
Computation in the Real World:

Foundations and Concepts of

Programming Languages

José Ulisses Ferreira Junior

Doctor in Philosophy

Trinity College, University of Dublin

2001



First Declaration

The work described in this thesis has not been submitted as an exercise for a

degree at this or any other university.

Signed:

José Ulisses Ferreira Junior

October, 2001

2



Second Declaration

The work described in this thesis is, except where otherwise stated, entirely

of the author.

Signed:

José Ulisses Ferreira Junior

October, 2001

3



Permission to Lend or Copy

I agree that Trinity College Library may lend or copy this thesis upon request.

Signed:

José Ulisses Ferreira Junior

October, 2001

4



Summary

Broadly speaking, the present PhD thesis supports that philosophy is in the

foundations of computer science. Branches of artificial intelligence may also

rest on the philosophy of computing science, which in its turn is in the referred

to foundations of computer science.

Part of the work which is necessary for this thesis is a result from my

identification of a number of programming languages concepts and constructs

in accordance with my recent research and previous knowledge. Then, in

accordance with these observations, I introduce a consistent number of pro-

gramming languages constructs together with their semantics. Two of the core

issues are code mobility and a constant for representing lack of information

in the problem domain that I shall refer to as uu, while both the idea and

notation originally come from the  Lukasiewicz and Kleene three-valued logics.

Both notions are essential components of this work.

Code mobility is a relatively new issue in programming languages, dis-

tributed systems, artificial intelligence, software engineering and theoretical

communities of computer science. I extend uu to other levels of abstractions,

e.g. to programming languages and a notion of computation. My objectives

are as follows:

1. Turing machines do not necessarily correspond to functions.

2. Computation is not conceptually function application.

3. Some representation of the absence of information is essential in pro-

gramming languages and the foundations of computer science.

5



4. A probably more general notion of computation with uu and four forms

of mobility.

5. A general solution for mobile agents technologies on global computers.

6. Some programming languages concepts and constructs suitable for global

environments. In addition to uu, the concepts and constructs are com-

bined to form a hybrid programming paradigm which supports the follow-

ing sub-paradigms: functional, imperative, object-oriented, logic, uncer-

tainty, and mobile agency.

7. Philosophy is essential in the foundations of computer science.

As part of the adopted methodology in the contained discussion, I use

deductive logics, make comparisons, and present examples from the insights. I

do research at libraries, as well as on the WWW where the document is reliable.

During my research, in the rare cases where some somewhat similar work was

found, I made comparisons between the present one and theirs. Finally, as

usual in any philosophical piece of work, I make use of the following skills:

belief, non-mathematical induction, intuition, opinions and analogies when

appropriate, together with the more traditionally used ones in sciences, that

are knowledge, observations, deductions and five-sense perception.

6



Acknowledgements

As the author of the present work, I would like to thank everyone who has

worked towards my PhD.

The work of the present PhD thesis was dedicated to my family

and the people from Edinburgh .

7





Contents

Computation in the Real World: Foundations,

Concepts and Constructs of Programming Languages

Summary 5

Acknowledgements 7

The Current Table of Contents 9

List of Tables 15

List of Figures 16

Glossary 17

1 Introduction 19

1.1 An Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Some Motivations . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 The General Context . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 Some Historical Comments . . . . . . . . . . . . . . . . . . . . 28

1.6 Connections Between Chapters . . . . . . . . . . . . . . . . . 29

1.7 Contents of the Dissertation . . . . . . . . . . . . . . . . . . . 35

1.7.1 Foundations of Computer Science . . . . . . . . . . . . 35

1.7.2 Concepts and Constructs of Programming Languages . 36

9



Part I - Foundations of Computer Science 39

2 A Novel Space-Time Logic and The Deductive System 41

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 A five-valued propositional logic . . . . . . . . . . . . . . . . . 49

2.2.1 Semantics, notions of space and time . . . . . . . . . . 50

2.2.2 The five values . . . . . . . . . . . . . . . . . . . . . . 54

2.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.2.4 Cycles: An Illustration . . . . . . . . . . . . . . . . . . 63

2.2.5 Analogy, Belief and Uncertainty . . . . . . . . . . . . . 64

2.2.6 A Few More Examples . . . . . . . . . . . . . . . . . . 70

2.3 Sequents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.4 Deduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.4.1 Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.4.2 Structural Rules . . . . . . . . . . . . . . . . . . . . . . 77

2.4.3 Logical Rules . . . . . . . . . . . . . . . . . . . . . . . 77

2.5 The Space-Time Operational Semantics . . . . . . . . . . . . . 86

2.5.1 The evaluation of Boolean expressions . . . . . . . . . 87

2.5.2 The execution of commands . . . . . . . . . . . . . . . 88

2.6 Representing Mobility . . . . . . . . . . . . . . . . . . . . . . 89

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3 A Property of the Universal Turing Machine 93

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.2 Turing machines . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.3 Some interpretations . . . . . . . . . . . . . . . . . . . . . . . 101

3.3.1 Unexpected effects . . . . . . . . . . . . . . . . . . . . 105

3.4 A Refuting Example . . . . . . . . . . . . . . . . . . . . . . . 106

4 Mobility and Computation 119

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.2 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10



4.3 Mobility and some related concepts . . . . . . . . . . . . . . . 127

4.4 Other Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.5 An intuitive notion of computation . . . . . . . . . . . . . . . 134

4.6 A notion of computation . . . . . . . . . . . . . . . . . . . . . 141

4.6.1 A view of time, a representation . . . . . . . . . . . . . 141

4.6.2 States of the Real World . . . . . . . . . . . . . . . . . 142

4.6.3 The Present Semantics of Computation . . . . . . . . . 150

4.7 Computing in the real world . . . . . . . . . . . . . . . . . . . 165

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Chapter 5 A Complete Solution for

Mobile Agents on Global Structures 171

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.1.1 Mobility and its Paradigms . . . . . . . . . . . . . . . 172

5.1.2 Contents of the Chapter . . . . . . . . . . . . . . . . . 174

5.2 Programming for a Global Computer . . . . . . . . . . . . . . 175

5.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.4 Communication Between Individuals . . . . . . . . . . . . . . 187

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Part II - Concepts of Programming Languages 191

6 Programming Language Concepts and Constructs for Global

Computers 193

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.2 Some Current Mobile Code Languages . . . . . . . . . . . . . 196

6.3 Plain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

6.4 uu in Global Computers . . . . . . . . . . . . . . . . . . . . . 202

6.5 Lazy Evaluation and Timeout . . . . . . . . . . . . . . . . . . 207

6.6 Logic Programming . . . . . . . . . . . . . . . . . . . . . . . . 208

6.7 Strong Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . 209

11



6.8 Other Features . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7 uu for Programming Languages 213

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.3 uu : the Unknown Value . . . . . . . . . . . . . . . . . . . . . 216

7.3.1 Evaluators and Reactors . . . . . . . . . . . . . . . . . 217

7.3.2 Comparing Handers with Methods and Functions . . . 219

7.4 uu in Exception Handling . . . . . . . . . . . . . . . . . . . . 221

7.5 Object-Oriented Programming with uu . . . . . . . . . . . . . 222

7.5.1 uu and Frames . . . . . . . . . . . . . . . . . . . . . . 222

7.5.2 Classes with uu . . . . . . . . . . . . . . . . . . . . . . 224

7.6 Imperative and Logic-Based Features . . . . . . . . . . . . . . 228

7.7 uu in Lazy Evaluation (Call by Need) . . . . . . . . . . . . . . 229

7.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 230

7.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

8 uu and Uncertainty for Global Computing 233

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

8.2 uu and Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 237

8.3 Uncertainty Handling . . . . . . . . . . . . . . . . . . . . . . . 242

8.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

8.4.1 Forward Evaluation . . . . . . . . . . . . . . . . . . . . 245

8.4.2 Operational Semantics - Forward Evaluation . . . . . . 249

8.4.3 Backward Evaluation . . . . . . . . . . . . . . . . . . . 251

8.4.4 Inference Operator - Inferop . . . . . . . . . . . . . . . 259

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

9 uu in Globallog 263

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

9.1.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . 267

12



9.1.2 Contents of this Chapter . . . . . . . . . . . . . . . . . 267

9.2 Syntactical and Semantic Definitions . . . . . . . . . . . . . . 268

9.2.1 Syntactical Definitions . . . . . . . . . . . . . . . . . . 270

9.2.2 Semantic Definitions . . . . . . . . . . . . . . . . . . . 271

9.2.3 Intentions . . . . . . . . . . . . . . . . . . . . . . . . . 281

9.3 An Operational Analysis . . . . . . . . . . . . . . . . . . . . . 283

9.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

9.4.1 A Global Extension . . . . . . . . . . . . . . . . . . . . 289

9.5 Consistency of a Knowledge Base . . . . . . . . . . . . . . . . 291

9.5.1 Dealing with Inconsistency . . . . . . . . . . . . . . . . 293

9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

10 Conclusion 297

10.1 Another Approach . . . . . . . . . . . . . . . . . . . . . . . . 297

10.2 Foundations of Computer Science . . . . . . . . . . . . . . . . 298

10.3 Concepts for Programming Languages . . . . . . . . . . . . . 300

10.4 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

10.5 Sciences and Deductive Logics . . . . . . . . . . . . . . . . . . 303

10.6 The Conceptual Diagram . . . . . . . . . . . . . . . . . . . . . 304

10.7 Synthesis in Programming . . . . . . . . . . . . . . . . . . . . 306

10.7.1 Concepts and Constructs of Kind π . . . . . . . . . . . 307

10.7.2 Concepts and Constructs of Kind ω . . . . . . . . . . . 307

10.7.3 Concepts and Constructs of Kind ψ . . . . . . . . . . . 309

10.7.4 Concepts and Constructs of Kind φ . . . . . . . . . . . 310

10.8 Synthesis in Knowledge Representation and Reasoning . . . . 313

10.9 Synthesis in Foundations of CS . . . . . . . . . . . . . . . . . 314

10.9.1 A Paradox Example - Analogy . . . . . . . . . . . . . . 323

10.9.2 Another Paradox Example - Induction . . . . . . . . . 324

The Appendices 328

13



A The Space-Time Classical Logic and The Corresponding Sys-

tem 329

A.1 Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

A.2 Logical Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

A.2.1 Space and Time . . . . . . . . . . . . . . . . . . . . . . 330

B An Operational Semantics 333

C Symbols and Conventions 339

Bibliography 345

14



List of Tables

The @-Logic Equivalence . . . . . . . . . . . . . . . . . . . . . . . . 54

The Other @-Logic Truth Tables . . . . . . . . . . . . . . . . . . . 56

Belnap 4-Valued Logic Tables With ii . . . . . . . . . . . . . . . . . 58

The @-Logic Implication . . . . . . . . . . . . . . . . . . . . . . . . 60

An Intuitionistic Implication for the @-Logic . . . . . . . . . . . . . 72

The Five-Valued Implication for the @-Calculus . . . . . . . . . . . 73

The if-then Statement Simulated in the while Language . . . . . . 154

BNF of a Very Simplified Subset of Plain . . . . . . . . . . . . . 201

BNF of Hypothesis Declaration of Plain . . . . . . . . . . . . . . 237

Syntax for Globallog . . . . . . . . . . . . . . . . . . . . . . . . 270

The Classical Non-Flying Bird Example in Globallog . . . . . . 288

15



List of Figures

Two Views of the Time Flow . . . . . . . . . . . . . . . . . . . . . 63

Two Formulae Referring to the Same Time (left) . . . . . . . . . . 75

The General Situation: Two Space-Time Formulae (right) . . . . . 75

Possible Combinations of Wholeness of a Formula . . . . . . . . . . 76

Mobility of an Object . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A Turing Machine With its Tape Squares . . . . . . . . . . . . . . . 96

A Turing Machine Composition . . . . . . . . . . . . . . . . . . . . 100

Compositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A Initial State for Logical Variables . . . . . . . . . . . . . . . . . . 242

A Logical Variable With Value tt . . . . . . . . . . . . . . . . . . . 242

A Logical Variable With Value ff . . . . . . . . . . . . . . . . . . . 242

A Logical Variable With Value uu . . . . . . . . . . . . . . . . . . . 242

Unknown-Valued Variable and One Truth Threshold . . . . . . . . 243

A True Variable and One Truth Threshold . . . . . . . . . . . . . . 243

A False Variable and One Truth Threshold . . . . . . . . . . . . . . 243

Programming Languages Diagram . . . . . . . . . . . . . . . . . . . 306

Foundations of Computer Science Diagram . . . . . . . . . . . . . . 316

Synthetic and Analytical CS Diagram . . . . . . . . . . . . . . . . . 319

A Possible Hierarchy of Subjects . . . . . . . . . . . . . . . . . . . 326

16



Glossary

AI Artificial Intelligence

BNF Backus-Naur Form

CE Computational Environment

COD Code On Demand

CPU Central Processing Unit

CS Computer Science or Computing Science

C-S Client-Server

CWA Closed-World Assumption

DS Distributed System

ELP Extended Logic Program

FTP File Transfer Protocol

GC Global Computer

GLP General Logic Program

MA Mobile Agent(s)

MAS Mobile Agents System

NAF Negation As Failure

OOP Object-Oriented Programming

OWA Open-World Assumption

PGC Programming for a Global Computer

REV Remote Evaluation

TM Turing Machine

TTP Trusted Third Party

WWW World Wide Web

vpd Value in the problem domain

17





Chapter 1

Introduction

As human beings do not fully know the universe, any current holistic view has

the absence of information.

The absence of information (here, denoted by uu, the undefined notion) is

of essential importance, not only in philosophical views and theories but also

in practice for computation and programming languages. On the one hand, the

obvious proof of this is 0/0 = uu. On the other hand, the computation of 0/0

programmed in a language without uu (up to date, unfortunately this applies to

virtually all programming languages) has resulted in “run-time error” instead.

1.1 An Introduction

In a sense, this dissertation defends the thesis that computer science does not

need one theory of computation, but instead many theories of computation,

each one based on its explicit philosophical view and a notion of computation.

Those theories should be sound with respect to the reality in computer sci-

ence. Because of this reason, the term theory itself should not be restricted to

the sense of deductive logical theory, but instead have a more general sense,

more appropriately described in natural languages. This PhD thesis yields the

following major results:

19



1. The demonstration that Philosophy is essential in the foundations of

computer science.

2. The demonstration that the Turing machines model does not necessarily

correspond to functional models.

3. The demonstration that the class of computations does not correspond

to the class of function applications.

4. The demonstration that uu is an essential notion in logics, programming

languages, knowledge/belief representation and hence computer science.

uu denotes the non-information.

5. The introduction of a physical and possibly more general notion of com-

putation with uu and four forms of mobility.

6. The introduction of a general solution for mobile-agent technology on

global computers with flexible and symmetric security policies.

7. The introduction of some programming languages concepts and con-

structs suitable for global computing. In addition to uu, the concepts

are part of the hybrid-paradigm programming language which supports

the following sub-paradigms: functional[39, 241], imperative, object-

oriented[1, 206, 289], logic [283], uncertainty, and mobile agency. From

the artificial intelligence (AI) [209, 255] standpoint, the same language

can be seen as supporting objects and frames[206, 215]1 in addition to

functions, logic rules[77] and production systems[255] with certainty fac-

tors.

The need for an integrated programming paradigm has been recognized[224].

Plain[103] is the programming language that supports almost all the fea-

tures described in the present thesis dissertation, among other characteristics.

1In addition to chapter 7 of the present thesis dissertation, a discussion that explains

differences between frames and objects, as well as some material on agents from the AI

perspective, is in [251].

20



Plain design and implementation is a piece of individual work that has been

carried out by the same author for many years. The current Plain imple-

mentation compiles a program into interpretable and dynamically portable

byte-code. A Plain sublanguage, referred to as Globallog, aims at recon-

ciling global environments with logic programming.

1.2 Some Motivations

I am used to separate the notion of language from its implementation. Part II

of the present PhD thesis is not on implementation but instead on program-

ming languages. The same applies to the logic of chapter 2. To give some

brief ideas of the differences between Globallog and Prolog, supposing that

there is a blank sheet containing only the classical-logic formula A⇒ B ∨ C.

For Globallog, one may assume an open or closed world. Under an open-

world assumption, if we know that B is true, we cannot infer that A is also

true. In contrast, under the closed-world assumption, if we know that B is

true, we can infer that A is also true, for A⇒ B ∨ C is the only way we have

to reason in. Therefore, there is an implicit equivalence in such implications,

i.e. A ⇔ B ∨ C, in an assumed closed world. The same observation applies

to Prolog, where we divide this implication in two rules to fit the Prolog syn-

tax: abstractly, {B ← A. , C ← A.}. More generally, Globallog allows

programmers to define each clause under either open- or closed-world assump-

tion. All constructs for programming languages here rest upon some explicit

philosophical view, as well as an explicit notion of computation.

On the one hand, although Plain has some influence from Java[21], Haskell

[80, 291], Prolog[138, 227, 280], POP-11[26, 196] as well as knowledge repre-

sentation and reasoning in general[293], my proposals on programming are dif-

ferent from the POPLOG system2 which supports, among many other things,

Prolog, Common LISP and POP-11. In my set of proposals, code is written in

different paradigms but in the same programming language. In other words,

2POPLOG is a trademark of the University of Sussex.

21



the level of integration of the paradigms is large, and the syntax is more con-

sistent, since the language is a single one. Another difference is that, after

having chosen established programming languages, system designers should

respect their original definitions. Therefore, in this way, we would not be as

free as we are to make fundamental changes, such as including uu in Prolog,

LISP and POP-11, for instance, or such changes would be more difficult to

make. Finally, languages such as LISP are regarded as old.

On the other hand, the philosophy that supports hybrid programming

paradigms is not the same as the one which could support the idea of multi-

paradigms, for the former has a larger level of integration than the latter.

Furthermore, Plain not only provides a hybrid paradigm but also aims at

forming a unique well-balanced paradigm, and this differs from the approach

of extending one paradigm or one language to permit programming in others,

such as done in Prolog++[223] and LIFE[8].

Besides a broad notion, such as a hybrid paradigm, Plain supports uu.

Briefly speaking, as I explain in the present thesis, uu is an epistemic[277]

constant that is normally interpreted as “unknown” or “undefined”. In a

sense, uu is a kind of vacuum. This is different from the undefined result

in some partial function evaluation, which has been interpreted as “infinite

computation” and is usually expressed as ⊥. Yet, uu can represent ⊥, not the

opposite. Although uu is a very simple notion, uu could be regarded as a kind of

zero for programming languages or computer science, metaphorically speaking.

In particular, it is present in virtually all Plain constructs. Accordingly,

except for chapter 3, which is on Turing machines, in turn a notion defined in

the 1930’s, uu is present throughout the present thesis dissertation.

Although this piece of work is essentially based on philosophy, this work

can also be interesting for researchers from the AI community, e.g. from the

area originally known as knowledge representation and reasoning. Branches of

AI may rest on the philosophy of computer science.

22



1.3 The General Context

Since the beginning of the 20th century, mathematics and computer science

have been very closely linked to each other, and one has helped the develop-

ment of the other[79, 296].

Although there are what can be called “philosophical views in mathemat-

ics”[31], the idea of computation has been essentially perceived in the same

form since the thirties, in particular, strongly influenced by constructivism,

which is also one of the most recent views in mathematics. However, in the

meanwhile, computer science has become an independent science as computers

have become useful, personal, portable, even powerful, and so forth, while all

philosophical views in computer science have remained essentially the same

as in mathematics. In this way, I have observed the importance of making

the existing views in computer science explicit, as well as proposing alterna-

tive views in the same science. As an example, Alan Turing established what

is well known as the Turing test, a parameter for artificially intelligent pro-

grams. However, by studying psychology as well as philosophy, one becomes

much more conscious of how difficult such a problem is and whether its solu-

tion is possible or even desired. By studying psychology and philosophy, one

obtains answers to such questions more readily.

Semantics is a subject which is closely related to philosophy, and re-

searchers such as Robin Milner[211] have studied such semantics of compu-

tation for years, and mobility has gradually played its due rôle in this subject.

Moreover, I can observe that, from the moment that I conceive the idea of

moving computation from a place to another in our real world, I should, to re-

main consistent, accept the idea that a number of physical factors are present

in the meaning of computation. Because of such transcendental semantics,

philosophical views absent from the philosophy of mathematics[261] become

valid in the foundations of computer science.

In the present work, I introduce “computing in the real world”, which in

turn lies on this holistic view. Given this, I do not neglect the importance of

23



some forms of reasoning[88] absent from deductive logics and present in our

daily lives, e.g. analogy, induction and belief.

As an example of inductive reasoning in mathematics and computer sci-

ence, Zobel states in [321],

It is common practice to use ellipsis to describe a sequence of integers;

thus m, . . . , n is all integers between m and n inclusive. An infinite sequence

is usually represented by m1, m2, . . ., where it is assumed that the reader can

extrapolate from the initial values to the other members of the sequence. Thus

“2, 4, 8, . . .” would be assumed to be the sequence of positive powers of 2. Al-

ways state both the lower and the upper bound if the sequence is finite and

ensure that the intended sequence is clear.

As a general rule, this kind of synthetic reasoning depends on more subjec-

tive notions, such as clarity. The same kind of observation applies to analogies,

for we humans assume that the reader will make the same kind of synthetic

reasoning as we humans do. Although almost all subjects in mathematics are

analytical, there are such exceptions as illustrated above. In the conclusion

of the present thesis, I present a diagram placing induction and deduction in

different classes of concepts.

As opposed to analogy, while an author is presenting a deductive proof3

(if it were possible to do this using only deduction), he or she does not need

to trust on the reader’s ability to follow connections and be in tune with the

author, with regard the involved ideas. This also illustrates why ethics is one

of the branches of philosophy. In this case, ethics consists in both the author

and the reader being honest. Ethics ought to be explicit in the foundations of

computer science.

My work on computing in the real world is strongly based on two orthog-

onal polarities: knowledge-induction and deduction-belief. I regard knowledge

and deduction as analytical notions, whereas I regard analogy, induction and

belief as synthetic notions. Because to date most of work in computer science

3For a very introductory book on proof techniques which may be suitable for undergrad-

uate students, I would suggest [306].

24



has been analytical, I aim at demonstrating a better balanced approach for

computing. On the other hand, the four basic psychological functions accord-

ing to Carl Jung[176], are thinking, feeling, sensation and intuition, which form

a more general classification in some sense. Although the literature on these

four functions is known, for those who are satisfied with a brief explanation, it

is worth observing that feeling in his psychological theories is not in the sense

of feelings or emotions, as feeling has been used instead, as a kind of inner

skill which gives to the only person information on what he or she likes, as

well as on what he or she dislikes. Moreover, typically, the concept of feeling

is often related to human relationships, not to physical pain, which in turn

comes by sensation, for instance. With regards intuition, it is often seen as

an ability to guess. Clearly, this gives rise to philosophical belief. What is the

most relevant issue here is that, apart from simulations of synthetic notions,

it is reasonable to think that machines do not have feeling, they do not feel

pain nor pleasure, they do not love nor hate, that certainly they do not guess,

and that any philosophical view is typically based on belief.

Comparing deduction and induction, a reasonable form of deduction has

been easier to implement on a digital computer than a reasonable form of

induction on the same machine. However, this does not entail that deduction

is a more primitive skill than induction. As an example of a primitive form

of inductive reasoning, one can teach an animal by physically punishing that

animal or feeding it in a consistent manner whenever it behaves against or in

accordance with one’s expectation. The animal then learns by induction[178,

180]. A common key word in both induction and the frame form of knowledge

representation is expectation. Induction creates expectation, which is used in

the deductive part of the reasoning. In this example, the animal not only

builds a general rule, possibly involving some words from our vocabulary, but

also deduces in a language that if it behaves in a particular way, it will be

punished, for instance.

Comparing knowledge and belief, belief may be regarded as a kind of weak

knowledge, but it is not very clear where the threshold between the two no-

25



tions rest, and this threshold may be personal. The synthetic nature of a large

number of subjects is another characteristic of belief. As an example, if some-

one believes that he or she will succeed in a particular exam, this hypothesis

is also a consequence of the general belief that people do not normally have

knowledge about the future. Therefore, future is a notion that often leads to

beliefs. There exist many other notions that lead to belief. In general, fears

and hopes are closely linked with beliefs, and not necessarily with knowledge.

In deductive logics[83], belief has been confined to a modal operator in a

doxastic logic[117]. The formula ©A means “A is believed to be true”.

Two of the fields that deserve a fruitful philosophical discussion are mobile

agents and global computing since they both have a number of subtleties.

Another field is programming languages, for this subject has always played an

essential rôle in computer science.

I shall make novel connections in this dissertation, e.g. what uu and

mobile agents have in common. Apparently, one does not have much to state

but, for instance, mobile agents typically imply a global or wide-area network,

agents have to be robust and uu is the solution that I have found to, among

other benefits, permit agents to deal with faults, where, in many cases, lack of

information should not be regarded as error, but instead as a normal condition.

