this hybrid para-
digm may include logic programming, frames[24] or ob-
jects, production systems, imperative features and pure
functions, combined in the same language, for the fol-
lowing reasons: the application suggests the natural pa-
radigm to use; a hybrid paradigm provides a very flex-
ible support to develop Intelligent Systems. The com-
mon features, such as I/O statements, tend to simplify
the language in comparison to three or four simpler lan-
guages. Programming is also a matter of taste and cul-
ture. For example, while Lisp was prefered in the USA,
Prolog was prefered in Europe and Japan. Finally, differ-
ent parts of a system may be programmed by using dif-
ferent paradigms while they communicate to each other.
For example, a programmer may wish to make a logic-
programming query from some imperative code fragment,
or alternatively to perform some action supported by some

Anais do II ENIA, julho de 1999

INTELLIGENT AGENTS FOR THE INTERNET 3

fuzzy inference.
In the presence of many languages and applications,

a question arises: what kind of support a language should
offer to be suitable for development of Intelligent Agent
Systems on a new platform such as the Internet?

Because the Internet will never be an efficient nor a
reliable environment, computation under lack of informa-
tion, default values, plausible-reasoning techniques (such
as probabilistic and abductive reasonings[19]), mobility
and concurrency should be increasingly more important
in programming. For instance, after the time-out of some
remote value request, some default value may be assumed.
The concept of “measure of data quality” is emphasised
here. Thus, an expression may be computed with default
values for some unknown subexpressions and results in
unknown. In some cases, it may even result in a known
value.

In the following subsections, some of the character-
istics of the present hybrid-paradigm language will be de-
scribed briefly.

3.1 Computation under Lack of Information

Lack of information is a topic which fits well in the con-
text of global computation since sometimes connections
fail and the programming language should provide mech-
anisms to allow the program to carry on running without
some specific piece of information.

The notion of Computation under lack of informa-
tion is combined with the concepts of unknown value,
frames and inheritance of values of slots or field inher-
itance.

In frames, a slot may contain either a value or a pro-
cedure. I will use the term field for the former kind of
slot and will use the term method for the latter. With the
same analogy with class-based languages, I will use the
terms subframe and superframe as relative hierarchical
relationships between two frames. Thus a superframe �
represents a broader concept from which properties are
inherited by another frame � . In this case, � is a sub-
frame of � .

3.1.1 The Unknown Value

Each data type in the language has its range of values
and a special value, called unknown, that represents lack
of information. All expressions in the language consider
this special value, even statements such as the if-then-else
and while were adapted to deal with this value. If every-
thing is known in the program, it behaves exactly like a
program in any language without this special value.

Every unknown value may have an implicit list of
reasons for the value being unavailable. In the case of a
question or form, the application user may refuse to give
information. In this case, the variable receives the un-

known value plus the information that its value has been
asked to the user but, for some reason, he or she refused
to give the information. This additional information is
important because the system should recognise that re-
peating that question is annoying. A different situation
is when a value is unsuccessfully requested from the net-
work. In this case, after the proper time-out, the variable
receives the unknown value plus the information that its
value is due to a temporary machine failure. This addi-
tional information is relevant because the system should
recognise that it is worth trying the same request later.

3.1.2 Slots and Scripts

The unknown value also allows better control over the
two basic operations on memory: reading and writing a
value, which corresponds to using a variable and assign-
ing a value to a variable, respectively. A variable in this
language may be seen a slot, using Minsky’s terminol-
ogy. The programmer may define scripts for these opera-
tions. One of them is called provision script, which runs
when the value of a variable is being requested during the
evaluation of some expression and this variable has the
unknown value. The corresponding script is triggered to
provide a value that represents that variable, not neces-
sarily assigning a value to that variable.

In the context of global computation, whenever an
unknown-valued variable is being used in some expres-
sion, the corresponding provision script may request a
value from the Internet. Once the script assigned a value
to the variable, the expression evaluation continues and
this script is no longer triggered when the same variable
is used (unless the unknown value has been explicitly as-
signed to it), which makes the program cleaner and more
efficient. If this variable is defined as a field of a frame,
by default, all instances of this frame or of its subframes
will have this implicit property unless it is overridden.

On the other hand, the programmer might want to
write a script to be triggered whenever a value is being
stored in a variable or a field. This improves safety and
security of systems because the programmer is able to
protect the variables in a dynamic and clean way. There
are other applications for this assignment script, for in-
stance, whenever a value is assigned to a variable, the
corresponding assignment script may execute a statement
to write the value in a file, or perhaps some constraints are
checked. If this variable is defined as a field of a frame,
by default, all instances of this frame or of its subframes
will have this implicit property unless it is overridden.