By propagating uu at the level of the semantics of language, agents neither

stop running nor commit with any value in the problem domain.

After some years investigating uu, I have realized that we still need novel

work. Because of this, and because philosophy is a very broad subject, the

present dissertation is necessarily large. As completeness is a desirable prop-

erty of logical theories, a philosophical view has to be discussed broadly.

Every real programming language design and implementation have two

adjacent levels: the upper level can be the programmer’s viewpoint, which

includes paradigms. The lower level is the machine and computability. The

upper level has been changed over the last few years as technologies have de-

veloped, and will possibly continue to do so. As regards the machine, although

physics and electronic engineering have developed rapidly, in this thesis, I only

26



refer to virtual (software) machines, not physical ones.

Inconsistency is important because agents have to reason about the real

world. For example, it is not rare to find inconsistent mathematical theories, in

particular, when the piece of work is large. Similarly, testing is a normal phase

in software development. Unless the mistake is critical, it is normally expected

that such inconsistencies be tolerated or corrected without much effort. The

present PhD thesis deals with inconsistency.

An interesting observation applies to the closed-world assumption with

negation as failure, where the absence of a predicate in a program implies its

negation as an answer to a query. That is, to answer questions about time-table

of flights and similar applications, Prolog is appropriate. However, if a person

answers a query by asserting that some proposition is false only because he or

she knows nothing about the proposition, that may sound somehow arrogant

in a real situation. I see philosophy as essential in the foundations of computer

science, for such issues are fundamental.

With programming on the WWW, there has been a call for a new notion,

namely global computation. This this term was coined by Luca Cardelli[57].

Code mobility also requires a new notion of what can be computed, and here, in

this thesis, I provide a novel model of computing that includes mobility. Since

semantics is a subject closely connected to philosophy, my work on semantics

is also part of the broader and more informal proposal.

1.4 Methodology

Briefly speaking, in this thesis, I use insights, logical argument, formal proofs

and also present examples, make comparisons with related work, and I draw

syntheses. In other words, as well as interaction with other researchers, I

use my own ideas, knowledge, beliefs, experience, and both deductive and

inductive forms of reasoning.

As regards more philosophical texts, sample presentation is connected with

induction and analogy, i.e. the ability to see similarities between things that

27



are apparently very different from each other, or whose similarities are difficult

to be described. Accordingly, a formal proof is connected to deduction and the

ability to observe differences where more than one object look very similar. I

observe that these methods and skills are essential in this holistic view. As a

consequence, the adopted methodology for the present PhD thesis necessarily

includes both synthetic and analytical methods based on the corresponding

skills.

With respect to programming languages paradigms, concepts and con-

structs [137, 269, 315], specifically, the author has personally programmed

since 1981 and professionally worked on the subject since 1983 at a University.

Such experiments provide induction, which is one of the important forms of

inference. The author has also worked on language implementation since the

same time, and has designed and implemented an experimental programming

language for years, which has given empirical knowledge and eventually has

brought insights to the present thesis. In this thesis dissertation, analogies are

also adequate at some places, for analogy helps simplify informal explanations

of complex subjects.

1.5 Some Historical Comments

The history of this work is started in 1989, at the Universidade Federal da

Paráıba, in Campina Grande, Brazil, where the author did his Master degree.

That Master dissertation was the design and implementation of a program-

ming language for diagnoses[107] using AI techniques, in particular, knowledge

representation and reasoning[44]. The name of the programming language was

LIDIA (LInguagem para DIAgnose). The project was continued at the Univer-

sidade Federal da Bahia, in Brazil, until 1997. It was a tool for some expert

system applications, such as classification. The compiler read the source file

and then built a network which was not exactly Bayesian networks but had

some properties in common[108]. Then the runtime system interpreted byte

code. The main problem of implementing a Bayesian network[271] was speed.

28



Adding some fact to the knowledge base makes the system update too many

probabilities and, because of this, I simplified the uncertainty model by not as-

suming that probabilities are related to each other, although such connections

have been able to be done by programming at a lower abstraction level.

In 1992, probabilities in LIDIA were replaced by MYCIN confidence fac-

tors because the latter are much easier to program. Probabilities are very

useful for machine learning and many other applications, but for knowledge

representation[278], they are not a straightforward way of representing uncer-

tainty.

LIDIA was gradually being improved and, in 1996, after the implementation

of object-oriented programming, the name LIDIA was replaced by the name

Plain.

Finally, my Plain programming language provides a constant called uu

in the paradigms that it currently supports: functional, object-oriented, im-

perative, uncertainty and mobile agents. In this thesis, I explore a number

of facets of a constant called uu in these programming language paradigms.

Furthermore, Globallog, which is a programming sublanguage that is part

of Plain, provides uu. The whole Plain provides a single form of negation.

1.6 Connections Between Chapters

Holism is a philosophical view where the whole or wholes are more focused and

regarded as more important than the sum of their parts. Thus, each part is

primarily important for their corresponding functions in the whole. Moreover,

the connections between parts are regarded as specially important or even

more important than the parts. Finally, each part can be recursively seen as

a whole. Thus, this is also a systematic view of the universe.

Some of these chapters have already been published in the form of inde-

pendent articles. Accordingly, because one of the most significant and general

claim here is that philosophy is essential in the foundations of computing sci-

ence, one of my intentions in the organization of this dissertation is to present

29



individual contributions in each chapter in such a way that in the end I have

two levels of contributions: individual and from the synthesis. In this way, on

the one hand, the body of the chapters might not seem to be so closely related

to each other for I have to explore each of them deeply. On the other hand, I

intend to make connections between their subjects, and such connections are

expected to be not easy to be seen before reading this material. While one

chapter is exploited the reader concentrates on that particular subject.

One of the means by which I conceived and developed the present thesis

is to connect some subjects and issues that, to date, have not been connected

in the computer science community, or, at least, have not been connected in

the same way. However, to make these connections clearer, I give an overview

in this section, make cross references in the body of the text and make the

synthesis afterwards.

Broadly speaking, although it might seem that not all approved theses

for the degree of Doctor of Philosophy in Computer Science have followed

the meaning of the word Philosophy, it is reasonable to claim that philosophy

should be considered more in the foundations of this science, perhaps not less

than it has been considered in mathematics. Traditionally, it is one of the

philosophers’ rôles to observe natural laws and, as making an analogy, to set

laws for humans. The recent global computational structure suggests this hy-

pothesis. In this thesis, I apply some insights to the foundations of computing

science, and apply one theory for programming[38] languages constructs.

Further, the task of designing a logic and the task of designing a program-

ming language (part II) are similar in nature, and both are similar to the task

of setting laws in some civilized community, for both logics and programming

languages normally suggest and even state how other people can or have to

think.

Thus, the present holistic view or theory can be summarized as follows:

the environment is the universe in E3 with uu, my notion of computation

transcends pure mathematics, the adopted semantics must capture details such

as mobility, space and time, and, finally, the programming paradigm is hybrid.

30



Because of this, I adopt the operational semantics to accommodate space

and time. There have been other novel approaches to operational semantics,

such as [303], which is based on labelled transition systems and an abstract

machine.

Still broadly speaking, there is an obvious connection between parts I and

II, for programming languages and the foundations of computer science have

traditionally been closely related areas of studies.

To connect the part I to the II, I present a current technological scenario,

including the Internet and the relatively recent idea of moving code during a

computation. A motivation is to provide programming languages concepts and

constructs for such a scenario. Then I present that, although such research

work is very useful, the task of introducing language constructs and concepts

raises some interesting issues as a PhD thesis. First, programming languages

have many theoretical aspects in computer science, but it is very probable that

we cannot prove that some constructs and concepts are more appropriate than

others, in particular, using formal deductive logics. Such an assertion sheds

new light on the foundations, and it makes interesting connections between the

parts I and II of this dissertation. Here, as well as using a formal logic language

in part II defined in chapter 2, I introduce the languages constructs together

with a number of examples. I formalize the semantics only to be more precise

in my explanation. Therefore, what underly this specific approach are not

only deduction, discrimination and attention to small details, but also other

abilities, namely inductive reasoning, analogy and intuition, and the latter

three notions are subjects which are closely related to philosophy.

As another connection between the parts, there seems to be a tradition

in the theoretical computer science community to view programs as functions

and computation as function applications. The refutation of the former view,

in chapter 3, leads me to my hybrid programming paradigm in part II, whereas

the refutation of the latter view, also in chapter 3, leads me to exploit a more

general notion of computation, which is the key subject in chapter 4.

As an example, the theoretical community likes functional programming

31



languages such as PCF[218, 231], which stands for Programming Computable

Functions, ML[236], Haskell[159, 291], Miranda[267, 290], and other functional

languages have traditionally been preferred among theoreticians. However,

so far these traditional languages have not been strongly connected to the

technologies which I shall consider. There are few exceptions and, in chapter 6,

I briefly describe a few existing functional languages although they also provide

imperative features, e.g. Tycoon[208] and Facile[292]. They support a weak

form of code mobility. Therefore, my aim consists in concisely presenting both

a holistic view over computing science and, accordingly, a hybrid programming

paradigm with strong mobility, and this novel programming paradigm might be

a class of preferred languages by both theoreticians and working programmers.

This paradigm is part of the hybrid approach. However, as part of the present

PhD research, I realize that programs should not be limited to the scope of pure

functional programming, although pure languages such as Haskell and Miranda

certainly deserve respect. Briefly, although the results from this study on

Turing machines and mobility do not entail a hybrid programming paradigm,

at least they discard a possible conservative opinion that programming should

be functional.

As already mentioned, one of my arguments rests on code mobility. An-

other piece of argument rests on my analysis of the Turing machine model

of computation. From the mobility side, I recognize two philosophical views

in computer science, and demonstrate that depending on the view, the foun-

dations of computer science are not exactly in mathematics as the notion

of computation becomes physical. From the analysis on Turing machines, I

demonstrate using a sample situation that the theoretical basis is not pre-

cisely functions. That is, I prove logically here that programs are not nec-

essarily functions, even in Turing machines. As a consequence of this, one

of my present theses is that computation is a more general notion than func-

tion applications. In this way, I also explore such a more general notion of

computation.

Although these two different contributions, namely on Turing machines

32



and recent technological global structures with code mobility, are not very

closely related, I use both kinds of arguments to provide a non-functional pro-

gramming model in the part II. As a consequence of the theoretical results

in computability theory, I observe that the foundations of computer science

should be based on important physical and philosophical issues. Regarding

the subtle rôle of chapter 2, logics has traditionally been part of philosophy,

but the latter is very broad and contains many other subjects that require

informal discussions, such as esthetics, ethics, religion and so forth because

these are traditional branches in philosophy. Therefore, I generalize the argu-

ment on this underlying subject, starting from logics and mathematics, and

arriving at philosophy via physics, also as modern physics raised philosoph-

ical issues regarding mobility in the last century. However, one should bear

in mind that the individual arguments that I use, i.e. code mobility and the

analysis on the Turing machine model, are individually important as results

for this PhD thesis. As a consequence of providing a hybrid programming

paradigm with the theoretical support in part I, as part of my conclusions,

I intuitively generalize the result by drawing a diagram showing the kinds of

languages constructs according to their features. Because I view knowledge

representation and reasoning from the programming point of view, I draw an-

other equivalent diagram from the AI perspective, containing the orthogonal

polarities knowledge-induction, deduction-belief. Another diagram is drawn

showing the kinds of research work in computer science that one ought to use

deductive proofs, as well as other kinds of research work in computer science

that, probably, one cannot make use of deductive proofs, or the proofs are

more difficult. Because of this, one may want to consider other methods.

I use the space-time logic to represent the notion of computation in chapter

4. The space-time semantics could be explicitly used in part II. I prefer to

think that they support the constructs in II: I only do not make explicit the

details of the @-logic because almost all constructs do not produce mobility,

and also because non-spatio-temporal formulae are in the @-logic syntax. An

intuitionistic logic[156] or a classical logic formula can be viewed as a syntax

33



sugar of an equivalent @-logic formula. Therefore, the operational semantics

presented in part II is in the @-logic, in this sense.

As an example of connection between chapters 5 and logic programming,

while security mechanisms in current specific technologies is one of the ma-

jor reasons why mobile agents have not made it yet into the mainstream of

distributed systems[240], there is no concept of virus in my model, and the

security rests on the lack of agents which provide local services. Thus, if some

mobile agent makes some access to a local resource, it means that some local

programmer should have written or obtained some piece of code that permit-

ted that access. This leads to another representational problem, stating who is

capable of doing what. Because there are many of these capabilities, a declar-

ative form of knowledge representation fills a gap left in programming for a

global environment.

At a more detailed level, as mentioned, the core issue in this dissertation

is a value called uu. Similarly, uu is the core idea in the proposed hybrid

paradigm, and this value links almost all chapters in this dissertation.

The notion of computation that I formalize, and the scenario that I de-

scribe, make use of uu. This value is absent from the chapter 3, but one can

still regard the blank symbol or, alternatively, a sequence formed by two blank

symbols for instance, as a kind of uu. The chapter 3 also motivates my hybrid

programming paradigm with uu. All other chapters of this thesis dissertation

are very based on uu, except for chapter 2.

Finally, as suggested before, the three notions that link the first to the

second part of this dissertation are uu, mobility and global computing. One

tends to think of mobility as code mobility in the context of global computing,

but one can conceive mobile computing without global computing and the

inverse.

34



1.7 Contents of the Dissertation

This section briefly describes the contents of the present PhD thesis disserta-

tion.

1.7.1 Foundations of Computer Science

In chapter 2, I briefly introduce a space-time logical language. As well as being

a result per se, the logic helps other parts of my thesis, e.g. it can be used for

writing the semantics of mobile-code languages. In chapter 3, I separate two

essential notions: a program and a function in Turing machines. Accordingly,

I separate the notions of computation and function application. Chapter 4

is philosophical and contains the present claim that philosophy is essential as

part of the foundations for computing science. In this chapter, I introduce

my own notion of computation that includes operations with mobility. I use

the present logic to describe the semantics of computation with mobility. In

particular, this chapter is essential for describing the semantics of any pro-

gramming language that supports code mobility, including my adaptation of

the while language, which in turn is one of the well-known abstract models of

computation. Nonetheless, once the reader understands the model contained

in this chapter, there is no need to represent explicitly space or time in all lan-

guage constructs, instead, only in those that cause mobility. From chapter 4, I

also obtain another conclusion that, due to mobility and global environments,

programs are not necessarily functions. Together with the results from chapter

3, this is a result that demolishes the idea that programming languages have

to be functional. Therefore, both chapters 3 and 4 support the second part

where I try to combine different programming paradigms for a global envi-

ronment. For the uniformity on the language constructs, my proposal is to

provide the operational semantics only. Chapter 5 is a paper that has been

published in [105]. When the Conference is annually held, a different set of

subjects is discussed and, in 2000, one of the symposia of this conference was

on mobile agents. In chapter 5, I discuss problems and solutions concerning

35



mobile-agent systems without going into any detail of programming language

features, while I describe the current technological scenario, as well as the

introduction of my solutions to the discussed problems.

1.7.2 Concepts and Constructs of Programming Lan-

guages

Chapter 6 introduces an overview of languages constructs for global comput-

ers, including some examples of uu for a global platform such as the Internet.

Some form of lazy evaluation, in both parallel and sequential operations, when

combined with timeouts can be useful for programming on such an environ-

ment. The idea is original in programming. Note that there are constructs

that support global computers that do not cause code mobility. Some features

are more directly related to remote operations than code mobility properly,

although, depending on the level of abstraction, code mobility could also be

seen as a form of remote operation. Chapter 7 [106] introduces a constant

in the programming language community that has been called uu, since other

pieces of work by  Lukasiewicz and Kleene on three-valued logics. However,

uu is not limited to logical variables, and the contribution is extended to the

programming level. Here I regard general-purpose programming languages,

although uu can also be useful for global computers and AI (knowledge rep-

resentation and reasoning). The programming paradigms that are discussed

in this chapter are functional, imperative, frame-based and object-oriented

paradigms. This chapter and the corresponding article make references to the

published appendix B, which presents the formal semantics of the discussed

features of Plain, also referred to in chapter 6 and another article. The ap-

pendix B is a slight extension of the appendix of the published article and,

because of this, I omit the published one. uu is the central component in the

part II. One of the contained results is that uu is important. uu is useful for

code mobility since most of mobile-agents systems are naturally implemented

on global environments. Chapter 9 contains a logic programming language

36



based on Prolog that also makes use of uu. Chapter 10 contains a synthesis of

this PhD thesis dissertation, as well as the demonstration that philosophy is

in the foundations of computing science.

Appendix A introduces the classical version of the @-logic. Appendix B

contains the semantics of the concepts discussed in chapters 6 and 7. Finally,

appendix C contains a glossary of notation used in the present dissertation.

37





Part I - Foundations of

Computer Science





Chapter 2

A Novel Space-Time Logic and

The Deductive System

It is well known that space and time are two primary notions that have al-

ways been present in the human consciousness independently of contexts. In

this chapter, I propose a space-time logic on five epistemic values, together

with uncertainty. This logic has a somewhat expressive language and, because

of this, I also introduce a deductive system for the present logic in the same

syntax. Here, the present author’s final aim is mainly to introduce a general

framework for writing formal semantics of programming languages that sup-

port code mobility, in particular mobile agents, among other more traditional

applications such as knowledge representation, while one eye is kept for general

purposes.

Moreover, the present logic is powerful enough for representing more sophis-

ticated forms of reasoning, such as to weigh up possibilities. For being able

to make fair judgments one should consciously attach honesty factors (in this

case, floating-point numbers in [−1,+1]) to diversified implications between

premises and some conclusion in such a way that that conclusion from weigh-

ing up possibilities can be based on those factors. As it is well known, this

is a very common form of reasoning. Thus, the corresponding language also

41



provides the expressiveness of uncertainty-based representation combined with

deduction for such purposes.

42



2.1 Introduction

Classical logics, in both propositional and predicate forms[54], used to be the

single one since the Greeks and George Boole’s time[81], with many more re-

cent contributions[121, 304, 281]. In the last century, a number of logics have

been developed and established as alternatives to classical logic. In particular,

intuitionistic logics, in both propositional and predicate forms, have increas-

ingly attracted the attention of mathematicians and non-mathematicians [31].

In fact, computers have played important rôle in many logics with constructive

proofs. As regards intuitionistic logic, since Brouwer and Heyting[31], there

have been many important contributions in the field. In [74], for instance,

the duality in Cartesian closed categories, λ-calculi, intuitionistic and classical

logics from syntactic and semantic viewpoints are investigated, while, regard-

ing philosophy of mathematics, in [33, 51], there are two kinds of defense of

classical view in mathematics and logic. The range of subjects is broad. Re-

garding a more informal and philosophical (but informally logical) literature,

logics and space-time together do not play lesser relevant rôles[284].

In the last decades, some other contributions to logics[126] have appeared.

For example, Arthur Prior[71, 246, 247, 248] and others[128] are some of the

important contributors to modal logics[62] and temporal logics. A reference

on them is [98]. Here, I introduce a space-time logic that is called @-logic.

The proposed language of the present logic is based on five values, ff, tt, uu,

kk, ii representing, briefly speaking, false, true, unknown, possibly known but

consistent, inconsistent, and that is an idea based on the Belnap four-valued

logic[30] in the following sense: uu means “neither true nor false nor incon-

sistent” while ii means “inconsistent” which in its turn means both Boolean

values at some level of reasoning.  Lukasiewicz[116] introduced many-valued

logics or infinitely-many-valued logics, both based on a set of values from false

to true, e.g. {0/3, 1/3, 2/3, 3/3}. Stephen Kleene also introduced his many-

valued system[186], with some modifications on  Lukasiewicz’s. Here, in this

orthogonal work to the other components of the present logic, I do not adopt

43



degrees of veracity, although I deal with degrees of veracity in another context

of the @-logic, which is uncertainty. On the other hand, the present calculus is

somewhat similar to the  Lukasiewicz three-valued logic or Kleene three-valued

logic as ¬ii also results in ii. The differences to those many-valued logics[203]

will become explicit in sections 2.2 and 2.2.2.

Some many-valued logics, as well as modal and temporal logics, were in-

troduced having as motivation the representation of forms of veracity referring

to the future, i.e. propositions referring to the future are regarded as neither

true nor false[302]. Thus, we can regard the truth value of the propositions

as unknown. However, there are many other uses for the representation of

lack of information. Here, I do not philosophically[179] discuss on whether

it is possible for one to have knowledge about the future. In any case, for

any event, unless we experience it somehow and in a particular situation, we

humans do not normally know whether such an event will happen or not. In

space[60] (a reference on spatial cognition is [122]), the need for the notion

of lack of information is essentially the same. We often know what somehow

reaches us by communication. Otherwise, even on the past events are nor-

mally unknown. Because of this, the present space-time calculus is based on

the present five-valued logic, in particular, in one of the defined implications.

On the one hand, a number of temporal and spatial logics have been

introduced[11] for a number of purposes[115] with success, whereas spatial

reasoning [69] has been deeply studied in AI. On the other hand, there has

been a relatively small number of spatial theories on predicate logics and other

attempts have been made. For instance, interval temporal logics are suitable

for planning systems and scheduling[10, 13]. For time, we propose a more

general approach for representing time for actions, events and tasks, than that

of James Allen’s temporal logics, which is more at the AI or application level

than here[12]. His logic sees time as intervals, which is more general than

points and makes his calculus very suitable for planners. Thus, points can be

represented as [p1, p2] where p1 = p2. In the present work, both space and time

are represented as sets, a more general form of representation. If we all want

44



to represent cyclical events, we are able to do so by considering unions between

intervals, for instance. I mention other aspects, for instance, concerning models

and derivations, studied in [65, 89, 226, 295]. However, the present piece of

work is in the scope of the emerging philosophy of computer science, which is

in (philosophical) foundations of computer science, and models of the @-logic

are left for further work, in particular, since this chapter is long.

There are other pieces of work on applying logics in some areas in computer

science[127, 257]. Briefly, in addition to the literature on different logics[92,

99, 100], Girard’s linear logic[87, 142, 294] and labelled deductive systems[125]

are two examples of work that can be applied to computer science. A very

good paper on introduction to logics in computer science is in [264]. Here, my

purpose is to represent knowledge-belief and reasoning upon representation.

However, in terms of philosophy, issues over complexity in logics, whether P or

NP, apply mainly for those who assume and prefer to see humans as machines,

whereas here my philosophical work takes a contrasting direction. In short,

complexity over logics can be seen as part of theory over implementation, while

logic and language rest upon a higher level. Although this lack of interest on

complexity seems to depart from computer science, the present work is much

closer to the idea of logic and language for computer scientists and philosophy

of computer science, not necessarily for running on computers. Therefore,

although philosophy of computer science is an absolutely new field, the present

work is in computer science.

Little work has been done on spatial logical theories. The Region Con-

nection Calculus[250] is a predicate theory on space. On the other hand, the

author of [114] concentrates on a more detailed level of abstraction. There are

other approaches and spatio-temporal logics, such as [129], which is a logic

for multi-agent problem domains. A different approach for agents is shown

in [158]. My approach is to introduce a powerful and expressive language,

while I abstract details addressed in specific applications, e.g. AI systems.

It seems that, to date (that is 2000), there has not been space-time logic, at

least as a universal one, i.e. for general purposes. Even [278] does not contain

45



relatively significant contribution combining both notions in one formal logic.

Instead, in parallel to temporal logics, there has been more specific work on

the broad subject, for instance, spatio-temporal databases[168], a model and

language[305], predicate theories such as RCC-8, in particular, those useful

for AI. In contrast with particular space-time logics, an updated bibliography

for data mining research is [256]. In [69], the authors observe the similarities

between temporal and spatial structures, but they did not collapse both into

sets. Like in [40] which applies rough sets[243] to a spatio-temporal context,

I collapse and generalize both notions, although I use sets (according to that

article, rough set theory[237] provides a way of approximating subsets of a

set when the set is equipped with a partition or equivalence relation. The

same article contains another related issue. It notes that unfortunately the

exact location of spatio-temporal objects is often indeterminate, which moti-

vates the definition and interpretation of the uu value, as well as the notion

of uncertainty, in the present space-time logic.), and because I accept sets

(hence intervals) for both space and time in a Cartesian space representa-

tion, the present logic might also capture other notions such as geometrical or

geographical relational operations and so forth.

However, perhaps because technologies such as mobile-code languages are

relatively recent, computer science has not had symmetry and balance con-

cerning attention to time and space. We have some temporal logics but, to

date, space has had little attention from the academic community with rare

exceptions such as [41]. Some proposals, in particular predicate theories, have

appeared but no space-time logic has been established. It seems that, for var-

ious purposes, it would be desirable to arrange both approaches, with respect

to space and time, in only one logic.

For this chapter, let C be the set of all formulae in the space-time logic i.e.

the language of the @-logic. Thus, to start explaining the subject, a classical

version of the space-time logic can be defined as follows:

Definition 1 Let ϕ and φ denote two formulae and α be a variable (a quan-

46



tifier). Thus, a classical @-logic language corresponds to ϕ (a non-terminal

symbol, in formal languages terms) in the grammar as the following:

ϕ 7−→ P | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ | ϕ⇔ ϕ | (∃α) ϕ | (∀α) ϕ

ϕ 7−→ @s · t[ϕ] | φ | @s · t[ ]

φ 7−→ @s · t[[ϕ]]

α 7−→ x | y | ...

where ϕ is the starting symbol, P stands for a proposition or predicate,

α denotes a quantified variable in C, s ∈ R3 or s ⊆ R3 and t ∈ R or t ⊆ R,

depending on the focus of attention, points or sets, sometimes intervals. Let φ

stand for semantics, a function symbol with domain in C and semantic range

or image. Both my syntax and its intended semantics are simple and hence

their formal definitions are not necessary here: if ϕ is a formula, then @s · t[ϕ]

is a formula in the @-logic, where s indicates the place where ϕ holds, and t

indicates the time when ϕ holds. A particular case is @s · t[ ] which intuitively

indicates that there is no assertion for space s and time t. This notation is

capable of representing an empty data base or theory. Accordingly, by using

a slightly different notation, I am able to express @s · t[[ϕ]] as “the meaning of

ϕ at place s and time t”. This notation is used in semantics from this chapter

on. Therefore, both this logic and this semantics provide the foundation for

the present PhD thesis.

Note that this language implicitly introduces a conjunction between the

represented space and time, for every space-time formula. In this PhD thesis

or for the classical space-time @-logic, for any expression, everything happens

intuitively in the same way as it would have happened in the classical log-

ics, except that, here, there are variables of space and time, and that the

expression, in question, of the classical logic is valid in the new context only.

There are two standard variables, namely here and now that can be used

in space and time expressions, respectively. There is an alternative pair of

variables with the same meanings in symbols, namely ⊕ and ⊗, respectively.

The notion of space-time orthogonality can be applied at more than one

47



level. Thus, in this chapter, I present a space-time deductive system that

applies this pair of concepts at two or three levels:

• Derivation (deductive system)

• Logic (syntax)

• Object language

A calculus is embedded in this system, in such a way that I address the set

of deductive rules as either. The present calculus is referred to as @-calculus.

To design the system, I distinguish space and time at the logical level from

space and time where and/or when the derivation carries out, and from the

space and time referred to in nesting statements, and this means that the

language permits references to other epistemic levels of space-time.

The time component is based on a flow that can be represented by reals

or integer numbers, for instance, depending on one’s purpose. As an example,

if I set that i ∈ N represents the moment when I apply a logical rule, i +t 1

corresponds to the next step, no matter when this step is performed in the

real life. Thus, the structures for representing space and time can be two

parameters of the @-logic. In this way, if s ∈ N is the current bus or train

station, or the airport, s +s 1 can be the next, for instance.

In this chapter, the space-time logic is based on a five-valued logic in-

troduced here, without computational concerns such as decidability[300] and

complexity[28], nor proof search in backwards[143]. This system combines nat-

ural deduction with sequent calculus although this yields redundancies: the

exclusion rules of the deduction correspond to the left rules of that calculus

as it is known. Briefly, my main concern is not the computerization of this

system, but instead, to introduce a language that can be used in the formal

semantics of mobile-code programming languages, as well as for philosophical

purposes. That is why redundancy is preferred for human beings are free to

reason and I have the obligation to define all possible logical paths for the sake

48



of generality. A book on automated theorem proving is [91]. In appendix A,

I show a classical binary formalization of the space-time logic.

Two properties ought to be studied and addressed as further work, namely

soundness and completeness. For the @-logic and the present deductive sys-

tem are based on previous work, it is intuitive that they are both sound and

complete, except in case of minor mistakes, and hence there is no need to prove

soundness and completeness here in this introduction.

As part of my approach here, I observe that five values do not lead to a

logic which is based on lattice or billatice, such as in [20]. As the title of the

present PhD thesis indicates, I prefer to observe the real world before defining

this logic ideally without any bias, and then should no mathematical tool is

available for capturing the logic, the tool in question can be built. This is the

way that I see mathematics in the foundations of computer science, although

there are others.

Finally, this chapter is organized as follows: section 2.2 introduces the

propositional logic. In the whole @-logic, the space and time models are pa-

rameters of the logic, i.e. one defines them for his or her specific purpose, as

long as they are refinements of sets. Since the @-logic is used here e.g. in

the system or calculus, two proper space and time models are defined here for

the level of derivations. In subsection 2.2.2, I introduce the five truth values

of the language, while in subsection 2.2.3 I present some motivating exam-

ples. Finally, in subsection 2.2.5 I consider uncertainty as well as analogy and

belief. In terms of deductive system, section 2.3 introduces a pair of conse-

quence relations, while section 2.4 directly deals with deduction. Section 2.6

briefly introduces one way to roughly represent matter on the move including

resource. Finally, section 2.7 concludes the chapter.

2.2 A five-valued propositional logic

The whole logic which I am introducing here is based on a five-valued logic,

with truth values represented in C
def
= {uu, kk, ff, tt, ii}.

49



In the present piece of work, as well as the well known ff and tt Boolean

values, uu stands for unknown or undefined, kk stands for (possibly) known

(and consistent), while ii stands for inconsistent. I choose to work on inconsis-

tency [27] for it often appears in contexts of the real world. In this way, mobile

agents, for instance, ought to be able to decide and act even when it recognizes

the presence of an inconsistent predicate. I consider that ii is stronger than uu

and also stronger than kk in some kind of strict reasoning, but can be weaker

than either in some forms of lazy computation. I shall explain the “known

value”, kk, in section 2.2.2 together with reasons for having five values. In

advance here, it suffices to say that kk means “some other agent might know

the truth value” to necessarily exclude the person who reasons. More generally

and intuitively, the meanings of the values are the following:

• ff : (My partner and) I know that the value is false;

• tt: (My partner and) I know that the value is true;

• kk: I know that the value is either true or false, but I do not know

which of them. However, my partner might know which of them.

• uu: I do not know the Boolean value nor whether or not it is consistent.

My partner neither;

• ii: (My partner and) I know that there is some inconsistency in the

subject and, because of this, we two do not know whether the actual

value is true (nor whether the same actual value is false).

However, “my partner” here represents another agent, for example. Note

that kk or uu, for instance, can abstractly represent uncertainty in some subset

of domain R.

2.2.1 Semantics, notions of space and time

In many articles on interval temporal logics, time is often represented by using

real values where, as time goes by, the present moment corresponds to a value

50



which normally increases. For some applications, there can be branches along

these lines to represent possible “futures”. There are other approaches, such

as in [257] that can also be useful for applications, including systems specifi-

cation, and also to express natural sub-languages by using particular cases of

modality. The underlying language here is both the natural language[131] and

mathematics whenever it suits well. I do not adopt tense logics here. However,

one can easily define some modal operators of tense logic.

As mentioned above, in this chapter I adopt a form of representing time

by making use of a flow. More precisely, I shall define an algebra[96, 161, 210]

that includes notions of time and space. Thus, I define T .
= R (or alternatively

T .
= P(R), depending on the preference) as an infinite set for representing

temporal moments. A temporal model is a structure of kind M = 〈T, <t

,≤t,=t, 6=t,≥t, >t〉 which is a flow of time with the present five-valued logical

connectives, for each proposition p resulting in a value in C, the set of the five

truth values. The semantics of the five-valued connectives are described in

2.2.2. There can be relational operators over time instants (the real numbers

or so). Let a, b, c, d ∈ T. Then,

• a <t b states “a happens before b”;

• [a, b] <t [c, d] states that “the interval [a, b] happens before the interval

[c, d]” (that is, a ≤t b <t c ≤t d). Other 12 relations of Allen’s interval

temporal logic[11] can also be captured;

• a =t b states “a and b happen at the same time”;

• a ≤t b states a <t b ∨ a =t b.

Let Bool
def
= {tt, ff}. The operators defined in the algebra apply over T.

The signature for the above operators is T× T −→ Bool.

Forms of representation for points in space are slightly more complex than

in time. I normally consider T .
= R and S .

= R3 when I refer to these notions,

and, as notation, (∀i) si ≡ 〈xi, yi, zi〉, with i an index. When more appropriate,

I shall define T .
= P(R) and S .

= P(R3) instead. Letting Bool
def
= {tt, ff}, the

51



relational operators in S, namely <s: S× S −→ Bool, =s: S× S −→ Bool and

≤s: S× S −→ Bool can be defined as follows:

si <s sj
def
=

√

x2
i + y2

i + z2
i <

√

x2
j + y2

j + z2
j ∨

√

x2
i + y2

i + z2
i =

√

x2
j + y2

j + z2
j ∧

(xi < xj ∨ xi =s xj ∧ yi < yj ∨ xi = xj ∧ yi = yj ∧ zi < zj)

si =s sj
def
= xi = xj ∧ yi = yj ∧ zi = zj

si ≤s sj
def
= si <s sj ∨ si =s sj

The precedence between coordinates can be, of course, different. Likewise,

definition for <s depends on the application and can have many different ways.

Definition 2 Let C be the set of all wffs of @-logic (its language) and C be

the set of the five truth values uu, kk, ff, tt, ii. The corresponding space-time

model m is a mapping of the type

m : C −→ C

together with an algebra (Notice that C and C are two different symbols). For

instance:

M
def
= 〈S,T,C,

<s,=s,+s,−s, <t,=t,+t,−t,

∪,∩, \, ...,

¬,�,∧, &,∨, ..............................................
...........
...................................... , ...〉

with, informally, the following semantics: M |= @s · t[ϕ] for s ∈ S and

t ∈ T, meaning the value of ϕ ∈ C at place s and time t, where C corresponds

to all formulae in the @-logic. I also interpret @ >s s · t[ϕ] and @s· >t t[ϕ],

or alternatively @s <s ·t[ϕ] and @s · t <t [ϕ] respectively, as shorthands for

(∃s′ ∈ S, s′ >t s) @s′ · t[ϕ] and (∃t′ ∈ T, t′ >t t) @s · t′[ϕ], respectively,

including the binding of the respective variable, and the constraints that the

52



variables, namely s′ and t′, are chosen in such a way that they are not used in

ϕ, or alternatively one renames variables in ϕ in a similar way. Accordingly,

I interpret @ <s s · t[ϕ] and @s· <t t[ϕ], or alternatively @s >s ·t[ϕ] and

@s · t >t [ϕ] respectively, as shorthands for (∃s′ ∈ S, s′ <s s) @s′ · t[ϕ] and

(∃t′ ∈ T, t′ <t t) @s · t′[ϕ], respectively, including the same observation and

constraints. That is, as well as the corresponding bindings, this relational form

of a formula in the @-logic is not interpreted as universally quantified formula

but instead as existentially quantified one.

Considering the hypothesis that the world was created at time B (the Big

Bang, for instance) and that the future will always exist, I can express this

consideration by the formulae (∃B ∈ T) (∀t ∈ T) B ≤t t and (∀t1 ∈ T) (∃t2 ∈

T) t1 <t t2, respectively. Because I am adopting T .
= R, S .

= R3 here, I should

consider the continuum property:

(∀t0, t1 ∈ T) t0 <t t1 ↔ (∃t ∈ T) t0 <t t ∧ t <t t1

(∀s0, s1 ∈ S) s0 <s s1 ↔ (∃s ∈ S) s0 <s s ∧ s <s s1

And for the same reason, for applications where space and time are linear,

both are also linear in the above algebra M . The following properties are also

in the present algebra:

(∀x, y ∈ S) x <s y v x =s y v x >s y

(∀x, y ∈ T) x <t y v x =t y v x >t y

If I want to capture the idea of alternative pasts, x and y, in some theory

atop the @-logic, I can write the following:

(∃x, y ∈ T) ¬(y <t x) ∧ ¬(y =t x) ∧ ¬(x <t y)

and/or the following, in some theory atop the @-logic, for representing alter-

native futures, x and y:

(∃x, y ∈ T) ¬(y <t x) ∧ ¬(y =t x) ∧ ¬(x <t y)

53



Or, alternatively and more succinctly, if one wants only one past

x <t ⊗ ∧ y <t ⊗ → x <t y ∨ x =t y ∨ x >t y

and/or no alternative futures

x >t ⊗ ∧ y >t ⊗ → x <t y ∨ x =t y ∨ x >t y

Clearly, this kind of choice depends not only on the application but also on

the speaker’s intention, and this does not necessarily include the philosophical

issue of fate versus free will. For here, in this chapter, like the way in which one

may represent space, it suffices to adopt only one straight line for representing

time, i.e. (∀x, y ∈ T) x <t y ∨ x =t y ∨ x >t y as a parameter whereas I keep

the present logic general.

As regards the operators +s and −s, they can be defined precisely for

each theory, whereas +t and −t are normally interpreted as follows: t1 +t t2

represents the sum of a duration t2 to a time moment t1 and the expression

results in another time moment; and t1 −t t2 represents the interval duration

equivalent to the duration from a time moment t2 to another moment t1. The

operators +t and −t can be defined in a different way elsewhere, but here these

definitions suffice. For the deductive system that I define in section 2.4, for

example, the temporal expression t +t 1 simply indicates the next step, if the

inference is in the forward direction, otherwise the previous step.

2.2.2 The five values

This section opens with the definition of the ontic and strongest five-valued

equivalence in the following way:

.
= u k f t i

u t f f f f

k f t f f f

f f f t f f

t f f f t f

i f f f f t

54



and similarly for discrimination: A
.
=/ B = ¬(A = B). One of the key subjects

of part II of the present PhD dissertation is a programming language constant,

denoted by uu. Here, in the @-logic, we are using kk and uu separately. For

programming languages, uu suffices to deal with both situations with only one

unknown value, whereas, at the application level, this distinction can be made

by combining several language constructs. The same holds for the inconsistent

value, which is another detailed form of unknown. In the @-logic, = is the

same as
.
= and we use both interchangeable in this text.

In this section, I explain a hierarchy of veracity. There may be at least

two kinds of unknown: “unknown because one does not know the value in

the problem domain” (uu) or, alternatively, “unknown because the value is

inconsistent” (ii). Thus, in comparison with other logics such as Belnap’s,

while ii may be interpreted as “the inconsistent value”, the present uu and

ii are not actually opposite values as uu is the opposite of kk. In fact, there

are two views and sets of the connectives, ontic and epistemic. The present

work is epistemic and the logic also deals with the concepts of true and false as

usual. While {¬,∧,∨} are more ontic operators, {�, &, ..............................................
...........
...................................... } are more epistemic

ones. To simplify the language during the presentation, I shall refer to them as

“ontic” and “epistemic” connectives or operators, although this classification

is relative, as well as I am using “connectives” and “operators” with the same

meaning, for any reasoning. Thus, kk
.
= �kk and uu

.
= �uu, i.e., both

formulae are evaluated as true whereas ¬kk
.
= uu and kk

.
= ¬uu are valid and

make use of the @-logic ontic negation.

For propagating inconsistency, I state �ii ↔ ii, which means that, using

sense of humor, “if a formula is inconsistent let alone its negation”. The ontic

negation of ii would be the value “consistent”, which is absent from the logic,

for I do not regard this consistency value as interesting for my purpose.

I introduce a few implications, e.g. # used above, the five-valued intu-

itionist logic implication, in section 2.3. For such logics, there exist many truth

tables that can be interpreted as an implication, some stronger than others,

and I also introduce the implication `, which is a more general and weaker

55



one with all the necessary properties and, therefore, capable of supporting the

axioms and rules entirely. Thus, in the above example, in the presence of −

symbol, at the outer level of this formula, I am only concerned about time

while, at the inner level, I am only concerned about places.

I now introduce the connectives of the first set as follows:

a ¬a ∧ u k f t i ∨ u k f t i

u k u u u f u u u u k u t i

k u k u k f k i k k k k t k

f t f f f f f f f u k f t i

t f t u k f t i t t t t t t

i i i u i f i i i i k i t i

a (a)L

u u

k i

f t

t f

i k

→ u k f t i ↔ u k f t i

u k k k t k u u u k u i

k u k u t i k u k u k i

f t t t t t f k u f f i

t u k f t i t u k f t i

i i k i t i i i i i i i

The  L negation (notation  L after  Lukasiewicz) is left for further work, for

those who want to exploit a different feature of the @-logic, because, here, this

logic is mainly defined for supporting the other chapters. Because of this, in

the present piece of work, I do not make references to the latter negation,  L,

despite its relevance. A↔ B
def
= (A→ B) ∧ (B → A) is not usual, and this

operator is not used in this chapter either. → is placed here only for a better

comparison with the following set. In the present PhD thesis, ⇒ and ⇔ are

used as classical connectives. For the purpose of any conflict of notation, all

connectives have the same meaning for Boolean operands, I am only extending

results in accordance with the five values. The connective ∧ is commutative,

associative and has a neutral element, tt. The ∨ is commutative, associative

and has a neutral element, ff . For the equality connective that I shall define,

both De Morgan’s laws, ¬(A ∨ B) = ¬A ∧ ¬B and ¬(A ∧ B) = ¬A ∨ ¬B, as

well as both absorption laws, A ∨ (A ∧B) = A and A ∧ (A ∨B) = A, hold in

accordance with my automatic verifications. Furthermore, distributive laws:

A ∨ B ∧ C = (A ∨B) ∧ (A ∨ C) and A ∧ (B ∨ C) = A ∧B ∨ A ∧ C are valid.

56



Note that the present logic binds conjunctions tighter than disjunctions. The

more epistemic connectives are the following:

a �a & u k f t i
..............................................
...........
...................................... u k f t i

u u u u u f u i u u k u t i

k k k u k f k i k k k k t i

f t f f f f f i f u k f t i

t f t u k f t i t t t t t i

i i i i i i i i i i i i i i

� u k f t i �� u k f t i

u u k u t i u u u u u i

k k k k t i k u k k k i

f t t t t i f u k t f i

t u k f t i t u k f t i

i i i i i i i i i i i i

As the results of A ∧ B and A ∨ B are the same as A&B and A..............................................
...........
...................................... B,

respectively, when A 6= ii ∧ B 6= ii, one can collapse both conjunctions

and both disjunctions above in another four-valued logic by dropping ii and

redefine a four-valued implication and equivalence, if we are sure that there is

no inconsistency.

In the logic shown above, a possible interpretation for the operators is with

respect to the knowledge on the operands of an arbitrary operation, typically

in a programming language context. If one or more values are ff or tt, the con-

nective gives the corresponding intuitive negation, as above. As an example,

two of the tables above can be interpreted as permitting strict and lazy evalua-

tions, if we are a little careful in order to avoid confusion. For instance, kk & uu

can mean that, in a strict evaluation, the first operand is known and that the

second one (or, alternatively, the same one) is completely unknown, whereas

kk ∨ uu can mean the knowledge on the first operand value or no knowledge

on the value of the second (or, alternatively, the same) operand in a lazy eval-

uation. Thus, in accordance with the tables, the first evaluation yields an

unknown result whereas the second (lazy) evaluation yields a known result. In

chapter 7, for example, I suggest that the specification of lazy and strict evalu-

57



ations should be present in parameters and functions definitions, instead of be-

ing a stable programming language feature. This idea motivates the existence

of both approaches in a single context with uu. Here I consider that conjunc-

tion and disjunction are commutative connectives. There are other interpreta-

tions using these tables. The connective & is commutative, associative and has

a neutral element, tt. The ..............................................
...........
...................................... is commutative, associative and has a neutral

element, ff . De Morgan’s laws hold with the negations: ¬(A..............................................
............
..................................... B) = ¬A&¬B,

¬(A&B) = ¬A..............................................
...........
...................................... ¬B, �(A..............................................

...........
...................................... B) = �A& � B, �(A&B) = �A..............................................

...........
...................................... � B. Further-

more, A..............................................
............
..................................... B&C = (A..............................................

............
..................................... B)&(A..............................................

............
..................................... C) and A..............................................

............
..................................... (B&C) = (A..............................................

............
..................................... B)&(A..............................................

............
..................................... C) is one

more important property. However, because my purpose is to propagate ii

here, in contrast with the first scheme, A..............................................
............
..................................... (A&B) = A and A&(A..............................................

............
..................................... B) = A

are not tautologies. While → and ↔ are more ontic, whereas symbols such

as � and �� are more epistemic. While the ontic connectives can be seen as

lazy, the epistemic connectives can be seen as strict. A,B ∈ {ff, tt, uu, kk, ii},

i.e. for two logical formulae or operands, the first implication can be de-

fined as A → B = ¬A ∨ B whereas A � B = ¬A..............................................
............
..................................... B. Furthermore,

A ↔ B = ((A → B) ∧ (B → A)) whereas A �� B, a very epistemic equiva-

lence, cannot be defined in this brief way.

For comparison, I present the tables in Belnap four-valued logic. I present

the tables below without implication and equivalence, for Belnap did not show

them[30], and because of his work on entailment. His n value (none) corre-

sponds to this uu value (u in my truth tables here), the b value (both) roughly

corresponds to this kk value (k in my truth tables here). On the other hand,

for helping comparisons, I add the i value to Belnap logic, and the usual prop-

erties are still valid between the three connectives, with some exceptions, e.g.

A ∧ ff = ff and A ∨ tt = tt no longer hold. I shall refer to the resulting

five-valued scheme as Belnap-based five-valued logic. The tables become as

follows:

58



a ¬a ∧ u k f t i ∨ u k f t i

u k u u f f u i u u t u t i

k u k f k f k i k t k k t i

f t f f f f f i f u k f t i

t f t u k f t i t t t t t i

i i i i i i i i i i i i i i

Belnap Four-Valued Logic joined with ii

In [152], in chapter 2, Gupta and Belnap illustrate with schemes for two,

three and four values. For the scheme with four values, they present the

above conjunction but with the same negation as �, except that I have one

additional value, ii. Therefore, both the present ¬ and � are in fact relatively

old connectives and exist since seventies, in the last century. Briefly, the key

difference between my truth tables and Belnap’s is uu∧ kk = ff in his tables,

i.e. one difference between the @-logic and Belnap four-valued logic is that,

while his A ∧ B results in ff for A having value uu and B having value kk,

this operation with these values results in uu in the @-logic. The other table

results are exactly the same.

In the present five-valued logic, a formula is a tautology if and only if it

results in tt for all models. Similarly, a formula is a contradiction if and only

if it results in ff for all models. A formula is a contingency if and only if

the following holds: there exists some model from which the formula produces

value tt and there exists some model from which the formula produces value

ff . The present classification is not mutually exclusive. Obviously, since I

assume that the world is naturally consistent, a formula of the @-logic is said

to be consistent-valued if and only if it does not result in ii in any model,

and unknown-valued if and only if it results in uu in a model. A formula is

(possibly) known-valued if and only if one of the following two holds: either it

is a contingency and results in kk in the set of all models, or results in kk in

all models. In this chapter, the number of previous occurrences of k in that

complex and sequential truth values can be implicitly represented by nesting

59



space-time references, allowed by the logic grammar.

Even for an established logic, I consider that, if I initially define an equiva-

lence connective independent from the implication, and define the implication

as e.g. A ⇒ B
def
= ¬A ∨ B ∨ (A ⇔ B), a more general form is obtained. For

a version of five-valued implication that has the properties of a classical logic,

including the third-middle law, the truth table is the following:

( u k f t i

u t k k t k

k u t u t u

f t t t t t

t u k f t i

i t t t t t

However, the formulae A∧B( A, A&B( A, A( A∨B and A( A..............................................
...........
...................................... B,

like the implications introduced above, are not tautologies for(. On the other

hand, a deontic logic can be informally conceived in the following fashion: let

ϕ be a formula of the @-logic and 	ϕ denote obligation on ϕ, M ϕ denote

permissibility on ϕ. Accordingly, ¬ 	 ϕ
.
= M ¬ϕ and 	¬ϕ

.
= ¬ M ϕ. I

than combine such modalities with the epistemic values, e.g. “one does not

know ϕ if and only if he or she does not know whether ϕ is obligatory (or

whether ϕ is permissible).” etc. Finally, the definitions in this paragraph

suffices for modality, while other authors can extend the present set of rules

with other more specific rules. Such modal operators are welcome to @-logic.

While ♦ represents possibility, � does not represent necessity in the real world,

but instead sureness. The rules correspond to the implications A ` ♦A and

�A ` A in Gentzen’s style.