3.1.3 Inheritance

Apart from providing method inheritance, as any OO lan-
guages do, in the absence of a script to provide a value
for a field in a frame, the virtual machine tries to obtain

Anais do II ENIA, julho de 1999

4 ULISSES FERREIRA

the value from its superframe whenever it is applicable.
The superframe may have a script to provide such value
or already have the value itself. If not, the virtual ma-
chine continues to search in the frame hierarchy. In other
words, in the absence of information, scripts should have
higher precedence over field inheritance, because they are
local to the concept being represented.

3.1.4 Abstract Negation, Logic Programming

The universe is full of laws of cause and consequence,
both natural and artificial laws. This makes declarative
programs easier to write and understand then imperative
programs. In the case of Intelligent Agents, facts and
rules are dynamically inserted in their knowledge bases
as part of the learning process in an appropriate way.

A Prolog-like language, Kleene, has been designed
to be part of the larger language. Kleene provides abs-
tract negation[14]. The contribution of the Kleene lan-
guage is to offer a model of logic programming with the
ability to distinguish what is false from what is absent
from the search space of the program (by using the un-
known value), as well as allowing the programmer to write
predicates in both open and closed-world assumptions.
This proposal contrasts with Prolog and almost all logic
programming languages defined so far, as they regard
what is absent as false. As the negation as failure[9] is
a concept which depends on the closed-world assump-
tion, a new kind of negation has been needed to allow the
ability to distinguish between false and unknown.

In comparison to the state of the art in terms of theo-
retical work, Extended Logic Programming[16][19], the
present approach has the advantage of offering only one
kind of negation, the abstract negation, while Extended
Logic Programming offers two kinds of negation, namely,
negation as failure and explicit negation, which makes the
programming task harder.

The term abstract here suggests that in the body
of a rule the program does not need to know whether
the predicate has been defined with the open or closed-
world assumption. This is particularly useful for Intelli-
gent Agents roaming over the Internet because the predi-
cate used in the body of some rule might be defined else-
where in the globe in such a way that the programmer
does not have access to its definition. It follows that, in
global computation, the negation must be abstract with
respect to the assumption about the world.

The proposed approach is particularly useful for glo-
bal computation, because Agents may contain their own
declarative knowledge bases and may also communicate,
learn and move over the Internet, where sometimes pieces
of knowledge are not available. Rules have the form be-
low:
[��� �] ��� ���
	�� � � 	� ����� [��� �] � � � ��� 	 �	�� � � 	
��� 	 � � , ..., [��� �] ����� � � 	 �
	�� � � 	�� � 	 � � .

where � stands for an inference operator, either � or��� . The square brackets are at the meta level and indi-
cate that the ���! operator is optional in those positions.
The predicate symbols are denoted by "$# , for %'&)(*&,+ .
It was shown that a slight change would be sufficient in
the Prolog unification algorithm. Let us now consider the
classical non-flying bird example, with both open- and
closed-world assumptions, in a very informal way:

fly(X) <- bird(X), not penguin(X).
not fly(Y) <- penguin(Y).
bird(tweety).
penguin(Z) :- bird(Z), polar(Z).

The program states that birds fly except penguins, which
are ’polar birds’. From the above sequence of rules, pen-
guin is the only polar bird. Moreover, if it is not known
that an object is a bird, it is also unknown whether this
object flies or not. The forth clause is based on the CWA
and behaves as in any General Logic Programs if one in-
terprets unknown as false. By default, a predicate with
only clauses without an explicit body is under an open
world assumption, which means that failure in the search
for a unifying clause results in unknown.

To answer the query -/.10$21 4365�5� 4087 , the system uni-
fies the goal with the head of the first rule, binding 9 to
 43:5!5� 40 . Then, the system finds the subgoal ;�(=<�>?21 43:5!5� 4087
which unifies the third clause. not penguin(tweety) is the
next subgoal to be explored in the first rule. The sub-
goal unifies the fourth rule, biding @ to 4365�5� 40 . As the
subgoal ;�(=<�>A2B 43:5!5� 4087 had already been proven, the next
subgoal is "?��.BCD<E21 43:5!5� 4087 . Finally, the system does not
unify any clause and, because of this, this subquery re-
sults in F?�HGI���!3J� . The forth body results in unknown
and hence the subquery penguin(tweety) results in false,
as the fourth rule adopts the CWA. Then, not penguin(tweety)
results in true, making the body of the first rule to become
true. Finally, the query results in true.

While an Agent may be defined as a set of frames,
frames may have their own sequence of rules written in
Kleene. Due to the unknown value, when the partial re-
sult of a query is unknown, the search may continue in
the superframe or, alternatively, it may be delegated to
another Agent. The integration of frames with logical
clauses seems to be an attractive form of knowledge rep-
resentation for Agents.