I shall introduce in a due course yet another implication symbol,#, which

has the properties of the intuitionistic logic, according to a well-known scheme

that I reproduce below, with some adaptation. The @-logic conjunctions and

disjunctions lead us to the second part of this dissertation, where uu and lazy

evaluation are two of the subjects. Furthermore, the notion of ii might be

interesting in other contexts, including when one speaks regarding space or

60



time, for instance, one can choose a hotel or a restaurant: one thinks “this

one is suitable, that one is not so”. A ∧ ¬A is a particular case of A ∧ B

and, hence, not inconsistent for us as a principle, but inconsistency, and not

necessarily falsity or contradiction, might temporarily appear in the inference,

e.g. if someone refers to a larger place (or time) with the same set of hotels or

restaurants. I shall identify inconsistency in the @-logic as follows: B ⇒ ¬A

and B ⇒ A. I represent that A is inconsistent in the @-logic as A
.
= ii.

2.2.3 Examples

In this section I present examples in the proposed logic language. I have

also defined the semantics for the quantifiers, and I make use of them here,

although I do not define them in the present PhD thesis. I use the @-logic for

defining unexpected effect in chapter 3 and, in chapter 9, I introduce a logic

programming language that supports reasoning under lack of information and

inconsistency. The whole of part II is based on the uu value, which is part

of this logic. Here, I attempt to demonstrate the suitability of the @-logic as

a language for representing knowledge and belief.Thus, as an example, “day”

and “night” are taken as vague variables, where ignorance and inconsistency

may arise in some possible form of knowledge representation. Note that words

whose first letter is lower-case can be variables or predicates, except space or

time variables which can be in either case. Words whose first letter is upper-

case can be constants or time or space variables.

The sun always shines everywhere:

@∀ · ∀[shines(Sun)]

John is working now:

@∃ · ⊗[isworking(John)]

Marry is now traveling from London to York:

(∃p, f ∈ T) @London · p <t ⊗[is(Mary)] ∧ @∃ · ⊗[travels(Mary)]
∧@Y ork · f >t ⊗[♦is(Mary)]

61



All women were girls at some time in the past:

@∃ · ⊗[woman(x)]→ (∃t <t ⊗) @∃ · t[girl(x)]

In addition to the pair of modal � and ♦, one can define others[100].

Operators concerning space, such as:

[s]p = @∀ · t[p] for some moment of time t.

〈s〉p = ¬ [s]¬p

. . .and for time, such as:

[t]p = @s· ≥t ⊗[p] restricted to some particular place s.

〈t〉p = ¬[t] ¬p

John is standing up:

@s· <t ⊗[issitdown(John)] ∧ 〈t〉isstandup(John)

It is day in Brazil iff it is night in Japan:

(∀t) @Brazil · t[day]
.
= @Japan · t[night]

If someone orders a book, within five days he or she will receive

it:

(∀b, s) @s · t[orders(b)]→ @s· ≤t t +t 5d[receives(b)]

If someone loses his or her passport, he or she will not receive it

within 15 days:

(∀p, s, t) @∃ · t[looses(s, p)]→ @∃· <t t+t 15d[¬receives(s, p)]

62



2.2.4 Cycles: An Illustration

One can represent time in a somewhat subjective and flexible way using three

dimensions. In particular, since time is seen as sets, angles over time are

capable of helping represent (infinite) cyclical events. Hence, if one chooses

a spiral to represent a view of time, one of the orthogonal projections of the

spiral on the 2D plane is a circle. Thus time goes by cyclically and here time

is represented using an angle. On the other hand, if one views a time line as

a wave, one can perceive the infiniteness of it. If one wants to get a straight

line one projects the wave uniformly in one of the dimensions.

&%
'$

Two Views of the Time Flow

The subjectivity and flexibility concerning this circle is that one can asso-

ciate angles to the daily life. Each angle is a fraction of an hour, for example.

In another form of representation, the same angle can be the same fraction of a

year, for example. Thus one obtains different spirals, each of which represents

the current focus of attention. In this way, the observer is included in the

notion of time. The time variable represented by a single real number can be

easily converted from/to this tuple.

As an idea that is orthogonal to alternative pasts and alternative futures,

the above picture informally illustrates two different views for a common notion

of time.

There can also be an alternative form of representation as follows: a pair

of real numbers where the second element is the angle while the first element is

the number of complete circles before that angle (the correspondence between

one circle and one unit of temporal notion that belongs to the real world is

implicit, e.g. one hour or week or year or other). Let π be, as usual, the ratio

63



of the circumference of any circle to its diameter. For 〈α, β〉 where α ∈ Z and

β ∈ [0, 2π), the straight line representation for the time is

t = 2π ×t α+t β

and thus one feels free to choose when to use α and when to use β, or both

(t).

2.2.5 Analogy, Belief and Uncertainty

Although computer scientists do not normally think on certainty factors while

writing the semantics of a programming language or writing some other aca-

demic pieces of work, sometimes scientists want to express uncertainty over

propositions. Thus, because the expressiveness of the @-logic is one of the

present approaches, (as languages form one of the main subject matters in

this PhD dissertation,) in this section, I introduce a notation that can capture

analogy, induction, belief as well as some models of uncertainty. This notation

is orthogonal to the rest of the logic and analogy and belief can be seen as

orthogonal notions with respect to uncertainty, that is, these notions can help

each other in the expressiveness of the language.

If ϕ is a formula in @-logic, then©ϕ is a formula in @-logic that means “ϕ

is believed to be true”. Properties: ¬©ϕ
.
=©¬ϕ, �©ϕ

.
=©�ϕ. Knowledge

is not dual to belief, and that pseudo duality does not hold among the known

modal logics. Both ¬© ϕ ∧ ϕ and ¬© ϕ ∧ ¬ϕ, as well as ¬© ϕ ∧©¬ϕ, are

often acceptable in natural languages. Moreover, ©© ϕ seems to be more

uncertain belief than ©ϕ, but that is subjective.

’Analogy’ is both a feature and a process of reasoning based on similar

features, when two objects are compared. Here I use the second meaning.

Intuitively, I also understand that analogy is an instantaneous form of synthetic

reasoning based on intuition or a kind of personal perception, and, because of

this, I prefer not to define the semantics in a universal way. Instead, I only

standardize its symbol and syntax in the @-logic.

64



Thus, let ϕ1 and ϕ2 be two formulae. Then, to express that ϕ1 is analogous

to ϕ2 I write ϕ1 on ϕ2, or, alternatively for analogy is commutative, one may

also write ϕ2 on ϕ1. on is probably commutative, associative and distributive

even over other operators. Although analogy is clearly commutative, I do

not do this, for I consider that analogy is personal. I have the same attitude

towards the following properties, usual for other operations:

Reflexive: ϕ1 on ϕ1

Symmetric: ϕ1 on ϕ2 → ϕ2 on ϕ1

Transitive: ϕ1 on ϕ2 ∧ ϕ2 on ϕ3 → ϕ1 on ϕ3

It is reasonable to state that on is reflexive and symmetric, but the tran-

sitive property does not universally hold. Because of this, I leave the issue of

analogy half open, although analogy can be used together with uncertainty.

For induction, a sequence of formulae separated by comma with the “...”

symbol as its suffix indicates induction over the formulae. This induction is

not mathematical induction, but instead a non-valid form of reasoning that

humans make use in their lives. If a student submits his or her PhD thesis to

a panel, the panel will make the final decision based on this kind of induction

as follows:

E1, E2, ...→ Result

where Ei, i ∈ N, indicates any list of examiners and Result indicates the result

that the student obtains. To stress the importance of induction, any practice

of democracy is based on this form of reasoning, although mathematically

invalid.

For uncertainty, I initially have to define the truth values as a subset of

R: in this chapter, P = {x ∈ R : −1.0 ≤ x ≤ +1.0} plays this rôle. I use the

Greek letter ψ to denote an uncertainty formula, i.e. a ψ-formula, e.g. ψ(n ϕ)

for some formula ϕ, where n is a pair 〈x, y〉 : P × P where x, y ∈ P are the

certainty thresholds, false and true respectively, for ψ(n ϕ). The variables of

65



the pair n = 〈x, y〉 are individually denoted as n.x and n.y respectively. In

any case, n and ϕ allow the valuation system to know whether ψ(n ϕ) is true

or false, for example, where n.x ≤ n.y. In the present language, this result is

in {ff, tt, uu, kk, ii} in accordance with n, ϕ and a few rules. In advance, as

a simplified and informal example, the formula ψ(〈0, 0.5〉 ϕ) indicates that if

ϕ has certainty degree greater than or equal to 0.5, the formula is interpreted

as tt. On the other hand, if ϕ has certainty degree less than 0, the formula is

interpreted as ff . Otherwise, its resulting value is uu. This certainty degree

will be defined later in this section.

It is well known that, for more complex systems, the notation of n as well

as the interval can be different, e.g. [0, 1] is normally used for representing

probability[230].

With respect to the nature of veracity, it is easy to observe, for example,

that a car is German, and write the proposition “the car is German”. Then

another person can look at the car and easily state “that is true”. This may

happen because the nature of the information that can be represented is in a

sense objective (all that one needs to do is to recognize the German company).

Or, alternatively, the simplification that one makes on the information from

the real world converts a naturally subjective piece of information, given the

natural complexity of the world, to another objective piece of information in

a corresponding manner, e.g. one can still ask “yes, but how much in that

car is German?” even if the answer happens to be 100%, as the world can

be seen as fuzzy[189]. In this piece of work, I do not state the uncertainty

explicitly in any rule of the deductive system presented below, because that

is a matter of vocabulary in that purely deductive context. As long as there

is a mapping without loss of generality, the more simplified the language the

clearer its concepts and constructs. Different values and different certainty

thresholds can be assigned to different views of the same object, person etc

in the real world, and that is because the truth value of ϕ results from the

subjective nature of some object. The use of the ψ letter in the present chapter

is for suggesting a more subjective nature of human factors. A solely fuzzy

66



view of the universe is in [189].

With respect to the present sub-model of uncertainty, a truth value is a

pair of values, 〈v, n〉, where v is a value in {ff, tt, uu, kk, ii} and n is another

pair 〈α, ω〉 of values in P, where α means minimum and ω means maximum,

i.e. α ≤ ω (otherwise, the formula is said to be inconsistent). Thus, if V

is some logical value on uncertainty, I simplify this notation by making use

of V.α and V.ω to denote this pair of values. For a formula ψ(m ϕ), if ϕ is

evaluated and results in 〈v, n〉 here, or simply ϕ = 〈v, n〉 as a value of a model,

the resulting value of the whole evaluation of ψ(m ϕ) is one of the resulting

values as follows:

• 〈uu, n〉 iff n.α ≥ m.x ∧ n.ω < m.y ∧m.x < 0 ≤ m.y ∧ n.α ≤ n.ω

• 〈kk, n〉 iff (n.α < m.x ∨ n.ω ≥ m.y) ∧m.x < 0 ≤ m.y ∧ n.α ≤ n.ω

• 〈ff, n〉 iff n.ω < m.x ∧m.x < 0 ≤ m.y ∧ n.α ≤ n.ω

• 〈tt, n〉 iff n.α ≥ m.y ∧m.x < 0 ≤ m.y ∧ n.α ≤ n.ω

• 〈ii, 〈1,−1〉〉, otherwise.

For example, two main interpretations for uu, and two main interpretations

for kk, can be made: in the first and second items above, the evaluation system

regards the certainty degrees as public. For an interpretation with private

certainty degrees, I simply consider the following cases:

• 〈uu, 〈0, 0〉〉 iff n.α ≥ m.x ∧ n.ω < m.y ∧m.x < 0 ≤ m.y ∧ n.α ≤ n.ω

• 〈kk, 〈0, 0〉〉 iff (n.α < m.x ∨ n.ω ≥ m.y) ∧m.x < 0 ≤ m.y ∧ n.α ≤ n.ω

To allow the evaluation of ϕ as a pair I provide a notation for an uncertain

formula. Thus, if ϕ is a (possible ψ-) formula, the evaluation of an expression

ϕ?β is in accordance with the following:

〈v, 〈β × γ.α, β × γ.ω〉〉 if ϕ results in 〈v, γ〉

67



Here I define some helpful constructs, bearing in mind that they are op-

tional, by making use of the meta-level predicate of the form @∀ · t[[ϕ]] to

stand for “the meaning of the formula ϕ at time t”, in this case in the type

C × (P×P). I first formalize the construct ϕ ? β (β is its certainty factor), as

explained before:

@∀ · t1[[ϕ]] = 〈v, γ〉

@∀ · t2[[ϕ ? β]] = 〈v, 〈β × γ.α, β × γ.ω〉〉

where t1 <t t2, and this condition also holds throughout this section.

I still need a few more words on implication. I support the idea that

deductive logics are not capable of capturing a really relevance implication,

despite Belnap’s fantastic and historical work on relevance logic among others.

I observe that words such as “because” have a conjunctive component, for

example, if one says “Ann is using an umbrella because it is raining” is different

from if it rains Ann uses an umbrella. In the former, the person who states

indicates four important and conjunctive ideas, in addition to the context:

that Ann is using umbrella, that it is raining, her awareness that it is raining,

and her intention, which depends on cause-effect relationships. There are some

natural-language conditionals that, to be regarded as valid, indicate that both

the antecedent and consequent are false[201]. Moreover, in the real world and

using the natural language, we normally have causes before their consequences,

often with a particular time interval as a constraint between actions and/or

events, and it may happen that the relationship is not clear. On the one

hand, logics is a study of reasoning in one of its broadest senses. On the

other hand, temporal relations, which might seem to be information outside

logics, may be in the core of the meaning of conditional, implication and/or

entailment in the same sense of logics. Therefore, what is the truth and logical

meaning for such ordinary implications? I regard that probably exist some

stronger implications in comparison to others. Uncertainty is a more general

tool for defining connectives and the importance of certainty factors in natural-

language inferences seems to be clear. Although I do not define implication as

¬A∨B, the rules for implication between two uncertainty formulae can be as

68



follows:

As well as modus ponens, entailment is useful for applications such as

expert systems. For being sufficiently general, it ought to have a certainty

factor attached. As an example of interpretation,

v1, v2 ∈ {uu, kk, tt} @∀ · t1[[A]] = 〈v1, β1〉

@∀ · t1[[A
β2

−→ B]] = 〈tt, 〈+1.0,+1.0〉〉 @∀ · t1[[B]] = 〈v2, β3〉

@∀ · t2[[B]] = 〈v1 ∨ v2, 〈max(β1.α× β2, β3.α), max(β1.ω × β2, β3.ω)〉〉

and symmetrically for {uu, kk, ff} (although with some redundancy) and, fi-

nally, one rule that propagates ii.

Another known operation may be called composition, which simulates some

form of inductive reasoning. The operations above make use of the min and

max functions, but there are contexts in which more than one formula together

should increase certainty. The more the pieces of evidence, the greater the

confidence should be. MYCIN[272] was the first expert system that used a

similar idea. Let the 2-ary φ be the following auxiliary function:

φ(x1, x2) =



























x1 + (1− x1)× x2 if 0 ≤ x1, x2 ≤ +1,

x1 + x2 if x1 < 0 ∧ x2 ≥ 0 ∨ x1 ≥ 0 ∧ x2 < 0,

x1 + (1 + x1)× x2 if −1 ≤ x1, x2 < 0;

The definition and syntax are: ϕ1 and ϕ2 are two formulae if and only if

{ψ : ϕ1, ϕ2} is an uncertainty formula called composition. More generally, if

ϕ1 is a formula, then {ψ: ϕ1,Γ} is an uncertainty formula called composition,

where Γ is a non-terminal symbol which denotes a sequence of formulae in the

object (final) language. The semantics for composition is in accordance with

the following rules using φ:

Given the A and B formulae,

@∀ · t1[[A]] = 〈v1, β1〉 @∀ · t1[[B]] = 〈v2, β2〉

@∀ · t2[[ {ψ: A,B} ]] = 〈tt, 〈φ(β1.α, β2.α), φ(β1.ω, β2.ω)〉〉

For more than two formulae,

@∀ · t1[[A]] = 〈v1, β1〉 @∀ · t1[[{ψ: Γ}]] = 〈v2, β2〉

@∀ · t2[[ {ψ: A,Γ} ]] = 〈tt, 〈φ(β1.α, β2.α), φ(β1.ω, β2.ω)〉〉

69



For all truth values in form 〈v, β〉, the certainty degree is simply obtained

as follows:

?〈v, β〉 = f(β) =
β.α + β.ω

2

where f is a locally defined symbol.

From now on I shall not make explicit use of uncertainty, except to intro-

duce a number of examples in the next paragraphs. Instead, I assume that

uncertainty can be implicit, as stated above, for all formulae. The axioms and

rules of the deductive system or the @-calculus deal with the final value, i.e.

I simply use the value in {uu, kk, ff, tt, ii}. That is, if ψ(a A) results in 〈v, α〉

where v ∈ {ff, tt, uu, kk, ii}, then v is simply used instead.

2.2.6 A Few More Examples

I present some examples that make use of knowledge representation with un-

certainty.

If one tosses d (a one-dollar coin) on a table T , one obtains 50% of prob-

ability of getting head after 10 seconds:

@T · t[toss(d)]→ @T · t+t 10s[get(head)?0]

If the patient had x but now the test of x presents a degree of certainty

less than 0.1, the patient does not have x.

@s· <t ⊗[has(patient, x)] ∧ @s · ⊗[diagnose(patient, x) = y ∧ y < 0.1]
→ ¬@s· ≥t ⊗[has(patient, x)]

As another example, for a person who knows the Boolean value of A but

does not know the Boolean value of B, the formula A→ B might result in tt or

uu, say, in equal probabilities. Thus, we can write the following propositions:

• val(A) indicates the value of A.

• val(B) denotes the value of B.

70



• imp(A,B, r) represents that the result from A→ B is r.

• prob(x, y) denotes formula x with probability y.

In the @-logic, we can write as follows:

val(A) = kk ∧ val(B) = uu→
prob(imp(A,B, tt), 0.5) ∧ prob(imp(A,B, uu), 0.5)

The above example does not require uncertainty. However, observe the

following: there is one diagnosis d and three symptoms s1, s2, s3 with certainty

factors 0.3, 0.6 and unknown, respectively, together with one rule with more

details:

〈tt, 0.3〉 → s1 〈tt, 0.6〉 → s2 〈uu, 0〉 → s3

ψ(〈−0.5,+0.9〉 {ψ: s1?0.8, s2?0.5, s3?0.3} )→ d

2.3 Sequents

In [125], Gabbay states a scheme for a linear logic in Hilbert style and using

the classical implication symbol:

Identity: A⇒ A

Commutativity: (A⇒ (B ⇒ C))⇒ (B ⇒ (A⇒ C))

Prefixing: (C ⇒ A)⇒ ((B ⇒ C)⇒ (B ⇒ A))

Suffixing: (C ⇒ A)⇒ ((A⇒ B)⇒ (C ⇒ B))

The relevance logic[17, 252] is based on the schema above plus

(A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))

The intuitionistic logic is based on the relevance logic scheme plus

A⇒ (B ⇒ A)

and, finally, by adding the following schema

71



((A⇒ B)⇒ A)⇒ A.

to the previous one, we obtain the schema for classical logic. The original

approach on the @-logic was to choose the calculus for one of the above logics,

and then correct problems. There are rules of inference that are specific for

the values other than true and false.

In this way, if I let A, B be formulae, the axioms in the classical logic

(A ⇒ B) ⇒ ((A ⇒ (B ⇒ ff)) ⇒ (A ⇒ ff)) and A ⇒ ((A ⇒ ff) ⇒ B) had

not been tautologies if I would want to propose a paraconsistent and relevance

logic[95], together with some extra rules in the calculus. The latter axiom

is also the sixth axiom above, that one which complements the scheme for

intuitionistic logic, also called axiom K, from combinatory logic. However,

from the holistic view presented here as example, I prefer to accept it as a

normal tautology.

In the present logic, there is not a single notion of contradiction as a

primitive because there are five values (including ff and ii) and two differ-

ent consequence relations: weak and strong. The proposal of a pair of two

consequence relations is probably a novelty.

An implication with the properties of the above scheme for intuitionistic

logic is the following:

# u k f t i

u t k f t i

k u t f t i

f t t t t t

t u k f t i

i u k f t t

In advance, the # implication, as well as most implications, do not sup-

port entirely the @-calculus, only a few rules. However, I introduce a weaker

implication for the present calculus that has the properties of the classical

scheme as well as makes the rules tautologies with the first tables (i.e. the

connectives {¬,∧,∨}. ` is also tautological for the truth tables of the second

72



scheme if there is no inconsistency in the calculus presented later), for the

principle of contraposition does not need to hold in the above schemes.

` u k f t i

u t t t t t

k t t t t t

f t t t t t

t u k f t i

i t t t t t

and now principles such as simplification, A ∧ B ` A or A&B ` A for

example, hold with the schemes presented above. However, because of ii,

A ` A..............................................
...........
...................................... B is not a tautology where A = tt and B = ii, although both (A `

B) ` (A ` B..............................................
...........
...................................... C) and (A ` C) ` (A ` B ..............................................

...........
...................................... C) are tautologies. Furthermore,

A ` A∨B, for example, is a tautology. Thus, for the present deductive system

together with the @-calculus, I propose the above definition of `.

Space can be seen as an abstract notion whereas a sequent in the calculus

is also an expression of one of the following alternative forms

• ∆ ` C iff both time and space can be represented implicitly, or

• @s · t0[∆] ` @s · t1[C] or, equivalently, @∆ · [t0, t1][C], as long as s is not

used in ∆, C, t0 or t1.

In the second form, s and [t0, t1] explicitly state the space and time where

and when the expression ∆ ` C takes place, respectively. Thus, here, there

is no mobile derivation. Further, I can simplify my notation here by writing

@s · t[∆ ` C] or @∆ · t[C] that indicates that a derivation makes use of the

assumption ∆; starts at some time in which I am not interested, and finishes

at time t.

The @-logic has another consequence relation, 
. While `, also called

weak sequent, yields weak proof, 
 (the strong sequent) yields strong proof. `

and 
 yield derivations. Weak and strong proofs may form a pair of novelties.

Thus, (∆ 
 A)
def
= (∆ ` A)&¬(∆ ` ¬A).

73



2.4 Deduction

In this section I initially concentrate on derivations. Let A be a formula in

the present language. As usual, a proof for A here is a tree of steps from a

set of valid assumptions (the leaves) that leads us to conclude that the logical

formula A is true (the root) for all values in any model. On the other hand,

a derivation is a more general notion. It does not imply that the assumed

formulae and the final formula are valid.

The @-calculus works as follows: there is a set of assumed formulae and

one final formula, where each variable or formula can have one of the five

values presented here: {ff, tt, uu, kk, ii}.

Deductions are based on axioms and rules of inference. A Rule is a meta-

level implication and here I assume the @-logic ` implication to follow their

semantics. As usual, I also represent rules of inference by using fractional

notation, where

@∆1 · t1[C1] @∆2 · t2[C2] ... @∆n · tn[Cn]

@∆1,∆2, ...,∆n · t[C]

corresponds to, at a higher level,

@∆1 · t1[C1] ∧ @∆2 · t2[C2] ∧ ... ∧ @∆n · tn[Cn] ` @∆1 ∪∆2 ∪ ...,∆n · t[C]

I use comma instead of the ∪ set operation as I use multi-sets.

Here, I introduce the properties of the present calculus.

Reflexivity: @s·t[∆, {C} ` C] which captures inclusion: C ∈ ∆→ (∀s ∈

S, t ∈ T) @s · t[∆ ` C], another property.

Monotonicity:
@∆ · t[C]

@∆,Γ · t+t 1[C]

Premise Commutativity:

For any rule, since time is relevant here, I include an axiom for exchanging

premises considering the evaluation time as follows:

@∆ · t[A] @Γ · t +t 1/2[B]

@∆,Γ · t+t 1[C]

.
=

@Γ · t[B] @∆ · t+t 1/2[A]

@∆,Γ · t+t 1[C]

74



As usual, the premises are also associative.

The cut rule is computationally redundant, as demonstrated in a theorem

by Gentzen[6].

For the @-logic, I regard that derivations have place and also work as time

goes by.

In both structural and logical rules, the time is placed explicit, every rule

should be stated only as implication.

Negative and Positive Wholeness

In the following picture on the left, the rectangles will represent the scopes

of two formulae, @s · t[A] and @s′ · t[A] with the same time (ordinate) and a

common place (abscissa). On the right, a more general situation: two formulae

with a little common space and a little common time.

+s

+s′

+
t
′

+
t
′
′

In natural language, space and time can be stated with or without whole-

ness. That is, both notions, space and time, can individually be interpreted

as either universal (positive wholeness) or existential (negative wholeness),

respectively. To indicate that the place (or time) indicates the negative whole-

ness, one places the symbol − before the space (or time) expression. Accord-

ingly, one places + before the space (or time) expression to indicate that the

notion is positive. Although @s · t[ϕ] without − or + is a valid expression in

the @-logic, it does not allow deductions.

As an example of the positive wholeness, on the one hand, if one knows

that in the state of São Paulo (in Brazil) citizens have the habits h1, e.g. they

like sports, formally @+SP · ∃[habits(p, h1)], one is allowed to deduce that, in

Santos city, which in turn is in the state of São Paulo, citizens have habits h1,

75



that is, @ + Santos · ∃[habits(p, h1)]. On the other hand, if one understands

that in the state of São Paulo citizens have the habits h2, possibly the same

ones but with negative wholeness, say @−SP ·∃[habits(p, h2)], one is allowed to

deduce that, in Brazil, citizens have habits h2, say @−Brazil ·∃[habits(p, h2)].

The expression @ − SP · ∃[habits(p, h2)] formally states that it is allowed to

deduce that, in South America for instance, or even in America in some sense,

there are citizens who have habits h2. However, by using the last formula, one

cannot deduce that, in São Paulo city , which is located inside São Paulo state,

there are citizens who have habits h2.

One may argue that, in a formula, the syntactical positions for space and

for time are rigid and, therefore, if one wants to combine the positive and

negative wholeness, one loses flexibility. That opinion is not a good standpoint,

for space and time expressions themselves do not bind variables, and where

both indicate that the inner formula is the scope. In this way, the following

expression (∀s ∈ S) (∃t ∈ T) @s · t[ϕ] and the expression (∃t ∈ T) (∀s ∈

S) @s · t[ϕ] are not equivalent, while the expression @s · ∃[@∃ · t[ϕ]]
.
= @∃ ·

t[@s · ∃[ϕ]] holds. In nesting formulae, the positive wholeness of space or

time does not have priority over the negative wholeness and vice-versa. For

example, depending on the interpretation, the formula @− s ·+t[@ + s ·−t[ϕ]]

might not imply @ + s · +t[ϕ]. Alternatively, one may want to write @ − s ·

+t[ϕ] ∧@ + s · −t[ϕ] instead or, better, @ + s ·+t[ϕ] ∧@− s · −t[ϕ].

The following picture demonstrates possible combinations of space and

time wholeness, respectively,

@ + s ·+t[A] @ + s · −t[A] @− s ·+t[A] @− s · −t[A]

��

��

��

��

76



2.4.1 Axioms

Identity:

@{C} · t[C]

The other axioms are defined in specific contexts.

2.4.2 Structural Rules

In this section, I present the structural rules of the @-calculus. Other space-

time logics can be obtained by removing some of structural rules[254]. The

structural rules almost in Gentzen’s style are the following:

Hypothesis:

@s · t[∆, {C} ` C]
Y

Here, I use comma instead of the ∪ set operation as I use multi-sets.

Therefore, this notation does not impose an order between two finite multi-

sets of formulae, in such a way that there is no need for the so called exchange

rule. The contraction rule is the following:

Contraction:
@∆, {A,A} · t[C]

@∆, {A} · t+t 1[C]
CL

An essay on contraction is [124]. For proof theory without contraction,

references, for example, are [49, 50, 143].

Weakening:
@∆ · t[C]

@∆, {A} · t +t 1[C]
W

Weakening explicitly expresses the monotonicity property.

2.4.3 Logical Rules

In this section, the logical rules are presented. The rules for �, &, ..............................................
...........
...................................... and

� are not presented since the structures of the rules are equivalent to the

rules for ¬, ∧, ∨ and →, respectively. More than this, rules with ( are not

77



presented for the same reason with respect to →. Therefore, I am going to

present rules for the fragment {¬, ∧, ∨, →}.

Deduction:

@∆ · t[A→ C]

@∆, {A} · t +t 1[C]
D↑

@∆, {A} · t[C]

@∆ · t+t 1[A→ C]
D↓

Excluded 6th:

¬@∆ · t[A
.
= kk] ¬@∆ · t +t 1/4[A

.
= ff ]

¬@∆ · t+t 1/2[A
.
= tt] ¬@∆ · t +t 3/4[A

.
= ii]

@∆ · t +t 1[A
.
= uu]

but all sequences of formulae in the premise can appear in any order.

Introduction:

The introduction rules are part of the deduction as well as the calculus.

Conjunction:

@∆, {A} · t[C]

@∆, {A ∧B} · t+t 1[C]
∧ IL1

@∆, {B} · t[C]

@∆, {A ∧ B} · t+t 1[C]
∧ IL2

@∆ · t[A] @Γ · t+t 1/2[B]

@∆,Γ · t +t 1[A ∧B]
∧ IR

Similarly, for inconsistent deduction:

@∆, {A} · t[C]

@∆, {A
.
= ii} · t+t 1[C]

IiiL1
@∆, {¬A} · t[C]

@∆, {A
.
= ii} · t+t 1[C]

IiiL2

@∆ · t[A] @Γ · t+t 1/2[¬A]

@∆,Γ · t+t 1[A
.
= ii]

IiiR

Disjunction:

@∆, {A} · t[C] @Γ, {B} · t+t 1/2[C]

@∆,Γ, {A ∨ B} · t +t 1[C]
∨ IL

@∆ · t[A]

@∆ · t +t 1[A ∨ B]
∨ IR1

@∆ · t[B]

@∆ · t+t 1[A ∨B]
∨ IR2

Negation:

@∆ · t[A]

@∆, {¬A} · t+t 1[ii]
¬IL

@∆, {A} · t[ff ]

@∆ · t +t 1[¬A]
¬IR

Implication:

@∆ · t[A] @Γ, {B} · t+t 1/2[C]

@∆,Γ, {A→ B} · t+t 1[C]
→ IL

@∆ · t[B]

@∆ · t +t 1[A→ B]
→ IR

78



Elimination:

The elimination rules are part of the deductive system but not part of the

calculus.

Conjunction:
@∆, {A ∧ B} · t[C]

@∆, {A,B} · t+t 1[C]
∧ EL

@∆ · t[A ∧ B]

@∆ · t +t 1[A]
∧ ER1

@∆ · t[A ∧ B]

@∆ · t+t 1[B]
∧ ER2

Similarly,
@∆, {A

.
= ii} · t[C]

@∆, {A,¬A} · t+t 1[C]
iiEL

@∆ · t[A
.
= ii]

@∆ · t+t 1[A]
iiER1

@∆ · t[A
.
= ii]

@∆ · t+t 1[¬A]
iiER2

Disjunction:

@∆, {A ∨ B} · t[C]

@∆, {A} · t +t 1[C]
∨ EL1

@∆, {A ∨ B} · t[C]

@∆, {B} · t+t 1[C]
∨ EL2

@∆ · t[A ∨B] @∆1 · t +t 1/3[A→ C] @∆2 · t +t 2/3[B → C]

@∆,∆1,∆2 · t +t 1[C]
∨ ER

and there also exist the following two rules:

@∆ · t[A ∨B]

@∆ · t[A] ∨@∆ · t[B]
∨ E ∨ R

@∆ · t[A ∨ B]

@∆ · t[A].
.............................................
............
..................................... @∆ · t[B]

∨ E ..............................................
...........
...................................... R

Negation:

@∆, {¬A} · t[ff ]

@∆ · t +t 1[A]
¬EL

@∆, {A} · t[ff ]

@∆ · t+t 1[¬A]
¬ER

Implication:

@∆, {A→ B} · t[C]

@∆, {B} · t+t 1[C]
→ EL

@∆ · t[A] @Γ · t+t 1/2[A→ C]

@∆,Γ · t +t 1[C]
→ ER

The left rule, above, is not part of the linear logic or relevance logic. The

above right rule is what is often called modus ponens.

79



Space and Time:

From now on, for the following axioms and deductive rules, s, s′ ⊂ S; t′, t′′ ⊂ T,

while t ought to remain as before: t ∈ T.

¬A1 ¬@ + s ·+t′[A]
.
= @− s · −t′[¬A]

¬A2 ¬@ + s · −t′[A]
.
= @− s ·+t′[¬A]

¬A3 ¬@− s ·+t′[A]
.
= @ + s · −t′[¬A]

¬A4 ¬@− s · −t′[A]
.
= @ + s ·+t′[¬A]

∧AP @P ·Q[A] ∧ @P ·Q[B]
.
= @P ·Q[A ∧B]

∨AP @P ·Q[A] ∨ @P ·Q[B]
.
= @P ·Q[A ∨B]

The above axioms can be used as two-way rules. I present the set of rules with

an implicit correspondence between uu and empty space:

Space ∪ introduction

@∆, {@ + s · t′[A],@ + s′ · t′[A]} · t[C]

@∆, {@ + s ∪ s′ · t′[A]} · t +t 1[C]
+ s ∪ IL

@∆ · t[@ + s ·+t′[A]] @Γ · t+t 1/2[@ + s′ ·+t′[A]]

@∆,Γ · t+t 1[@ + s ∪ s′ ·+t′[A]]
+ s ∪ IR

or

80



@∆, {@− s · t′[A]} · t[C] @Γ, {@− s′ · t′[A]} · t+t 1/2[C]

@∆,Γ, {@− s ∪ s′ · t′[A]} · t+t 1[C]
− s ∪ IL

A rule for expansion:

@∆ · t[@− s · t′[A]]

@∆ · t+t 1[@− s ∪ s′ · t′[A]]
− s ∪ IR

and, for both −s and +s, an alternative and interesting rule for

or

follows:

@∆ · t[@s ·+t′[A]]

@∆ · t+t 1[@− s ∪ s′ ·+t′[A]]
s+ ∪IR

Space ∩ introduction

@∆, {@− s · t′[A],@− s′ · t′[A]} · t[C]

@∆, {@s ∩ s′ · t′[A]} · t +t 1[C]
s ∩ IL

81



@∆ · t[@ + s · t′[A]]

@∆,Γ · t+t 1[@ + s ∩ s′ · t′[A]]
+ s ∩ IR

@∆, {@− s · t′[A],@− s′ · t′[A]} · t[C]

@∆, {@− s ∩ s′ · t′[A]} · t +t 1[C]
− s ∩ IL

It can be somewhat interesting to observe that the formula @−s∩s′ · t′[A]

does not follow from @− s · t′[A] ∧ @− s′ · t′[A], but instead from +− swR,

defined later.

Space ∪ elimination

@∆, {@ + s ∪ s′ ·+t′[A]} · t[C]

@∆, {@ + s ·+t′[A],@ + s′ ·+t′[A]} · t+t 1[C]
+ s ∪ EL

@∆ · t[@ + s ∪ s′ · t′[A]]

@∆ · t+t 1[@ + s · t′[A]]
+ s ∪ ER

@∆, {@− s ∪ s′ · t′[A]} · t[C]

@∆, {@− s · t′[A]} · t+t 1[C]
− s ∪ EL

@∆, {@− s ∪ s′ ·+t′[A]} · t[C]

@∆, {@s ·+t′[A]} · t+t 1[C]
s+ ∪EL

82



��

��

��

��

��

��

��

��

��

��

��

��

@∆ · t[@− s ∪ s′ · t′[A]]

@∆ · t[@− s · t′[A]] ∨ @∆ · t[@− s′ · t′[A]]
− s ∪ ER

Space ∩ elimination:

@∆, {@ + s ∩ s′ · t′[A]} · t[C]

@∆, {@ + s · t′[A]} · t+t 1[C]
+ s ∩ EL

@∆ · t[@ + s ∩ s′ · t′[A]]

@∆ · t +t 1[@− s · t′[A]]
+−s ∩ ER

@∆ · t[@− s ∩ s′ · t′[A]]

@∆ · t+t 1[@− s · t′[A]]
− s ∩ ER

Space weakening - At the same time:

@∆, {@− s ∪ s′ · t′[A]} · t[C]

@∆, {@− s ∩ s′ · t′[A]} · t+t 1[C]
−swL

@∆ · t[@− s ∩ s′ · t′[A]]

@∆ · t+t 1[@− s ∪ s′ · t′[A]]
−swR

@∆, {@ + s ∩ s′ · t′[A]} · t[C]

@∆, {@ + s ∪ s′ · t′[A]} · t+t 1[C]
+swL

@∆ · t[@ + s ∪ s′ · t′[A]]

@∆ · t+t 1[@ + s ∩ s′ · t′[A]]
+swR

Different Spaces and Times

For the following rules, s 6= s′ ∧ t′ 6= t′′.

83



@∆, {@ + s · −t′[A]} · t[C] @Γ, {@ + s · −t′[A]} · t+t 1/2[C]

@∆,Γ, {@ + s ∪ s′ · −t′ ∪ t′′[A]} · t +t 1[C]
+ s− t ∪ IL

@∆ · t[@ + s ∪ s′ · −t′ ∪ t′′[A]]

@∆ · t+t 1[@ + s · −t′[A] ∨@ + s · −t′[A]]
+ s− t ∪ ER

@∆, {@− s ·+t′[A]} · t[C] @Γ, {@− s ·+t′[A]} · t+t 1/2[C]

@∆,Γ, {@− s ∪ s′ ·+t′ ∪ t′′[A]} · t +t 1[C]
− s+ t ∪ IL

@∆ · t[@− s ∪ s′ ·+t′ ∪ t′′[A]]

@∆ · t+t 1[@− s ·+t′[A] ∨@− s ·+t′[A]]
− s + t ∪ ER

@∆, {@ + s ·+t′[A],@ + s′ ·+t′′[A]} · t[C]

@∆, {@ + s ∪ s′ ·+t′ ∪ t′′[A]} · t +t 1[C]
+ stIL >

@∆ · t[@ + s ·+t′[A]] @Γ · t +t 1/2[@ + s′ ·+t′′[A]]

@∆,Γ · t+t 1[@ + s ∩ s′ ·+t′ ∩ t′′[A]]
+ stIR >

@∆, {@ + s ∩ s′ ·+t′ ∩ t′′[A]} · t[C]

@∆, {@ + s ·+t′[A],@ + s′ ·+t′′[A]} · t +t 1[C]
+ stEL>

@∆ · t[@ + s ∪ s′ ·+t′ ∪ t′′[A]]

@∆ · t+t 1[@ + s ·+t′[A]]
+ stER >

although @+s∪s′ ·−t′∪t′′[A] does not imply @+s·−t′[A] or @+s′ ·−t′′[A].

Accordingly, @−s∪s′ ·+t′∪t′′[A] does not imply @−s ·+t′[A] or @−s ·+t′[A].

Time ∪ introduction

Since time is symmetric to space, it turns out that to repeat similar dia-

grams here are unnecessary. Instead, I place the rules without comments.

@∆, {@s ·+t′[A],@s ·+t′′[A]} · t[C]

@∆, {@s ·+t′ ∪ t′′[A]} · t+t 1[C]
+ t ∪ IL

@∆ · t[@ + s ·+t′[A]] @Γ · t +t 1/2[@ + s ·+t′′[A]]

@∆,Γ · t +t 1[@ + s ·+t′ ∪ t′′[A]]
+ t ∪ IR

@∆, {@s · −t′[A]} · t[C] @Γ, {@s · −t′′[A]} · t+t 1/2[C]

@∆,Γ, {@s · −t′ ∪ t′′[A]} · t +t 1[C]
− t ∪ IL

@∆ · t[@s · −t′[A]]

@∆ · t +t 1[@s · −t′ ∪ t′′[A]]
− t ∪ IR

@∆ · t[@ + s · t′[A]]

@∆ · t +t 1[@ + s · −t′ ∪ t′′[A]]
t+ ∪IR

Time ∩ introduction

@∆, {@s · −t′[A],@s · −t′′[A]} · t[C]

@∆, {@s · t′ ∩ t′′[A]} · t+t 1[C]
t ∩ IL

84



@∆ · t[@s ·+t′[A]]

@∆,Γ · t +t 1[@s ·+t′ ∩ t′′[A]]
+ t ∩ IR

@∆, {@s · −t′[A],@s · −t′′[A]} · t[C]

@∆, {@s · −t′ ∩ t′′[A]} · t+t 1[C]
− t ∩ IL

Time ∪ elimination

@∆, {@ + s ·+t′ ∪ t′′[A]} · t[C]

@∆, {@ + s ·+t′[A],@ + s ·+t′′[A]} · t+t 1[C]
+ t ∪ EL

@∆ · t[@s ·+t′ ∪ t′′[A]]

@∆ · t +t 1[@s ·+t′[A]]
+ t ∪ ER

@∆, {@s · −t′ ∪ t′′[A]} · t[C]

@∆, {@s · −t′[A]} · t+t 1[C]
− t ∪ EL

@∆, {@ + s · −t′ ∪ t′′[A]} · t[C]

@∆, {@ + s · t′[A]} · t+t 1[C]
t+ ∪EL

@∆ · t[@s · −t′ ∪ t′′[A]]

@∆ · t[@s · −t′[A]] ∨@∆ · t[@s · −t′′[A]]
− t ∪ ER

Time ∩ elimination

@∆, {@s ·+t′ ∩ t′′[A]} · t[C]

@∆, {@s ·+t′[A]} · t+t 1[C]
+ t ∩ EL

@∆ · t[@s ·+t′ ∩ t′′[A]]

@∆ · t+t 1[@s · −t′[A]]
+−t ∩ ER

@∆ · t[@s · −t′ ∩ t′′[A]]

@∆ · t+t 1[@s · −t′[A]]
− t ∩ ER

Time Weakening - At the same place:

@∆, {@s · −t′ ∪ t′′[A]} · t[C]

@∆, {@s · −t′ ∩ t′′[A]} · t +t 1[C]
− twL

@∆ · t[@s · −t′ ∩ t′′[A]]

@∆ · t +t 1[@s · −t′ ∪ t′′[A]]
− twR

@∆, {@s ·+t′ ∩ t′′[A]} · t[C]

@∆, {@s ·+t′ ∪ t′′[A]} · t+t 1[C]
+ twL

@∆ · t[@s ·+t′ ∪ t′′[A]]

@∆ · t+t 1[@s ·+t′ ∩ t′′[A]]
+ twR

Space-Time ∀ and ∃:

@∆, {@s · t′[A]} · t[C]

@∆, {@∀ · t′[A]} · t +t 1[C]
∀sIL

@∆ · t[@∀ · t′[A]]

@∆ · t +t 1[@s · t′[A]]
∀sER

@∆, {@s · t′[A]} · t[C]

@∆, {@s · ∀[A]} · t+t 1[C]
∀tIL

@∆ · t[@s · ∀[A]]

@∆ · t+t 1[@s · t′[A]]
∀tER

@∆, {@∃ · t′[A]} · t[C]

@∆, {@s · t′[A]} · t+t 1[C]
∃sEL

@∆ · t[@s · t′[A]]

@∆ · t+t 1[@∃ · t′[A]]
∃sIR

85



@∆, {@s · ∃[A]} · t[C]

@∆, {@s · t′[A]} · t+t 1[C]
∃tEL

@∆ · t[@s · t′[A]]

@∆ · t+t 1[@s · ∃[A]]
∃tIR

Wholeness and Nesting Formulae:

@∆, {@− s · t′[A]} · t[C]

@∆, {@ + s · t′[A]} · t+t 1[C]
− +swL

@∆ · t[@ + s · t′[A]]

@∆ · t +t 1[@− s · t′[A]]
+−swR

@∆, {@s · −t′[A]} · t[C]

@∆, {@s ·+t′[A]} · t+t 1[C]
−+twL

@∆ · t[@s ·+t′[A]]

@∆ · t +t 1[@s · −t′[A]]
+−twR

Some theories on the @-logic might have rules for nesting formulae. I

present some axioms only as an example:

+ + sN : @ + s · t′[@ + s · t′[A]]
.
= @ + s · t′[A]

−− sN : @− s · t′[@− s · t′[A]]
.
= @− s · t′[A]

+ + tN : @s ·+t′[@s ·+t′[A]]
.
= @s ·+t′[A]

−− tN : @s · −t′[@s · −t′[A]]
.
= @s · −t′[A]

2.5 The Space-Time Operational Semantics

This section introduces an operational semantics useful for chapter 4, where

I introduce a possibly more general notion of computation. This operational

semantics with space and time is also helpful in a few places in part II of

the present PhD thesis dissertation, more precisely, where I shall formalize

programming language constructs in mobile agent systems. In this section, I

illustrate an application of the present logic to operational semantics of pro-

gramming languages. Informally, I adopt the following conventions:

• σ: a state of the computation, seen as a set.

• σ(m/X): σ, in particular, X = m ∈ σ.

• 〈true, σ〉: tt in state σ.

• 〈false, σ〉: ff in state σ.

86



• @s · t[[A]]: the meaning of A (it requires that A
.
= tt) at place s and time

t.

• n,m: two real numbers.

• ε: time spent to execute the referred to operation.

•  : evaluation of some operation and its meaning is obtained.

Traditionally, the formal semantics of programming languages do not re-

quire one to state the space-time components. For a semantic rule, it is as-

sumed that the antecedents refer to executions before the execution of the

statement that appears in the consequent in the rule. However, for mobile

code languages, it becomes important to make it explicit that such statements

do not change the locality while some other statements do change locality.

Moreover, time becomes a major issue in global environments such as the

Internet.

The @-logic can be used as a Space-Time semantics for more general pur-

pose programming languages, or simply for those languages that support code

mobility.

Here, I present an operational semantics of the well known while lan-

guage, extracted from [318] with slight changes in addition to the present

author’s notation, to make it explicit that their constructs do not change lo-

cality.

2.5.1 The evaluation of Boolean expressions

@s · t[[〈true, σ〉]] @s · t+t ε[[true]] @s · t[[〈false, σ〉]] @s · t +t ε[[false]]

where ε is the time for executing the operation.

@s · t0[[〈a0, σ〉]] @s · t0 +t ε0[[n]] @s · t0 +t ε0[[〈a1, σ〉]] @s · t0 +t ε0 +t ε1[[m]]
n = m

@s · t0[[〈a0 = a1, σ〉]] @s · t0 +t ε0 +t ε1[[true]]

87



Notice that the present author’s notation allows the semantics to make

explicit that a0 is performed before a1. For a parallel version, the rule would

be slightly different from the one above.

@s · t0[[〈a0, σ〉]] @s · t0 +t ε0[[n]] @s · t0 +t ε0[[〈a1, σ〉]] @s · t0 +t ε0 +t ε1[[m]]
n 6= m

@s · t0[[〈a0 = a1, σ〉]] @s · t0 +t ε0 +t ε1[[false]]

For the less than or equal to operator, there exist two extra rules such as:

@s · t0[[〈a0, σ〉]] @s · t0 +t ε0[[n]] @s · t0 +t ε0[[〈a1, σ〉]] @s · t0 +t ε0 +t ε1[[m]]
n ≤ m

@s · t0[[〈a0 ≤ a1, σ〉]] @s · t0 +t ε0 +t ε1[[true]]

@s · t0[[〈a0, σ〉]] @s · t0 +t ε0[[n]] @s · t0 +t ε0[[〈a1, σ〉]] @s · t0 +t ε0 +t ε1[[m]]
n > m

@s · t0[[〈a0 ≤ a1, σ〉]] @s · t0 +t ε0 +t ε1[[false]]

More two rules for the negation:

@s · t0[[〈b, σ〉]] @s · t0 +t ε0[[true]]

@s · t0[[〈¬b, σ〉]] @s · t0 +t ε0 +t ε1[[false]]

@s · t0[[〈b, σ〉]] @s · t0 +t ε0[[false]]

@s · t0[[〈¬b, σ〉]] @s · t0 +t ε0 +t ε1[[true]]

Conjunction:

@s · t0[[〈b0, σ〉]] @s · t0 +t ε0[[α]]
@s · t0 +t ε0[[〈b1, σ〉]] @s · t0 +t ε0 +t ε1[[β]]

@s · t0[[〈b0 & b1, σ〉]] @s · t0 +t ε0 +t ε1 +t ε2[[α & β]]

Disjunction:

@s · t0[[〈b0, σ〉]] @s · t0 +t ε0[[α]]
@s · t0 +t ε0[[〈b1, σ〉]] @s · t0 +t ε0 +t ε1[[β]]

@s · t0[[〈b0 ∨ b1, σ〉]] @s · t0 +t ε0 +t ε1 +t ε2[[α ∨ β]]

2.5.2 The execution of commands

In this section, I present an operational semantics of the commands in the

while language.