3.2 Uncertainty

The present hybrid-paradigm language considers multi-
valued reasoning. Instead of the boolean data type, the
language provides the logic data type. Besides the values
true, false and unknown, the logic type has a confidence
factor between � % and KL% along with two truth thresh-
olds from which one of the three truth values is obtained.

Anais do II ENIA, julho de 1999

INTELLIGENT AGENTS FOR THE INTERNET 5

Many systems that are able to make decisions require
some sort of inference that makes use of uncertainty, in-
stead of rules from the first-order predicate logic. The
ability to represent and reason under uncertainty is a very
flexible feature that a language may have, and is surely
very helpful for computation on an unreliable media. The
present language provides the MYCIN[30] model of un-
certainty because of its simplicity, while other models
may be programmed.

3.3 Frames

Frame is an old idea due to Marvin Minsky. One of
the main differences between frames and objects is that
frames inherit both methods and values of fields while in
OOP, classes inherit methods but not values of fields. The
unknown value allows a frame to search automatically a
default value in its superframe. Therefore, changing a
field value in a frame corresponds to changing the default
value of its subframes. Each field in a frame may have a
script attached to it, which indicates that when its value is
needed in some expression and it is unknown, the script
will be triggered instead of inheriting a default value from
a superframe. Thus the purpose of the script is to provide
a default value more specific than the one in the super-
frame and hence has higher priority during the evaluation
than inheritance.

As an example of this approach, “Brazilian” is a pro-
totype implemented as a frame with a field called Life-
Expectancy with its corresponding general value. A sub-
frame “Carioca” has a provision script for the correspond-
ing field, which assigns 1.05*Super.LifeExpectancy to it
(this proportion is probably not real, just to exemplify).
As Brazilian’s lives will become better soon, the corre-
sponding value is increased and the script for Carioca.
LifeExpectancy should provide a value proportionally in-
creased. This mechanism is not supported by class-based
object-oriented languages, since the links between clas-
ses and subclasses cease as the objects are constructed.

4 Conclusion

In the presence of the unknown value in the language,
some language features present in other languages disap-
peared. For example, in terms of OOP, the language pro-
vides single inheritance, but a class with multiple-inhe-
ritance may be easily implemented by programming scripts
to solve conflicts. Also, nothing prevents an implemen-
tation which creates objects as they are being referred,
instead of using an operator such as new. The unknown
value also permits constraint programming, which is not
in the current definition.

The logic programming sublanguage, Kleene, is as
simple as Prolog but more expressive and allows to pro-
gram without the Closed-World Assumption. This lan-

guage is not totally implemented, only a compiler in C
and an abstract interpreter in Prolog were written. The
other paradigms are running however, and an Expert Sys-
tem in this language, SENERGIA, has been used in Mata-
ripe Refinery, Petrobrás.

As a future work, the language may provide a model
that allows dynamically resources hire, such as CPU hire,
provided that Agents identities are guaranteed.

The language is implemented in two modules: a com-
piler and a virtual machine, both having a bit more than
20,000 lines of C source code altogether. Concerning the
object code, the compiler has roughly 250 kbytes while
the virtual machine has roughly 200 kbytes. The sys-
tem is available for downloading from its web page[15],
runs on Unix machines and may be useful for experi-
ments. Some small examples are also running from this
web page. Mobility is implemented on the e-mail ser-
vice. Thus, mobile Agents currently migrate by e-mail,
while virtual machines check regularly e-mail messages
in the inbox. Once it recognises a coming computation,
the virtual machine loads its code, data and state, and then
continue the process.

References

[1] H. Ait-Kaci et al. The Wild LIFE Hand-
book. Digital, Paris Research Laborator, 1994.
http://www.isg.sfu.ca/life/.

[2] J. Allen and J. Hendler, editors. Readings in Plan-
ning. Representation and Reasoning. Morgan Kauf-
mann, San Mateo, California, 1990.

[3] R. Barrett, A. Ramsay, and A. Sloman. POP-11: A
practical language for artificial intelligence. Ellis
Horwood series in computers and their applications.
Halstead Press, Chichester New York, 1985.

[4] J. Bredin, D. Kotz, and D. Rus. Market-based re-
source control for mobile agents. In Proceedings of
Autonomous Agents ’98, pages 197–204, 1998. Ear-
lier version published as Darmouth College, Depart-
ment of Computer Science technical report TR97-
326.

[5] L. Cardelli. Global computation. ACM Computing
Surveys, 28A(4), 1996.

[6] L. Cardelli. Mobile Object Systems, volume 1222 of
Lecture Notes in Computer Science, chapter Mobile
Computation. Springer-Verlag, Linz, Austria, 1997.

[7] D. Chess, C. Harrison, and A. Kershenbaum. Mo-
bile agents: Are they a good idea? – update. In Mo-
bile Object Systems: Towards the Programmable
Internet, pages 46–48. Springer-Verlag, Apr. 1997.
Lecture Notes in Computer Science No. 1222.