88



Atomic commands:

@s · t[[〈skip, σ〉]] @s · t+t ε[[σ]]

@s · t0[[〈a, σ〉]] @s · t0 +t ε0[[m]]

@s · t0[[〈X := a, σ〉]] @s · t0 +t ε0 +t ε1[[σ(m/X)]]

Sequencing:

@s · t0[[〈c0, σ〉]] @s · t0 +t ε0[[σ′′]]
@s · t0 +t ε0[[〈c1, σ′′〉]] @s · t0 +t ε0 +t ε1[[σ′]]

@s · t0[[〈c0; c1, σ〉]] @s · t0 +t ε0 +t ε1[[σ′]]

Conditionals[73]:

@s · t0[[〈b, σ〉]] @s · t0 +t ε0[[true]]
@s · t0 +t ε0[[〈c1, σ〉]] @s · t0 +t ε0 +t ε1[[σ′]]

@s · t0[[〈if b then c1 else c2, σ〉]] @s · t0 +t ε0 +t ε1[[σ′]]

@s · t0[[〈b, σ〉]] @s · t0 +t ε0[[false]]
@s · t0 +t ε0[[〈c2, σ〉]] @s · t0 +t ε0 +t ε1[[σ′]]

@s · t0[[〈if b then c1 else c2, σ〉]] @s · t0 +t ε0 +t ε1[[σ′]]

While-loops:

@s · t0[[〈b, σ〉]] @s · t0 +t ε[[false]]

@s · t0[[〈while b do c, σ〉]] @s · t0 +t ε+t ∆t[[σ]]

@s · t0[[〈b, σ〉]] @s · t0 +t ε0[[true]]
@s · t0 +t ε0[[〈c, σ〉]] @s · t0 +t ε0 +t ε1[[σ′′]]

@s · t0 +t ε0 +t ε1[[〈while b do c, σ′′〉]] @s · t0 +t ε0 +t ε1 +t ε2[[σ′]]

@s · t0[[〈while b do c, σ〉]] @s · t0 +t ε0 +t ε1 +t ε2[[σ′]]

2.6 Representing Mobility

Space, time and mobility are three orthogonal notions. Matter is the forth

notion in order to complete the whole picture. I do not go deep into matter

here whereas I leave material exaustive issues for others.

In this section, I demonstrate how the @-logic can capture material re-

sources and mobility of objects up to some extent. The issue of matter is

discussed in other contributions such as [40]. As already mentioned, mobility

is one of the key concepts in the present thesis.

To achieve this purpose, let Obj denote the set of all physical objects in

the real world. Therefore, the property of uniqueness of its elements can be

written as:

89



∀(o1, o2 ∈ Obj, t ∈ T, s1, s2 ∈ S). (s1 ⊂/ s2 ∧ s1 ⊃/ s2) ∧

(@− s1 ·+t[o1] ∧@− s2 ·+t[o1]→ s1 = s2)∧

(@ + s1 ·+t[o1] ∧ @ + s1 ·+t[o2]→ o1 = o2)

Thus, in the world described above, I can also represent mobility of an

object slower than the speed of light in the following abstract way:

↗ (x, 〈p0, t0〉, 〈p1, t1〉)
def
= @p0 · t0[x] ∧ @p1 · t1[x]

where p0, p1 ∈ S, and x asserts the existence of some particular object, or,

more abstractly,

↗ (x, p0, p1)
def
= ∃t0, t1 ∈ T. (t0 <t t1) ∧@p0 · t0[x] ∧@p1 · t1[x]

or, given the above property, one can represent mobility graphically, from

p0 to p1 during t1 −t t0 interval, that is @[p0, p1] · [t0, t1][x], in accordance with

the following space-time diagram:

which is in the same style of interpretation as the other space-time dia-

grams, presented above.

2.7 Conclusion

The combination of physical and psychological notions of mobility, space, time

and knowledge is so common in the daily life that it is not difficult to find good

examples of it: while an observer is sitting down in a café, she can see two men

starting to shake hands, then a bus stops between her and the scene blocking

her view. Then, she no longer knows when the men stop shaking hands, but

can guess that it is not for so long, depending on the place of that scene and

90



her cultural background. The present calculus and deduction can be somewhat

useful.

In this chapter, I presented a five-valued logic. For both sets of connectives,

{¬,∧,∨} and {�, &, ..............................................
............
..................................... }, the proposal with ii does not mean that I presume

that inconsistency is a natural notion, but instead that it appears in contexts

with natural languages, for instance. After this chapter with ii, it might be a

surprise to see that the underlying philosophical view is in accordance with a

naturally consistent world. Another application for ii rests on the observation

that agents ought to deal with conflicts.

When weighing up possibilities in any situation, one thinks carefully in

order to make use of importance factors from premises to some associated

conclusion. For performing such an inference, uncertainty is appropriate and

provided in the @-logic. In this way, negative factors tend to refute hypotheses

while positive factors tend to prove them. Thus, the result from reasoning

means the average of the negative and positive results, and this is a significant

skill for mobile agents.

The notions of space and time can be viewed as either abstract or physi-

cal. For example, the Pascal assignment instruction a := a + b can be easily

expressed as

@a · t[value = a′]&@b · t +t 1[value = b′]&@a · t+t 2[value = a′ + b′]

where t ∈ Z.

The grammar is expressive enough to represent sequents using sets of for-

mulae as notion of space as exemplified here, such as @∆ · t[C], although,

for the @-calculus, one can make use of the form @s · t[∆ ` C]. I believe

that the present calculus is sufficiently general and expressive to provide both

notions, space and time, in a standard way. The calculus can be used by re-

searchers who work with mobility and semantics of programming languages,

for instance. Briefly, if one wants to extend the while language with the flyto

command, equivalent to the moveto command as in [75], we can express this

91



in the present author’s space-time operational semantics by using a rule similar

to the following one:

t0 <t t1
@s0 · t0[[〈flyto s1, σ〉]] @s1 · t1[[〈done, σ〉]]

where done indicates the next instruction. Or, in some cases, even

@s0 · t0[[〈flyto s1, σ〉]] @s1 · (s1 −s s0)/ω[[〈done, σ〉]]

where −s is linear and ω is the speed of light.

The @-logic will be useful in chapter 3, where I define a significant no-

tion of unexpected effect, and in chapter 4, where I define another notion of

computation. The @-logic can also be used in formalisms that are connected

to mobility, including other chapters in the present PhD thesis dissertation. I

mention uncertainty as part of the model in chapter 4 and, in chapter 8, I re-

turn to deal with uncertainty in the proposed hybrid programming paradigm.

92



Chapter 3

A Property of the Universal

Turing Machine

Since Turing’s work, there have been attempts to refute Church-Turing thesis

by trying to discover some effectively calculable partial recursive function that

does not correspond to any Turing-calculable partial recursive function. Here, I

do not aim at refuting Church-Turing thesis but to mend it. One of the reasons

for this is due to the fact that the statement of their thesis compares a formal

notion, i.e. Turing-calculable partial recursive function, with an informal one,

i.e. effectively calculable partial recursive function, but also because that thesis

literally compares functions with functions.

However, in 2000, March, the present author discovered a significant example.

Thus, in this chapter, I introduce this example which will lead to the follow-

ing statement: The class of Turing machines is not equivalent (or, more in

accordance with the discovered example, it is not isomorphic) to the class of

Turing-calculable functions.

3.1 Introduction

Since 1930’s, there has been very significant work into foundations of computer

science, in theory of computation[198], category theory[193, 241] as well as in

93



recursive function1 theory, functional programming[291] and other theoretical

subjects. Since Alan Turing, we can make references to many good researchers,

but, to date, nobody seems to have observed unexpected effects in computa-

tions of compositions of Turing machines on the tape. Perhaps those good

researchers observed what I have called unexpected effects whereas I observed

not only the unexpected effects but also the possible rôle of unexpected effects

in one of the semantics of computation. Briefly and informally, let F and G

be two Turing machines, and X be some input. I shall show that, if a pro-

grammer wants to form a composition such as F (G(X)) with both machines

on the tape, we shall have to observe the dynamic possibility of G changing

F for another Turing machine, say F ′. Comparing F and G in this context,

while G in this context does not prove anything other than G(X), a Turing

machine must prove something more than F (G(X)), i.e. a Turing machine

must prove that the G calculation does not affect the F calculation. In this

chapter, we shall see such details in a careful and more precise way. Variations

on Universal Turing machines have been proposed[204] but not much work has

been carried out in the only and traditional computability theory, which may

cause the impression that the original computability theory is established. The

fact is that, because of the parallel pioneering pieces of work by Church and

Turing, we still have what is called Church-Turing thesis[299], or even called

Church thesis[298].

In contrast, one of the main conclusions reached in this chapter is that pro-

grams do not necessarily correspond to functions. As a consequence of this,

1The standard use of the term recursive function includes the notion of function that

does not explicitly contain the operation called recursion, as presented and used in the

recursive function theory. I use both terms, i.e. function and recursive function, as referring

to the same notion. Accordingly, the common use for the term partial function includes the

concept and semantics of total function, but since not all functions in the present chapter are

necessarily total, I simplify the language using both terms, function and partial function, as

referring to the same notion. Thus, in this chapter, functions and partial recursive functions

have the same meaning.

94



computations do not necessarily correspond to functions applications.

In section 3.2 I present Turing machines from the operational standpoint2.

In section 3.3 I give interpretation of other notions used in the current chapter

and, in section 3.4, I present my claims.

3.2 Turing machines

Perhaps the best definition that I have seen regarding non-deterministic Turing

machine is in [207], and I reproduce it here with that notation, although I do

not further use that notation:

Definition 3 A Turing machine (TM) is an ordered system M = (Q,Σ,

Γ, δ, q0, B, F ) where Q is a finite set of states, Σ is the input alphabet, Γ is the

tape alphabet, Γ ∩ Q = ∅ and Σ ⊂ Γ, q0 ∈ Q is the initial state, B ∈ Γ − Σ

is the blank symbol, F ⊆ Q is the set of final states and δ is the transition

function,

δ : Q× Γ −→ P(Q× Γ× {L,R}).

�

By defining the codomain of δ as above, that is P(Q × Γ × {L,R}), the

machine TM may be non-deterministic. Furthermore, it can be shown that

non-deterministic Turing machines are equivalent to deterministic Turing ma-

chines. For a deterministic version, which I use in this thesis, δ can be redefined

as δ : Q× Γ −→ Q× Γ×{L,R}. In this section, however, as a matter of con-

venience for the present purpose, I briefly define Turing machines in a slightly

different way, and this definition has also been used by other authors such as

[42, 76, 171, 172, 198, 214, 234, 239, 274, 320] as well as Turing. The two

2In the present chapter, I prefer to use the term operational instead of the term inten-

tional, for the former suggests that the corresponding scope is the artificial computation.

Intention is a psychological notion more complex than operation. Although such words are

well established in the computer science community since philosophy of mathematics, those

from the community can also gradually reserve the latter for future use.

95



differences are that, here, a Turing machine program is a set of tuples (or a

set of γ-transitions, as one may prefer to refer to) and there is one tape. As

many of these simple transitions produce some effect on the tape, and this

tape is shared by other programs, assuming Church-Turing thesis, what nec-

essarily corresponds to a function is ultimately the whole sequence of Turing

machines, including all machines that are interpreted, with the involved com-

positions if the Universal Turing machine is not outside the tape in order to

guarantee that the computation is free from unexpected effects. Indeed, this

is one of the results in this chapter: some assumptions have to be added to

this assertion.

Without changing the notion, a Turing machine (TM) has also been de-

fined as a 6-tuple, M = (Q,Σ, T, P, q0, F ) where Q is a finite set of states

{q0, q1, ..., qn}, Σ is the alphabet which is a finite set of symbols {s0, s1, ..., sm},

where s0 is the blank symbol that I represent with ◦, T ⊆ Σ \ {◦} is the set

of input symbols, P is the Turing machine program, q0 ∈ Q is what has been

called initial state, and F ⊆ Q is a set of final states of this Turing machine.

According to Alan Turing’s analogy, a Turing machine is supplied with an

infinite tape divided into squares and one write/read head. Each tape square

contains one symbol in Σ.

sj

qi, sj, qk, sr, op

The diagram for Turing machine, with its tape squares

Given O = {L,R, S,H}, the program P is a set of nn transitions or γ-

transition functions, for 0 ≤ ii ≤ nn, γii : Q× S −→ Q× S ×O to which has

been referred as a set of 5-tuples of form (qi, sj, qk, sr, op), op ∈ O, such that

each 5-tuple in P produces an effect that is described in the literature in the

96



following way:

As usual and in accordance with Alan Turing’s original analogy using a

tape, the write/read head is initially on the leftmost non-blank symbol, which

means the leftmost symbol of the input for the Turing machine. The write/read

head writes and reads symbols on the tape as it moves along the tape, one

square to the right or to the left, depending on the current state of M and the

current symbol, i.e. on which the write/read head is. For the purposes of this

discussion, without loss of generality, I can set that, in the initial state q0 of M ,

the write/read head is on the leftmost non-blank symbol of the tape. Thus,

the machine works in the following way: for every simple3 step of calculation,

for some 5-tuple in P , if the machine is in state qi and the write/read head is

on the square which contains some symbol sj, the machine substitutes sr for

sj in the same square, substitute qk for the current state, and perform one of

the following actions:

• if op = L, the machine moves the write/read head one square to the left.

• if op = R, the machine moves the write/read head one square to the

right.

• if op = S, the machine does not move the write/read head.

• if op = H, the machine halts.

Just a short note on notation used in the present chapter, from now on:

given some Turing machine M as the first operand and some p which is rep-

resented here as a letter in the set of symbols {F, P,Q, T,Σ} as the second

operand, I define the meta-language infix operator ? to denote a set from the

3In this chapter, I use the term simple step for both Turing machines and effective

computation, although we only need to go a little more in detail here, as I am describing

Turing machines. In a modern sense of computation, a simple step can migrate an agent, for

instance, from one country to another because such an atomic operation is well defined in

some way. Therefore, nowadays that simplicity is subjective and not relevant, and, because

of this, I sometimes simply use the term step instead.

97



Turing machine, i.e. M ? p denotes the corresponding set in M . For instance,

M ? P refers to the program of M and M ?Q refers to the states of M .

As in the definition 3, a Turing machine does not have to have a tape or

a write/read head. Here, we can define the alphabet Σ2
def
= Σ ∪ {�} and the

language T in Σ∗
2 where � /∈ Σ is the symbol that indicates that the next

symbol on the right of � is under the write/read head. Thus, the tape is

merely a string in Σ∗
2. To keep the comparison, the symbol � occurs only

once in the string. Those strings are infinite but only one finite part of them

can contain non-blank symbols. Thus, so far the transition functions become:

0 ≤ ij ≤ nn, γij : Σ∗
2 ×Q −→ Σ∗

2 ×Q. Furthermore, because the state qi ∈ Q

together with the symbol on the right of � determine the transition function

γij, the function γij can be defined as: for Σ3 = Σ2 ∪ Q,Σ2 ∩ Q = ∅ : γij :

Σ∗
3 −→ Σ∗

3. A non-encoded Turing machine can be seen as a grammar.

I shall explain that, on a shared tape, the computation by the γ-transitions

of one encoded Turing machine may affect the γ-transitions of other encoded

Turing machines. Once Turing machines are encoded and placed on a tape,

they are still separate entities while now they share the same tape. There-

fore, in this chapter, I am not going to view Turing machines as a form of

rewriting systems over strings, but, instead, from the operational standpoint,

regarding compositions between Turing machines and so forth. Furthermore,

regarding representation, I am going to use one tape and one write/read head,

as explained in many books on computability theory since Alan Turing’s pa-

pers, among others. I understand that this analogy with a physical machine

is necessarily sound and helps the explanation.

In this chapter, I introduce an example and observe one feature that is

present in one notion and absent from another. I use the notation M [X] to

stand for the computation of a Turing machine M that inputs x, where X

is the representation of x. To describe the computation of a Universal4 Tur-

4In this chapter, I use both “a Universal Turing machine” and “the Universal Turing

machine” as meaning the same. I use the former when I want to refer to a class of Universal

Turing machines that universally interpret Turing machines, and use the latter when I want

98



ing machine when simulating M [X], I denote U(M [X]) instead of U [M [X]].

Accordingly, the functional composition m(n(x)) from two Turing machines,

M and N , are denoted by M(N [X]). If there exists a Universal Turing ma-

chine interpreting this composition, that is u(m(n(x))), I denote this situation

by U(M [N [X]]). In this way, I use parentheses at the outermost level and

brackets internally to make it clear that the former applying Turing machine

is not represented on the tape, but instead outside the tape, while the latter

is represented on the tape.

As notation for the computation of some composition, I make use of the up

arrow symbol as a prefix. For instance, ↑M(N [X]) refers to the computation

of M(N [X]) in the present piece of work.

Below, I define the Universal Turing machine with the characteristics that

will be subsequently helpful in this chapter.

Definition 4 (Universal Turing machine) Let U be a Turing machine. U

is a Universal Turing machine if and only if, given any Turing machine M :

N −→ N encoded and placed on the tape, M corresponding to the Turing-

computable function m : N −→ N, and given any input X : N, which is some

representation of the natural number x ∈ N on the tape, U calculates the value

m(x).

�

To help the reader to understand this chapter, notice that the notion of

function exists if and only if the notion of composition exists as a property

(amongst the others). In this case, one cannot talk about functions without

considering compositions as one of the fundamental properties of any related

theory, in particular, theory of computation. Furthermore, let f : D1 −→ D2

and g : D2 −→ D3 be two total functions. There are at least the same number

of Turing machines that assign to the values in D1 the values in D3 by imple-

menting the g(f(x)) result (by concatenating corresponding Turing machines

or by any other means), than the number of Turing-computable functions with

to stress the result, i.e. the interpretation itself. In both cases, my view is operational.

99



the same results by concatenating corresponding Turing machines, whether or

not there is one such a Turing-computable function. Thus, this chapter shows

that, more than that, depending on one hypothesis that I shall observe, there

can be those compositions of the referred to Turing machines that yield values

outside D3. As an initial example of Turing machine composition, following

a convention, the composition M(B[A[X]]) can be as in the following diagram:

X A B

M

As a usual example of arrangement (among others), one would previously

establish that the input of a Turing machine is always on the left of its encod-

ing and that they are separated by precisely one square. Furthermore, after

having finished interpreting a Turing machine, M clears the interpreted Turing

machine as well as its input, and then places the output of this interpretation

in the correct place before starting interpreting another Turing machine, and

so forth. Finally, in this example, one can establish that every Turing machine

in the composition has its reserved space on the tape on the left of its input,

but this is only a priori operational convention and, as such, does not prevent

unexpected effects. The important point is that M has to prevent unexpected

effects between Turing machines.

In category theory, for example, there are objects, arrows, functors, nat-

ural transformations, monads and many other concepts. Concepts are used

to define more sophisticated concepts, and the essence or basis is sets and

functions, as well as properties. Although the concept of monad[242] can be

used to justify mathematically input/output in functional programming, that

idea is far from refuting the present work on unexpected effects on Turing

100



machines. One of the reasons is that all those computable functions have sig-

nature N −→ N, sometimes represented with encoding the signature Nk −→ N

for some k ∈ N. The Turing machine theory is relatively simple, and has been

supported by programming. Likewise, the present refutation should be as

such, using the same signature N −→ N instead of more complex functional

notions. Moreover, the meanings of the term “unexpected effect” are definitely

not the same, with respect to functional programming. An essential difference

between the concept of side-effects in input/output operations in functional

programming and the term unexpected effect here is that, in the former case,

the operation is programmed. In other words, there is control and intention.

Here, unexpected effect during a computation is unpredictable from the point

of view of the programs. Concisely, some unexpected effect appears during

the computation (and possibly in books of computability theory) depending

on the following:

1. The absolute positions of Turing machines on the tape;

2. Whether or not one Turing machine represented on the tape, by chance,

affects another one represented on the tape;

3. Whether or not the Turing machine outside the tape avoids unexpected

effects. Both alternatives indeed exist.

3.3 Some interpretations

In this section I present the interpretations of the notions used in my theo-

rems. In a philosophical and insightful chapter [130] by Prof Galton, there

is a discussion on different interpretations of Church-Turing thesis, including

different assertions made for the thesis.

• Model of Computation - In this chapter, because I review a well-

established model of computation only, it suffices to see computation

as simply a sequence of (possibly infinite) simple steps that belong to

101



some well-established model of computation. Additionally, computation

is carried out at some place and takes time, and this will be discussed in

chapter 4. I do not redefine, intuitively or formally, model of computation

here. Instead, for comparisons, I assume that λ-calculus is a model of

effectively calculable functions. As suggested, a computation may be

empty.

• Effective Calculation - For any natural number k, a function h :

Nk −→ N is effectively calculable if and only if there exists some finite

procedure p represented in h, that is, a unique function ph(p) = h, and

a unique number-theoretic partial function g : Nk −→ N, such that given

x ∈ Nk, h calculates the value g(x) according to p. By the way, in this

chapter, up to date as usual, by effective, I do not mean that the model

is finite.

A more precise definition is the following: Let MC be the set of all

models of effective computation, and P be the set of all simple steps

regardless of the model. Let P ∗ denote the infinite set of all sequences of

such simple steps, many of which are meaningless for they are steps from

different models, and many of these sequences of steps are infinite, and let

p ∈ P ∗ denote a finite sequence of steps that form an effective procedure

of some model M ∈ MC. Further, let p[x] denote the computation of

some procedure p given some value x, and S ∈ P ∗ denote a (possibly

infinite) sequence of simple steps carried out by the same computation.

Let S = p[x]. Therefore, given the above notation, for any natural

number k > 0, h : Nk −→ N is said to be an effectively calculable

function if and only if there exists a number-theoretic function g : Nk −→

N, a function f : MC × P ∗ × Nk −→ N, and a unique function µ :

MC×P ∗×Nk −→ N×MC×P ∗ and also µ(f,M, S) = h (possibly many

to one) for each (f,M, S, h), that denotes h, and for every M ∈MC and

any x ∈ Nk, there exists a sequence of simple steps S ∈ P ∗, S = p[x],

and finally, the calculation of h(x) or f(M,S, x) is in accordance with

102



one of the following alternative cases:

– If the value of x is defined in g, the calculation follows a finite

sequence of simple steps S (halts), and both h(x) and f(M,S, x)

must result in the value of g(x).

– If the value of x is not defined in g, a situation commonly and

formally represented as g(x) = ⊥, the calculation follows an infinite

sequence of simple steps, i.e. |S| = ∞ and the application h(x) or

f(M,S, x) never halts.

Roughly, f(M,S, x) = g(x) = h(x), where x ∈ Nk, M ∈ MC and

S ∈ P ∗. More formally and using first-order predicate logic, and a

predicate ec that states whether a function is effectively calculable,

∀k ∈ N. ∀f : MC × P ∗ × Nk −→ N. ec(f) ≡

∃!(g : Nk −→ N). ∀(M ∈MC). ∃(S ∈ P ∗). ∀(x ∈ Nk). f(M,S, x) = g(x)

where g is unique since the quantifier indicates.

To allow composition of functions I can repeat the parameter M for the

same model and sequences of steps S0 and S1, f(M,S1, f(M,S0, x)) =

g(g(x)) holds here because k = 1. However, for k > 1, effectively cal-

culable functions must accept and result in one encoding number, e.g.

a Gödel number, and, by temporarily reducing k to 1, I do not loose

generality. That is, every effectively calculable function must decode x

before its calculation and, before resulting its final value, it must encode

its result into a natural number. In the present chapter, after these def-

initions I shall use only functions with k = 1. The next interpretation is

a particular case of this one.

• Turing Computability and Calculable Functions -

For some partial and number-theoretic function g : Nk −→ N, some

numbering interpretation (some codification previously established) N

103



from a symbolic representation, for example including Gödel numbers,

a partial function t : MC × P ∗ × Nk −→ N is a Turing-calculable (or

simply computable, or calculable) function if and only if there exists a

Turing machine T such that, given the representation r(x) (according to

N ) of the value x ∈ Nk and once r(x) is placed at some established place

in the tape for input by that machine, and given a sequence of simple

steps S ∈ P ∗, which is the program of T , the calculation of g(x) by t is

in accordance with one of the following cases:

– if x is defined in g, the calculation of t halts in a finite number of

simple steps S in a final state of T leaving the appropriate repre-

sentation of g(x), i.e. according to N , at the established place of

the tape for the result.

– if x is undefined in g, either the calculation of t does not halt or it

halts in a state s /∈M ? F .

Intuitively and in a somewhat informal way, a predicate that states

whether f is a Turing-calculable function (asserted using the predicate

formula tcf(t)) is defined as follows: for all N ∈ I,

∀(k ∈ N). ∀(t : MC × P ∗ × Nk −→ N). tcf(t) ≡ ∃!(g : Nk −→ N).

∃(S ∈ P ∗). ∀(x ∈ Nk). N |= t(TM, S, x) = g(x)

where TM is constant which is a value in the domain MC, I denotes

the set of all possible codifications, and g is naturally unique.

From now on, I shall not write N in the formulae for the purpose of

simplification, as I have already stated that an interpretation always

exists and I simply assume that it is constant.

Thus, I shall demonstrate in proposition 2 that Turing machines do not

necessarily entail functions. I demonstrate that unexpected effects in-

troduce a problem that has a logical aspect and a conceptual one.

104



3.3.1 Unexpected effects

We can view unexpected effect as being the effect of some operation that a

Turing machine (or, more generally, a program) can perform that can possibly

change the representation of data or Turing machine on the tape (or of data or

program in a common memory device) and therefore its result, in such a way

that the effective effect depends on where the representations of the Turing

machines are placed on the tape, as well as secondary conditions. If they are

placed in different blocks in different runs, the results from these occurrences

of computations are possibly different. The notion of unexpected effect is

particularly important in any interpretation of Turing machine by a Universal

Turing machine, for the latter has to guarantee the absence of unexpected

effects, as we shall see. One can formally define the notion of unexpected

effect in the @-logic as follows:

More abstractly, there exist two instants, t0 6= t1, of time such that

TM, M ` @′ · t0[↑M [X] = m] ∧ TM, M ` @′ · t1[↑M [X] = n] ∧ m 6= n

TM, M ` se(↑M [X])

The above definition is in terms of proof (if the results from the same

Turing machine are different, I prove that there exists some unexpected effect).

Or alternatively as follows:

se(M [X]) ≡ @TM ·′ [@M · t0[M(X)] 6= @M · t1[M(X)] ∧ t0 6=t t1]

where M is a Turing machine, M(X) here denotes the same as M [X] and

both denote M running for some input x, TM is the Turing machine model

of computation, @′ · t[M [X]] is the result from computation M [X] at time t

and under some set interpretation of encoding results, and se(M [X]) is the

predicate that states the existence of unexpected effects in a Turing machine

application M [X].

Notice that unexpected effect is not a pure-mathematical notion regard-

less of its importance in computer science. Furthermore, M might produce or

105



receive unexpected effects. For the analysis in the next section, one can inter-

pret that an unexpected effect indeed replaces one Turing machine by another

one, while they are interpreted by a Turing machine that neither detects nor

treats unexpected effects. From this perspective for unexpected effects, one

alternatively interprets one unexpected effect as follows:

se(M [X])≡ @TM ·′ [(∃M,M ′) @s · t0[thereis(M)] ∧ @s · t1[thereis(M ′)]

∧M 6= M ′ ∧M(x) 6= M ′(x) ∧ t0 <t t1]

where s denotes a place on the tape, thereis(M) is a predicate that denotes

the existence of the Turing machine M . Notice that the above formula makes

use of the closed-world assumption.

3.4 A Refuting Example

In the following theorems of this chapter, I prefer to use both terms computable

and calculable as meaning the same.

In my analysis, there exist two connections, namely, between Turing ma-

chines and Turing-computable functions, and between Turing-computable func-

tions and effectively computable functions. I am at showing that the former

one-to-one correspondence is broken, as well as their structural properties are

not preserved because of the necessary notion of composition.

Example 1

Let U be a Universal Turing machine, and let G and H be two Turing machines

that are placed on the tape. For my proofs, an example will suffice. Thus,

as an example, H calculates double its input, which is encoded in binary and

placed on the left of H, separated by, say, fifty blank symbols, initially. Thus,

H ? Σ = {◦, 0, 1} and H ? T = {0, 1}. In this example, let H ? P be

(q0, 0, q2, ◦, R), (q0, 1, q1, ◦, R),

(q2, 0, q2, 0, R), (q2, 1, q2, 1, R)

(q2, ◦, q4, 0, L), (q4, 0, q4, 0, L), (q4, 1, q4, 1, L),

106



(q4, ◦, q5, 0, H),

(q1, 0, q1, 0, R), (q1, 1, q1, 1, R)

(q1, ◦, q3, 0, L), (q3, 0, q3, 0, L), (q3, 1, q3, 1, L),

(q3, ◦, q5, 1, H).

Thus, H ? Q = {q0, ..., q5}, n = 5, m = 2, and H ? F = {q5}.

Let G = (H?Q∪{qn+1, ..., qn+3+w}, H ?Σ, H ?T,Λ∪G?P, q0, H ?F \{q0})

be defined as follows:

G moves the write/read head an arbitrary number w of squares to either

left or right of r(G), and, for some s ∈ G ? Σ, writes s on the tape. In this

way, the Turing machine G is similar to H, except that G attempts to produce

some unexpected effect on the tape. Without loss of generality, this can be

done in the following way, assuming that I choose to move the write/read head

to the right and that the write/read head is positioned at the leftmost square

of r(G) at q0:

∀γ ∈ H ? P , γ ≡ (qi, a, qj, c, d) : i 6= 0 ∧ j 6= 0⇒ γ ∈ Λ.

∀γ ∈ H ? P , γ ≡ (q0, a, qi, c, d) : γ /∈ Λ ∧ (qn+1, a, qi, c, d) ∈ Λ.

∀γ ∈ H ? P , γ ≡ (qi, a, q0, c, d) : γ /∈ Λ ∧ (qi, a, qn+1, c, d) ∈ Λ.

q0 ∈ H ? F ⇒ qn+1 ∈ G ? F .

(q0, s0, qn+2, s0, S) ∈ G ? P .

∀s ∈ Σ \ {s0} : (q0, s, q0, s, R) ∈ G ? P .

For some arbitrary w ∈ N:

∀i ∈ N (i < w) : (qn+2+i, s0, qn+3+i, s0, R) ∈ G ? P .

(qn+2+w, s0, qn+3+w, s1, L) ∈ G ? P .

∀i ∈ N (i < w) : ∀j ∈ N (1 ≤ j ≤ m) : (qn+3+i, sj, qn+3+w, s0, L) ∈ G ? P .

(qn+3+w, s0, qn+3+w, s0, L) ∈ G ? P .

∀s ∈ Σ \ {s0} : (qn+3+w, s, qn+3+w, s, L) ∈ G ? P .

(qn+3+w, s0, qn+1, s0, R) ∈ G ? P .

107



Notice that, like H, G finally halts in s5. That is, both (q4, ◦, q5, 0, H) and

(q3, ◦, q5, 1, H) are in G ? F . Therefore, G is an algorithm.

Now, given X : N, some Turing machine F : P ∗×N −→ N, and sequences

of simple steps S and S2, let U(F [G[X]]) be calculated: Suppose for the

present example that F calculates the integer division modulus four of a num-

ber represented in binary digits (that is, F results in the two least significant

digits). I define F as

F ? Q = {q0, q10, q11, q12, q13, q100, q101, q102, q103, q1000, q1001}

and F ? F = {q1000, q1001}. Thus, F ? P can be defined as follows:

(q0, 0, q10, ◦, R), (q0, 1, q11, ◦, R),

(q10, 0, q10, 0, R), (q10, 1, q11, 1, R), (q10, ◦, q100, ◦, L),

(q11, 0, q12, 0, R), (q11, 1, q13, 1, R), (q11, ◦, q101, ◦, L),

(q12, 0, q10, 0, R), (q12, 1, q11, 1, R), (q12, ◦, q102, ◦, L),

(q13, 0, q12, 0, R), (q13, 1, q13, 1, R), (q13, ◦, q103, ◦, L),

(q100, 0, q100, ◦, L), (q100, 1, q100, ◦, L), (q100, ◦, q1000, 0, R),

(q101, 0, q101, ◦, L), (q101, 1, q101, ◦, L), (q101, ◦, q1001, 0, R),

(q102, 0, q102, ◦, L), (q102, 1, q102, ◦, L), (q102, ◦, q1000, 1, R),

(q103, 0, q103, ◦, L), (q103, 1, q103, ◦, L), (q103, ◦, q1001, 1, R),

(q1000, ◦, q1000, 0, H), (q1001, ◦, q1001, 1, H).

and then, supposing x = 93, we obtain the following situation in q0:

tape starts here −→|1011101 ◦ ...r(G) ◦ ...r(F ) ◦ ...

�

where � is the write/read head.

108



Because some simple steps of calculation of G might modify the repre-

sentation of any Turing machine placed on the tape, including of F , we could

obtain U(F [G[X]]) 6= U(F [H[X]]) from the calculation. The programmer who

writes F does not have prior knowledge on G nor H. That is, G might change

the representation of F if U allowed this. From the alternative view for unex-

pected effects, a computation could start as U(F [G[X]]) and finished resulting

in U(F ′[G[X]]) since G might change the Turing machine F in such a way

that it would become F ′, if U allowed G to do so.

�

Definition 5 For this chapter, let k ∈ N, k ≥ 0, X : N be some input, and k+

1 Turing machines Fk : N −→ N. For any k > 0, a (k−level) Turing-machine

composition is a composition of k + 1 Turing machines Fk[Fk−1[...[F0[X]]...]].

For any 0 < i ≤ k, Fi does not read or manipulate any Turing machine other

than Fi−1.

Lemma 1 (Universal Interpretation) For any k ∈ N, for any represen-

tation X : N on the tape, and for any Turing machines F0, F1, ..., Fk, let

Fk[Fk−1[...[F0[X]]...]] be a k-level Turing-machine composition. Then, the Uni-

versal Turing machine is capable of reading the Turing machines F0, F1, ..., Fk.

[Proof:] To calculate any U(Fk[Fk−1[...[F0[X]]...]]), U interprets the operations

of some of the involved Turing machines, i.e. some of F0, F1, ..., Fk, by following

either lazy or strict evaluation.

�

Lemma 2 Let X : N, U be the Universal Turing machine, M0, ...,Mk : N −→

N be k+1 Turing machines, and U(Mk[Mk−1[...[M0[X]]...]]) be a k-level Turing-

machine composition where k > 0. There exists a non-empty set of transition

functions in the Universal Turing machine that guarantees absence of any un-

expected effect at any level i ≤ k in Turing-machine compositions.

By example 1, a Universal Turing machine has to get round the problem

of unexpected effects. In this chapter, the way is not important, but it may

109



be done by manipulating the tape configuration whenever the calculation of

a Turing machine tries to modify another machine on the tape. That is, for

all sequences of steps, U must always guarantee ∀F,G,H : N −→ N, ∀X :

N, U(F [G[X]]) = U(F [H[X]]). Therefore, since the programmable part of a

Turing machine is in its set of transitions, there exists a non-empty set of

transitions S ⊂ U ? P that can solve this problem of unexpected effects.

�

Theorem 1 The class of Turing machines is not isomorphic to the class of

effectively computable partial recursive functions. Furthermore, neither the

former is necessarily equivalent to the latter, e.g. two Turing machines can

correspond to the same function, nor all structural properties of the class of

Turing machines correspond to the structural properties of the class of effec-

tively computable functions with respect to the notion of composition.

[Proof:] By lemma 2, there exists a non-empty set of transition functions S ⊂

U ? P that can solve the problem of unexpected effects. Now, let U(U [G[X]])

be calculated, from which the reader obtains the following situation in U ? q0

and in G ? q0:

tape starts here −→|1011101 ◦ ...r(G) ◦ ...r(U) ◦ ...

�

and the final situation in G ? F containing the double value, 186, is

tape starts here −→|10111010 ◦ ...r(G) ◦ ...r(U) ◦ ...

�

although solution S might move the absolute positions of r(G) and r(U),

and hence changing the tape configuration. Thus, the computation of G(X)

is represented as follows:

110



q01011101◦ −→ ◦q1011101◦ −→ ◦0q111101◦ −→

◦01q11101◦ −→ ◦011q1101◦ −→ ◦0111q101◦ −→

◦01110q11◦ −→ ◦011101q1◦ −→ ◦01110q310 −→

◦0111q3010◦ −→ ◦011q31010◦ −→ ◦01q311010◦ −→

◦0q3111010◦ −→ ◦q30111010◦ −→ q3 ◦ 0111010◦ −→

q510111010 ◦ .

Assuming that there is no unexpected effects in the above computation.

Then let two Turing machines, U and V , exist such that, except for the

possibility of unexpected effects, U and V produce the same output: The

only difference is that U contains S and calculates U(U [G[X]]), and V does

not contain S and might calculate V (V [G[X]]) or V (U [G[X]]). As a pos-

sible example, V may sometimes calculate U(U [G[X]]) and sometimes not,

depending on the physical places where V and G rest on the tape. Assum-

ing that the class of Turing machines necessarily corresponds to the class of

effectively computable functions, for later contradiction (although my Exam-

ple 1 above clearly applies to any model based on functions), I can choose

λ-calculus, defined by Church himself, as a functional model of effective cal-

culability, denoted here by λ−calculus ∈ MC. Clearly, a simple case by

case analysis demonstrates that parameters in λ-calculi cannot modify the

operations of other functions (nor are able to replace a function application

by another one). That is, no λ-calculi operations, namely {β-reduction, α-

conversion, η-conversion} and higher-order function application, are capable

of doing this at all, as λ-expressions are always well formed. The same is valid

for any functional model. Thus, let sefu, sefv, sefg : MC × P ∗ × N −→ N

be the effectively computable functions which are supposed to correspond to

U , V and G, respectively, and their corresponding sequences of steps Su,

Sv and Sg. The three sequences of steps depend on their respective effec-

tively computable functions. Finally, while the applications U(U [G[X]]) and

V (V [G[X]]) do not always produce the same value for all G, the correspond-

111



ing applications sefu(λ−calculus, Su, sefg(λ−calculus, Sg, x)) = u(g(x)) and

sefv(λ−calculus, Sv, sefg(λ−calculus, Sg, x)) = v(g(x)) always result in the same

values for all g, regardless of whether u(g(x)) = v(g(x)) or u(g(x)) 6= v(g(x))

or not, since sefu and sefv are functions. By assumption, the absence of one

corresponding function for V (V [G[X]]) is a contradiction.

�

Briefly, from the presented alternative view of unexpected effects, while

in the computation of the Turing-machine composition V (V [G[X]]) the com-

putation of the Turing machine G might replace the inner occurrence of the

Turing machine V by another Turing machine V ′ and, therefore, the outer-

most occurrence of V might compute V (V ′[G[X]]) instead, neither the steps

Sg nor the function sefg can replace any function, in particular, neither sefu

nor sefv.

Theorem 2 If each Turing machine implies one partial function, then the

class of Turing-computable functions is not isomorphic to the class of effec-

tively computable functions.

This theorem is another way of seeing the theorem 1. �

Because the models of effectively computable functions provide ways of

defining functions that result in any number as we wish, then for all k ∈ N,

for all (x, y) ∈ Nk × N, intuitively, there must exist an effectively computable

function which calculates y from x in a few steps. However, as I have shown,

Turing machines are not necessarily functions. As already mentioned, unex-

pected effects introduce a problem with two aspects: logical and semantic. I

solve the logical aspect of the problem by proposition 2, and I solve the seman-

tic aspect of the problem by regarding Turing machines that produce different

answers under different physical conditions as non-functional machines. Thus

V is a Turing machine which does not have any corresponding function. Fur-

thermore, it is easy to see that Turing-computable functions are still linked

to Turing machines where unexpected effects are forbidden. Notice that this

corollary holds for both intensional and extensional standpoints, as we can also

112



view unexpected effect as an action or effect of replacing one Turing machine

by another with different results.

Theorem 3 Computation is not necessarily function application.

[Proof:] Given that computation may be mobile, e.g. by using mobile agents

nowadays, given some insight of the present author in Edinburgh (1999), and

deeply discussed in chapter 4, computation is conceptually a physical process.

On the other hand, by theorem 1, the class of Turing machines is not

isomorphic to the class of Turing-computable functions. Following this, pro-

grams do not correspond to functions. Therefore, computation is not function

application.

�

Proposition 1 Let k ∈ N. For every k > 1, there exists a k-level Turing-

machine composition if and only if some representation of the Universal Turing

machine is not in the composition.

[Proof:] Let U be a Universal Turing machine, M,N : N −→ N be two Turing

machines with corresponding Turing-computable functions m,n : N −→ N,

and x ∈ N, and X : N be the representation of x on the tape.

The Universal Turing machine, by lemma 2, guarantees the absence of un-

expected effects at all levels of its parameters. I can consider the composition

M [N [X]]. It follows that U must have direct control over the operations of N

in such a way that, if N tries to modify the operations in the M representa-

tion, U detects this unexpected effect and intervenes, for instance, by moving

physically the representation of M or N to another place on the tape, to con-

tinue the computation of the composition keeping the isomorphism between

Turing machines and computable functions. Therefore, because U must have

dynamic knowledge about the computation carried out by N , U(M [N [X]]) is

not really a function application, and therefore some representation of U is

not in the composition.

113



With respect to the converse, setting M 6= U ∧N 6= U and X 6= U , there

exists a Turing-machine composition, e.g. respectively M(N [X]) above, from

which U is absent.

�

Remark: We can capture an intuitive and precise notion of Turing ma-

chine model as follows: LetM be the set of all Turing machines, T be the set

of Turing-computable functions, U be the Universal Turing machine and u be

the Universal Turing-computable function. Let X : N be the null-computation

Turing machine that corresponds to the 0-ary function (i.e. without any in-

put) that always results in the same value x ∈ N. Therefore, u : P(T ) −→ N

(where P is the ordered power set of a given ordered set), in such a way that

the application m(n(x)) is equal to u(m(n(x))) and abstractly represented as

U({M,N,X}) or, more precisely, as U(s) where s denotes the string that en-

codes M , N and X, together with the write/read head and blank symbols,

with the constraint that s does neither start nor finish with the blank symbol.

Furthermore, composition is part of the notion of function, and such a repre-

sentation does not capture the composition of Turing machines U(M [N [X]]).

However, there may be applications as well as compositions involving U where

there exist such representations with U , both on the tape and outside the

tape. Therefore, there exist two different levels of functional abstraction in

the Turing machine model of computation.

In other words, on the one hand, we separate what is encoded on the tape

from what is outside the tape, by stating that only what is outside the tape is

free from unexpected effects, and hence, can be functions. On the other hand,

functions do not manipulate the operations of any function. In this way, there

are two different levels of abstraction: at one level, only the Universal Turing

machine is function and the encoded Turing machines on the tape form a one-

level parameter. At another level, there exists a Turing machine composition

on the tape, and the encoded Turing machines correspond to the computable

functions because the Universal Turing machine does not correspond to any

function in the same space, in the sense that U is capable of managing the

114



tape and guaranteeing absence of unexpected effects. Therefore, there exist

two separate levels of function abstraction in the Turing machine model of

computation.

In the next proposition, as usual, I do not regard time as a factor in the

computation.

Proposition 2 There exists a Turing machine that can correspond to more

than one Turing-computable function.

[Proof:] Let M be some Turing machine and x be its input. Let U be a

Universal Turing machine, and V be another Turing machine, which, except

for the existence of unexpected effects, produces the same output as U : the

only difference is that U calculates U(U [M [X]]), and V calculates V (V [M [X]])

and sometimes calculates U(U [M [X]]), but sometimes not, depending on the

physical places where V and M rest on the tape. Because the Turing machine

composition V (V [M [X]]) can be placed at different places on the tape at

different instants and the computations receive different kinds of unexpected

effects, the same running Turing machine M can produce different results for

the same input x. Each particular result from x corresponds to one Turing-

computable function.

�

Corollary 1 There exists a Turing machine that can avoid receiving unex-

pected effects from its parameter.

[Proof:] Universal Turing machines, as discussed in the theorem 1, must ensure

absence of unexpected effects.

�

In this chapter, I have distinguished two levels of notions of computation.

The first level is the purely mathematical or functional one, while the second

one, which contains Turing machines, is slightly different as there is the notion

of unexpected effect. In other words, for the latter level be isomorphic to the

former one, it is assumed, perhaps implicitly, the absence of unexpected effects.

115



However, another level of notions of computation can be distinguished from

applications of functions.

I observe that real-world machines have finite memory capacity, and this

forms a third level of notions of serial computation. For instance, at this level,

the halting problem is clearly decidable by the following algorithm, briefly

described. I write a machine that simulates the serial computation of another

machine M given its input data X. If the simulation halts, my machine halts

giving the proper answer, but the simulation does not halt if and only if some

state of the mentioned computation repeats. If it repeats, my machine detects

the condition and halts giving the proper answer. By ‘state of computation’

I mean the current head position together with the content of the tape in a

Turing machine model with a finite tape. However, this algorithm works on

any finite-resource machine for any serial computing.

I can draw functions f : D1 −→ D2 and g : D2 −→ D3 as well as the

corresponding composition h : D1 −→ D3, under the law h = g(f(x)) as in

the following picture:

D1

D2 Im(g(f(x)))

This holds for any function application.

However, in addition to the Tm composition,

does it dynamically hold for any computation

of Turing Machine composition?

? -

@
@

@
@

@
@

@
@

@
@R

(where Im(g(f(x))) ⊆ D3). For answering the question, I individually

consider the correspondence between the functions f , g and h, and the Turing

machines F , G and H, respectively. The answer for the question, i.e. whether

the law of composition F (G(X)) = H(X) holds for every computation of

composition of Turing machines, depends on the absolute positions of the

involved Turing machines, F and G, on the tape, as well as on whether the

only Turing machine outside the tape avoids unexpected effects on the tape.

116



However, both factors are external to the machines that are on the tape and

play rôles in the composition. As a consequence, the global view is a property

of the Universal Turing machines, in particular, it avoids what I discovered

and refer to as unexpected effects.

A final question: what is now the meaning of algorithm? In this chapter,

the term algorithm is used to mean a program which always halts, and not

necessarily a total function. A decision had to be made.

The conclusion that programs are not functions can directly lead to the

part II of the present PhD thesis dissertation. After this chapter, one is free to

introduce a hybrid programming paradigm where the functional programming

paradigm is only one of them.

The other main result from this chapter, i.e. computation is not necessarily

a function application, in a sense, is similar to a result from chapter 4 of this

thesis dissertation, where I present a notion of computation which transcends

pure mathematics.

117





Chapter 4

Mobility and Computation

In chapter on Turing machines, 3, I describe three levels of computation. The

notions can be as follows: functional, can include Turing machines and, very

briefly, can include Turing machines with finite tape. The third level briefly

corresponds to real-world serial machines. In this chapter, I introduce a fourth

level of computation, which can be called computation in the real world.

Mobile agents and the Internet have brought new ideas to theoretical foun-

dations of computer science in the last few years.

As an example, during Christmas 1999, I had an interesting conceptual in-

sight over computation: “...at the moment that I conceive the idea of moving

computation from one place to another, I also observe that a general notion

of computation transcends pure mathematics and meets the physical world“.

This itself requires new, informal and philosophical discussions in the theoret-

ical foundations of computer science. During Christmas 2001, “and because

the universe is on the move, computation is essentially mobile.”

The present chapter discusses some meaning of computation, provides a dif-

ferent semantics and present a formalized, physical and abstract model after

my simplification. The present model makes use of four forms of mobility,

119



namely strong mobility, intentional unity mobility, non-intentional unity mo-

bility, and broadcast mobility. The formalization makes use of the @-logic.

It is part of the present PhD thesis that the Internet almost entails that phi-

losophy becomes an essential subject in theory, foundations and practice in

computing science. Together with the content of chapter 3, the above observa-

tion on computation suggests the replacement of a number of key terms such

as parallel computation, distributed computation, global computation, mobile

computing and mobile computation, by a more unified notion, physical com-

putation, or simply computation. In this way, the notions of computation and

computing get closer to each other, and I can also explicitly refer to as natural

and artificial computing.

In the present chapter, I present other arguments for the most general and

unified notion of computation, although it is only one among other good pro-

posals. Mobility and global computing form two different classes of argument.

120



4.1 Introduction

It is not easy to perceive the characteristics of the era in which we all are, be-

cause an era transcends the life time of human beings as we miss comparisons

which are more realistic than what the literature can teach. The Internet has

grown very quickly. This global infrastructure, along with other recent tech-

nologies, such as satellite television, mobile phones and portable computers,

have not only changed humans’ behavior but have also made this planet psy-

chologically smaller than ever. On the one hand, this new apparatus has led

to new terminology regarding mobility[59], computation[198, 274, 320], pro-

gramming languages[219], distributed systems[24, 47] and mobile agents[154],

in such a way that this terminology deserves care, regarding the appropriate-

ness of its use. On the other hand, I observe that one notion of computation

cannot be captured using mathematics. As an example, as well as the work on

unexpected effects on Turing machines computations, of chapter 3, one may

regard parallel and concurrent computing, some forms of mobility, side-effects,

unreliability of the physical media and other factors as non-mathematical, or

mathematical via physics, although they can be abstractly captured by alge-

bra and categories up to some extent. At a more general level, on these days,

there is what has been been called mathematical physics. In the context of

computer science, although we are neither mathematicians nor physicists, one

may dare observe that, any attempt to model physics is based on insights, ob-

servations and common knowledge on the physical science up to some time, as

new laws of physics may be discovered in the future that modify the way that

we regard the real world, while theories in mathematics, for example, tend to

be monotonic. Therefore, for us, it is more convenient and safe to adopt that

view that physics and mathematics are always independent, for they deal with

different natures of objects.

To exploit this view in this chapter, I consider the semantics of compu-

tation as based on its physical nature, with some rough simplifications in the

present model as I do not deeply investigate psychological issues. It is also part

121



of the present view to regard the traditional theory of computation, which is

based on recursive functions, as extremely and historically important although,

perhaps from the present standpoint, that theory does not capture what I am

calling computation here. In [221], the authors describe a method for proving

termination of recursively defined functions based on ordinal measure, and

such contributions are very relevant, even adopting a non-mathematical per-

spective, or a different philosophical view.