Anais do II ENIA, julho de 1999

6 ULISSES FERREIRA

[8] K. Clark and S. Gregory. Parlog: Parallel program-
ming in logic. ACM Transactions on Programming
Languages and Systems, 8(1):1–49, January 1986.

[9] K. L. Clark. Logic and Data Bases, chapter Nega-
tion as Failure, pages 293–322. Plenum Press, New
York, 1978.

[10] G. Cugola, C. Ghezzi, G. P. Picco, and G. Vigna.
Analyzing mobile code languages. In Mobile Ob-
ject Systems: Towards the Programmable Internet,
pages 93–110. Springer-Verlag, Apr. 1997. Lecture
Notes in Computer Science No. 1222.

[11] D. Dean. The security of static typing with dynamic
linking. In Proceedings of the Fourth ACM Confer-
ence on Computer and Communications Security,
Zurich, Switzerland, April 1997.

[12] P. Dugerdil. Contribuition à l’étude de la
représentation des connaissances fondée sur les ob-
jects: le language ObjLog. PhD thesis, GRTC, Uni-
versité d’Aix-Marseille III, France, 1987.

[13] W. M. Farmer, J. D. Guttman, and V. Swarup.
Security for mobile agents: Authentication and
state appraisal. In Proceedings of the Fourth Eu-
ropean Symposium on Research in Computer Se-
curity, pages 118–130, Rome, Italy, Sept. 1996.
Springer-Verlag Lecture Notes in Computer Science
No. 1146.

[14] U. Ferreira. Abstract negation in logic program-
ming.
URLs http://www.cs.tcd.ie/˜ferreirj/plain.html and
http://www.ufba.br/˜plain, 1998.

[15] U. Ferreira. Plain: A hybrid-paradigm program-
ming language. URL http://www.ufba.br/˜plain,
1998.

[16] M. Gelfond and V. Lifschitz. Classical negation in
logic programs and disjunctive databases. New Gen-
eration Computing. Ohmsha Ltd and Spring-Verlag,
pages 365–385, 1991.

[17] R. S. Gray. Agent tcl: A transportable agent sys-
tem. In Proceedings of the CIKM’95 Workshop on
Intelligent Information Agent, 1995.

[18] M. N. Huhns and M. P. Singh, editors. Readings in
Agents. Morgan Kaufmann, San Francisco, Califor-
nia, 1997.

[19] A. C. Kakas, R. A. Kowalski, and F. Toni. The
Role of Abduction in Logic Programming, in Hand-
book of Logic in Artificial Intelligence and Logic
Programming, volume 5, pages 235–324. Oxford
University Press, 1998.

[20] B. Mathiske, F. Matthes, and J. W. Schmidt. On mi-
grating threads. Technical report, Fachbereich In-
formatik Universitat Hamburg, 1994.

[21] F. Matthes, S. Mussig, and J. W. Schmidt. Persis-
tent polymorphic programming in tycoon: An in-
trodution. Technical report, Fachbereich Informatik
Universitat Hamburg, 1993.

[22] F. G. McCabe. Logic and Objects. Prentice Hall
International Ltd, 1992.

[23] D. Miller. The forum specification language.
http://www.cis.upenn.edu/˜dale/forum, 1998.

[24] M. Minsky. A framework for representing knowl-
edge. Technical report, Massachusetts Institute of
Technology, Artificial Intelligence Laborator, 1974.

[25] C. Moss. Prolog++ The Power of Object-oriented
and Logic Programming. Addison-Wesley, 1994.

[26] G. Nadathur and D. Miller. An overview of
�

prolog.
In Proceedings of the 5th International Conference
on Logic Programming, Cambridge, MA, 1989.
MIT Press.

[27] E. Pontelli and G. Gupta. Web-ace: A logic
language for intelligent internet programming.
http://www.cs.nmsu.edu/lldap/prj lp/web, 1998.

[28] R. Ramakrishnan et al. Coral++: Adding object-
orientation to a logic database language. In Pro-
ceedings of the International Conference on Very
Large Databases, 1993.

[29] R. Reiter. Logic and Data Bases, chapter On Closed
World Data Bases, pages 55–76. Plenum Press,
New York, 1978.

[30] E. H. Shortlife. Computer-Based Medical Consul-
tations: MYCIN. New York, 1976. Elsevier.

[31] Z. Somogyi, F. Henderson, and T. Conway. Mer-
cury: an efficient purely declarative logic pro-
gramming language. In Proceedings of the
Australian Computer Science Conference, pages
499–512, Glenelg, Australia, 1995. also in
http://www.cs.mu.oz.au/research/mercury.

[32] J. White. Telescript Technology: the Foundation for
the Electronic Marketplace. General Magic, Inc.,
1994.

Anais do II ENIA, julho de 1999