A philosophical central issue in computer science is whether or not humans

are machines. A few years ago, Deep Blue beat Kasparov in chess, that is,

regarding the time when the match happened, the best machine player beat the

best human player in chess. On the one hand, the machine was not designed to

generally simulate human beings behavior, for Deep Blue is not able to solve

problems other than in chess. On the other hand, although chess allows a

huge number of different positions, taking into consideration that any repeated

position means draw, the number of chess games are finite. Thus, the central

issue in the match was efficiency . Furthermore, chess is played under well-

defined rules, which contrasts with most situations in the real life. Briefly,

as we know, in many situations, machines are more efficient than humans,

while in many others, humans are blessed with intuition and feeling, among

many other skills and talents. While machines have been analytical, humans

combine analysis and synthesis well, and have much more complex nature.

In this chapter, I use interchangeably the terms “computer science” and

“computing science” as meaning the same science. In the thirties of the last

century, “computer” was the person who used to calculate, normally some

woman[82]. Although I have my own personal view, in the present PhD thesis,

I do not discuss the philosophical issue of whether humans are machines, nor

the issue on whether God exists. However, such questions are probably what

distinguish what I refer to as the fourth level of computation from a possible

fifth level, and also what distinguish this possible fifth level from higher levels

(until the level of God). This may be seen as a kind of different levels of the

Church-Turing thesis stating that there is a unique level of computation, or,

122



alternatively, as different levels of negations of the latter philosophical idea.

Some questions arise that might conceptually interest the theory of com-

puter science. For example, let us imagine two mobile agents that travel in

space at the same speed. The first one is traveling indefinitely. The second one

is running a simple algorithm that, when it has met the first, halts. Should

one regard the second agent as running an infinite computation? If we adopt

the point of view that computation is a physical[190] concept and that space

is flat, the answer is yes.

Another issue is whether mobility introduces new elements in the theory of

computing science or not. A number of academic and theoretical work, to some

of which I make references in the present chapter, forms strong evidence that

the computing science community agrees it does. Under certain philosophical

perspective, we can also observe that mobility is a primitive in computation

and, since this, I provide a formal and physical semantics of computation (one

of the proofs that the present meaning is more general is by introducing one

different form of code mobility which can be via broadcasting media, such as

radio or satellite television) and, finally, I mention other factors of the real

world, such as faults and delays in network connections, as relevant to the

probably more general and physical notion of computation. For the formal

semantics, I write the rules using my space-time logic that I briefly introduce

in chapter 2. In this chapter I argue that both physical and philosophical

factors are part of the broader notion. Indeed, theory of computation has

strong connection with philosophy, and this claim extends the connections

between logic[67, 179] and philosophy[71]. Here, I simply discuss the matter

while I present a number of examples that have been selected during these

years of studies.

Regarding the physical nature of computation, I introduce an operational

semantics of computation that includes space and time, as well as captures the

present four forms of mobility. For the present PhD thesis, these factors are

enough to demonstrate that, although pure mathematics and logics are still

going to be used as computation and to simulate reasoning[200], they do not

123



capture more general notions of computation. In [240], there is an interesting

introduction on mobile agents, where the author shows evidence of benefits

which they achieve. For more advanced literature on this subject, [258], for

instance, among some others.

As regards philosophical factors, one enters a subjective, informal and pos-

sibly psychological world, the real world, transcending the mathematical and

logical language as well as traditional computer science texts. The notion of

computation should not be confined to a unique and universal concept, but

instead, there should be diversity, e.g. the concept of computation depends

on the defined underlying machine, although these machines share common

properties. Further, for each different notion of computation, there can be

different theories of computation, including different theories of computabil-

ity. Further, the referred to term theory, for instance, starts having a broader

meaning, which not only includes the traditional one, from deductive logics,

but also philosophical theories. Machines are becoming gradually more com-

plex. A global computer, for instance, is an abstract and general machine

atop some internet services and includes the notion of code mobility. There

are other approaches to global computation, such as [70]. On the one hand,

such a computer provides a more general notion in comparison to those no-

tions defined since Alan Turing and others, who did not consider mobility

as a physical primitive. On the other hand, the geographical distribution in-

troduces other factors to the definition of the global computer that cannot

be neglected. Because every computer has its repertoire of operations which

not only defines but also constraints the capability of the machine, any global

computer has to provide a repertoire of operations that depends on ethics,

common sense and the laws of the civilized world, e.g. some issues are dis-

cussed in chapters of [195]. Those factors belong to the real world, not to

an idealized world such as that of mathematics. As an example, a state or

country can establish some law to prevent unsolicited e-mail, say, messages of

advertisement have to contain the string “Advert” in the beginning of their

subject fields. One of the subjective parts of this is that the laws for e-mail

124



often apply to the receiver and not to the sender, or to the sender and not

to the receiver, and this makes it more controversial. At a different level, the

same holds for mobile agent systems, which are typically spread out among

different cultures. On the one hand, global computers have to establish what

can be computed. On the other hand, laws of behavior depend on time and

space, among other factors. Because of this, the work on the chapter 2 is

also based on these factors, regarding human knowledge and awareness. As

another hypothetical example, suppose that a country has a law that adopts

the policy to use only software open to its public administration. However,

should a global computer guarantee privacy of mobile agents? Can the coun-

try impose such a constraint on incoming code? Such a discussion might be

controversial.

Therefore, not only in the present chapter, both formal work and informal

discussions are significant. Informal discussions precede formalizations.

Section 4.2 is somewhat ontological. I discuss terminologies of notions re-

lated to agents[66] or mobility. Section 4.3 is very conceptual as I introduce

a view of mobility detached from other concepts and I discuss its relation-

ships with other related concepts. Section 4.4 discusses other complementary

notions such as distribution and centralization. Section 4.5 introduces an intu-

itive notion of computation. In section 4.6, I provide one notion of computation

that is somehow broader than the well-established notions[285], such as Turing

machines, λ− and π− calculi. At a higher level, the proposed notion is based

on physical, mental and philosophical factors, besides mathematics. I see com-

puting science as a table whose legs are these four studies, and this table is in

the synthesis, a diagram, in chapter 10. In this way, I extend the conventional

operational semantics by adding space, time and mobility, as well as defining

states in a more sophisticated way, in comparison to the basic literature. In

section 4.7 I discuss more practical issues with respect to global environments

borrowing some key words from philosophy. Finally, section 4.8 concludes the

chapter.

125



4.2 Agents

In this chapter, I consider four forms of mobility. I dedicate this section to

agents.

The term agent has been used by both the AI[160] and distributed systems

(DS) communities with different meanings and at different levels[123]. In

addition, the term agent in English has the same spelling as in French, and has

almost the same spelling and meaning as the term agente in Italian, Spanish

and Portuguese. In these languages, agent or agente can normally mean “a

person who acts on the behalf of another person or other people” or “a person

who does something or causes something to happen”. However, the word

agente, comes from the verb ago in Latin, which means to act.

The term mobile agent is somewhat ambiguous. For instance, robots are

agents that act physically on the environment, some of them are mobile and

they have been referred to (by some) as mobile agents, but they are objects very

different from mobile agents with which some researchers in the programming

languages and distributed systems communities deal. Researchers from AI

have commonly used the term software agent to differ from the other forms

of agency. In this chapter, I use the term mobile agent in the context of

code mobility, rather than robotics. As well as code mobility, one of the four

forms of mobility will be roughly related to the latter meaning of agent, from

robotics.

In both fields of computer science, DS and AI, it has been noted that

the term agent still lacks a clear and standard definition[123]. An interesting

question now is whether it is really necessary to have a clear and standard def-

inition of the term agent by a few particular computer scientists, or whether to

let the problem of these notions and terminology disappear naturally in future

work. That is, if different communities have used the same word in English

with different meanings, it might also be the case that both technologies and

fields have things in common[162]. From this perspective, we ought to explore

and investigate this combination.

126



Since old times, societies have developed and the term agent has become

more sophisticated. Nowadays, travel agents represent passengers in transac-

tions with airlines, for instance. Agents are able to act on users’ behalf and,

because of this, must have autonomy and authorization to do so. In such

a more complex context, intelligence is one of the desirable requirements for

human, hardware or software agents. This is one of the points where AI has

much to contribute. More than this, there is a subtle emerging area of research

related to agent technology: users not only want agents to be as intelligent

as themselves, but also want agents to behave in accordance with their corre-

sponding psychological profiles. What does psychological profile mean? how

to program it? Answers for such philosophical questions have to be established

before implementation.

I believe that, although the meanings in the terminologies of agents from

DS and AI are different and apply to different levels, they can easily comple-

ment each other. Thus, programming languages can support this integration.

4.3 Mobility and some related concepts

At this point, I am not interested in mobility of matter, nor even at the logical

level and, because of this, I do not explore this particular subject here. The

notion of mobility, as viewed as a sequence of different places at different

times, which in turn can be seen as a sequence of very short discrete intervals,

has been published in books of popular sciences. I prefer not to see people

and objects as space and time, but instead, I define computation in this way.

The opposite view could also be considered: without mobility, i.e., if nothing

changes in the world, even planets do not move, past is totally equal to future

and, hence, there is no perception of time. Since nothing changes, there is no

thought. Each of these two approaches corresponds to a different philosophical

view, although I choose the former view. However, it is important to observe up

to what extent computer science and technology can make use of a particular

philosophical view as a starting point.

127



Therefore, regarding computation, the present chapter explores some phys-

ical properties of computation together with mental and philosophical ingre-

dients. In other words, computation in this chapter transcends pure mathe-

matics.

Thus, this section is a conceptual discussion on the foundations of com-

puting science in the presence of mobility. There are good surveys on code

mobility such as [75, 123, 240]. There are other important contributions. In

chapters 5 and 6, I technically discuss code mobility. Briefly, from the techno-

logical standpoint, code mobility came from a refinement of the client-server

paradigm of distributed systems. The well-know paradigms for code mobil-

ity are: remote evaluation, code on demand and mobile agents. Additionally,

there have existed two forms of code mobility: week and strong. In the present

chapter, I am particularly interested in strong mobility, which requires the im-

plementation by the mobile agents paradigm, although there are mobile agents

systems that provide a weak form of mobility. The first symmetrically secure

solution1 for mobile agents systems was published in [105].

On the one hand, mobile agents technology was initially developed to

solve or minimize technical problems, in particular in a distributed environ-

ment where performance is regarded as important. Furthermore, the Internet

is a shared resource, users want to share their resources in a controlled way,

and this technological scenario contributes to development of mobile agents

technologies. Thus, transactions usually need several messages between part-

ners and, when this case holds, they ought not to be performed remotely but

mainly by local communication[270, 301] between a mobile agent and another

agent. This requires new programming languages concepts and constructs,

and some have been designed considering agent migration as priority, such as

[72, 229].

As already written, the present notion of computation provides four forms

of mobility. In addition to code mobility, the movements of a robot in a cor-

1The term symmetrically secure is used in the sense that the solution protects both hosts

and visiting agents in an equally satisfactory way.

128



ridor, and the movements of a portable computer running a program in a

transport on the move, at least for computer science, should not be exam-

ples of the same form of mobility for, although the computation moves as a

consequence of hardware mobility, robots move intentionally, in contrast with

portable computers, although some technologies can permit both implemen-

tations to be aware of physical positions of the underlying physical machine.

“Mobile computation”[58] has been used informally to mean the compu-

tation supported by mobile code applications. The longer the distance the

stronger the argument towards mobile code systems. However, although elec-

tronic commerce, for example, can be conceived without code mobility, CPU

loan or rental is a kind of application impossible to be done on-line on a com-

puter that does not provide code mobility. Mobile agents typically come and

use someone’s CPU, or even many CPUs in parallel. Although very simple,

this example is evidence that code mobility provides a physical and probably

more general meaning of what can be computed in the real world, and not

simply a new technology.

Conceptually, one can observe that mobility has always been a basic con-

cept in computer science, as well as part of some models of computation. For

example, although there are books that provide a symbolic definition of a Tur-

ing machine such as [259], a well-accepted metaphor since Turing himself is

based on one head that moves along a tape as a result from the current state

and the transition function.

There are examples in other models. In a Petri net the control also moves

in a similar way to a finite-state machine, either deterministic or not. The

β-reduction rule in λ-calculus is also a move in a sense. Furthermore, any

von Neumann machine, any sequential computer, provides mobility at several

levels: a variable assignment is a move and a copy. The digital and analogical

circuits also move bits and electrons, and so on. In order to generalize, every

bit that moves from one part of the computer to another may be conceived

as the simplest form of code mobility: it has source, content and destination.

Because these models of computation provide some form of simple mobility,

129



code mobility should be a primitive of a more general notion of computation.

The fact that some mobile agent can simulate a Turing machine write/read

head or a token in a Petri net is only one example of the generality of the

notion of mobility.

Summarizing the forms of mobility dealt with in the present chapter, I

itemize four different ones:

• Strong mobility: the destination is stated explicitly and hardware or

computational environment (CE) does not move (existential software

movement in a sense).

• Broadcast mobility, SpreadOut primitive: the destination is not ex-

plicit and hardware or CE does not move (universal software movement

in comparison to the strong mobility).

• Non-intentional hardware mobility: the hardware moves (or it is moved)

and the software might be aware or not.

• Intentional unite mobility, wemove command: it is an intentional form

of mobility of the computational environment (CE), in a sense. Robots

movements and people walking in the streets, might also be seen as

particular case here.

There are other forms of mobility.

4.4 Other Concepts

In [16], the author presents a model of distributed computation which is based

on a fragment of π-calculus relying on asynchronous point-to-point communi-

cation. The same author then enriches the model with some features. In gen-

eral, nowadays, many researchers who work in the code-mobility community

are in some distributed systems group, and most call for papers of conferences

on distributed systems includes mobile agents technologies. The connection

between the two notions is indeed very strong.

130



Here, an important issue is: are mobile agent systems distributed systems?

If one thinks carefully, the answer may be no. Research on mobile-code tech-

nology includes research on programming languages, design and implemen-

tation, and such languages make programmers be aware of resources, which

contrasts with the philosophy of distributed systems in its traditional sense.

But, returning to the primary and conceptual level, the terms centraliza-

tion and distribution are often related, and they can oppose or complement.

Although we might prefer to use distributed computing for technical reasons

such as efficiency, robustness and security, the concept of centralization is nec-

essary even in computing. Taking the human body as a metaphor, the human

circulatory system consists of one heart, veins spread out in the body and

blood. Some of us know that the movement of blood in veins towards the

heart represents centralization while the opposite movement away from the

heart to the parts of the body represents distribution. This is a natural exam-

ple showing that centralization and distribution can be mutually beneficial,

and even be necessary for each other. Here, mobility is a third important

component, represented by the movement of blood in both directions.

Similarly, although complex systems are normally distributed, mobile code

systems are not distributed systems but they are related[37, 311]. Likewise,

mobility is not distribution, but these concepts can coexist. These concepts

exist at different levels of abstraction. For example, one can implement a

distributed system using code mobility.

The concept of centralization is present in mobile code systems. For ex-

ample, the concept of centralization applies to the level of programming. In

this case, a central component is the programming language, as it provides

standards and imposes constraints to the whole system. As another example,

agents can move to a central place, a specific interpreter, and communicate

with each other locally. This independence from centralization and distribu-

tion, together with the possibility of implementing the last two, makes mobility

a more general concept and, hence, a good candidate for a primitive in this

model of computation.

131



Another pair of concepts is individuality and what is from the collective,

which is also relevant for global computers. Physically, every person is indi-

vidually unique. There are refinements of physical characteristics that depend

on genes, e.g. groups due to family factors. However, at the collective level, all

people have common features, such as two eyes, two ears and one mouth. Ac-

cordingly, every individual has his or her own personality, and yet they share

many collective standards: for instance, it is commonly felt that Marilyn Mon-

roe was beautiful. These psychological standards vary according to place and

time, and some of them change more slowly, others more quickly. Culture and

fashion are two examples of collective standards. Family psychological char-

acteristics, including those due to education, is an example of psychological

characteristics shared by groups. Rules of good behavior exemplify group or

collective common sense, and is normally conscious behavior.

So far computation is relatively simple for us, computer scientists, but

when one investigates deeply human psyche and starts thinking about uncon-

scious, the subject becomes with synthetic nature. The psychologist Carl G.

Jung[175], for instance, studied deeply what he called the collective uncon-

scious, which is a theory based on science, but also a theory that contains

elements from his philosophical view.

An analogy can be made between the hierarchy of characteristics as de-

scribed above, and mobile agents systems. Because agents cannot view the

internal parts of the interpreter implementation, and because all interpreters

of the system should be the same or at least compatible with each other from

a minimum extent, the interpreter corresponds to the collective unconscious,

while the mobile agent corresponds to the conscious part of an individual.

It turns out that such a psychological model can be somehow simulated by

computers. The power of the collective unconscious can be illustrated in the

following way: if there is some change or mistake in the implementation of

the interpreter, like a social revolution, all mobile agents of the system may

be critically affected at once. On the other hand, common sense and other

kinds of information ought to be ubiquitous resources, provided by the mobile-

132



agent system, i.e. mobile agents do not need to carry such established knowl-

edge about the world, nor even any established belief system. Although the

work of Jung form one of the most general psychological models, the Jung’s

model seems to apply to mobile agents, including the four psychological types,

namely, reasoning, five-sense perceptions, intuition and feeling. The excep-

tions are probably intuition and feeling, although one can develop software

which imitates human behavior.

Within the scope of AI, neural networks also make use of mobility. A

neural network tends to represent what is learned from perception and pos-

sibly intuition. Using some mobile agent technology, a neural network may

be spread out even over the globe, in such a way that the perception is also

spread out, which contrasts with human perception. Because of this obser-

vation, this implementation can be seen a novel hybrid model of computing.

One can observe that, whereas deductive systems are closer to the western way

of thinking[183], neural networks with fuzzy systems[189] are opposite models

closer to the eastern view, although this difference tends to disappear. I would

like to stress that such applications use the technology of mobile agents to im-

plement mobility, but mobility is an essential property of networks in general.

And since the whole universe is on the move, mobility is a relative concept.

Regarding computation, as well as mobile computation, there is another

modality of mobility, namely mobile computing [249]. The latter modality

comes from wireless networks and portable computers, a subject somewhat

close to robotics in a sense. Both forms are described in [60] or [61], and both

are orthogonal to each other, for instance, one application does not affect the

other[288], at least directly. As an example, to be general I must consider that

a mobile agent can move from one craft to another, both on the move, and

such a double movement is part of the general notion of computation.

133



4.5 An intuitive notion of computation

Traditionally, the models of computation are: Turing machines, Church’s λ-

calculus, Post production systems, Kleene’s µ-recursion schemes, Herbrand-

Gödel equational definability, Shepherdson-Sturgis register machines, the while

programming language, and flow charts. Mobility is becoming part of candi-

dates to the next generation of established models of computation.

Taking the example of on-line CPU loans or rentals, agents come to the

host and, after identification and/or negotiation, use the CPU and possibly

other resources, depending on the agreement. If it becomes expensive, some

agents move to another host. Besides practical concerns, any application that

depends on the presence of the “computational entity” acting locally is an

example that there are computations which cannot be done without some

form of interpreted code mobility. Should space and time are regarded, it is

not difficult to find other examples. In particular, after having transported

an agent to some virtual machine, while that agent interacts locally, some

connections may be interrupted but the agent’s computation might not be

affected by that (temporary) interruption.

Therefore, in this chapter, I define a notion of computation from an op-

erational standpoint, in particular, I am concerned with time and space as

part of a somewhat general notion and, therefore, part of the model that I

shall present. The present formal model is only an extension of the while

programming language.

Thus, some conceptual issues are: what is a computational entity? what

do we mean by ’code’ and ’interpretation’? In some sense, ’code’ can be any

data, and the present discussion on computation leads one again to philosophy.

There is the same for the term “executable code” which, depending on the

adopted meaning, there are two different views in computer science. Therefore,

code mobility introduces a philosophical view to computer science.

In [57], Cardelli briefly and informally defines global computation and

points out several related issues, such as how multiple global computers can

134



interact effectively. As he says, the main characteristic of global computation

is the geographical distribution. Although every planet has its globe, the term

global computation refers to this planet. Although I keep the term “global

computer” from his article, I prefer to use the term global computing instead

of global computation. The part II of this thesis is dedicated to programming

languages that can be used for global computing.

In this way, I shift the notion commonly referred to as “computation”

to be referred to as mathematical computation to accommodate mobility as

a primitive of the notion which I refer to as computation, for mobility is the

focus of attention in this chapter. Alternatively, one may prefer to refer to the

same notion as physical computation while keeps the traditional meaning of

computation.

Parallel computation is another abstract and theoretical concept that is

modeled in π-calculus[212]. In that article the author shows that names of

channels can be passed from one process to another, for instance, and that was

a major step in the foundations of mobility and computation. Technologically,

parallel computing has been linked to super-computing and powerful machines,

but code mobility can also implement parallel computation over a local-area

network or wide-area network or both. Thus, parallel computation is simply

computation in parallel.

In [119], the authors introduce the distributed Join-calculus, which is an

extension of the Join-calculus[118] for mobile agents. Both are asynchronous

variants of π-calculus with the same expressive power as the latter, but the

former provide better locality and better static scoping rules[119]. To repre-

sent mobile agents, the distributed Join-calculus introduces locations, and for

unreliable environments, that calculus also provides a simple model of failure.

Ambient calculus[60, 61] also captures the notion of code mobility, and,

because the calculus is also partially based on the π-calculus, it also describes

parallel processes. The Ambient model is also inspired by Telescript but almost

dual to it, according to the authors. Other important contributions have

been made since then, such as [48]. However, like other calculi and unlike

135



Distributed Join-calculus and the Seal calculus[307] which is another extension

of π-calculus, it does not abstract other details associated to mobility, such as

resources and uncertainty, e.g. due to unreliability of physical media. On the

other hand, the Seal calculus and others[154] are somewhat practical calculi, in

the sense that they are dependent on current structures such as the Internet.

Although the notion of process[192] migration[213] is not new, the term mobile

computation was coined by Cardelli in [58].

An interesting feature of a model of computation with strong mobility is

that they transcend term rewriting systems. In comparison to models based

on π-calculus, the flyto primitive (i.e. an instruction needed in every mobile

agents programming language) moves not only the remaining symbols but

also its surrounding context. Here I present an example of a rewriting system-

like rule, in Ambient calculus, for moving an agent composed of two parallel

processes (flyto(B).P and Q) from the place A to the place B:

A[ (flyto(B).P )|Q ] ‖ B[ ]
τ
−→ A[ ] ‖ B[ P |Q ]

The above rule cannot be applied using, for instance, a context-free grammar[22,

157, 165]. Moreover, at a more practical level, if one considers that places

have their local resources and that agents typically use them locally, the order

in which agents move does matter. For instance, in an unreliable environ-

ment, one cannot think in terms of a more general sense of the Church-Rosser

property[143].

Parallel computation is a more general and abstract notion in comparison

with recursive functions, that is, the latter is like a thiner granule. The linear

operator ⊗, for instance, captures the notion of parallel operands, but it is

still purely mathematical. Because I am looking for generality, my notion

of computation includes both parallel computation and mobility, in addition

to the physical[265] nature of this form of computation. In comparison to

Ambient calculus, for instance, I consider timeouts in the model.

Although the mobility community in computer science established global

136



computing for structures such as the Internet, certain issues related to compu-

tation are not limited to this planet. For example, a mobile agent can migrate

from a spacecraft and continue its computation at another spacecraft no matter

where they are. Agents can also travel from one planet to another no matter

the distance between them. Because of this, I can perceive another term to

refer to another model that includes code mobility. I use the term physical

computation to stress the physical nature of computation, and computation in

the real world to stress the philosophical, physical and psychological aspects

of computation together. Additionally, I also use the term computing in the

real world to include programming languages, technologies and applications.

Larger distances and time intervals for mobility are two fundamental char-

acteristics of code mobility in comparison to the computation local to a single

hardware. In [57], Cardelli describes the main characteristics of global com-

puting and I summarize them below:

• Parallel or concurrent processes.

• Code mobility.

• Latency and bandwidth are directly addressed.

• The availability of resources are distributed geographically, which re-

quires that programmers be aware of locality of resources. This in turn

replaces a established law in distributed systems.

• Higher level of interaction between users and machines.

• Security and privacy are particularly critical.

Thus, physical computation is a more abstract and theoretical notion than

global computing, because physical properties of time and space are not limited

to this planet or Internets. Physical computation and global computing almost

entail mobility. However, while mobile code systems necessarily produce phys-

ical computation, this can be done locally or remotely, but not necessarily on

a global environment.

137



If one starts considering mobile computation as a specialization of com-

putation, we can see a kind of ontological paradox[64] in the traditional no-

tion of computation: from the moment that one conceives the idea of moving

computation, one can observe that an effective general notion of computation

transcends pure mathematics and meets the physical world. Furthermore, ob-

jects in the real world are far from being perfect as the mathematical objects

which one idealizes. In other words, code mobility changes the notion of com-

putation.

The terms real and ideal have been used in philosophy concerning realism

and idealism, respectively. Computation in the real world is at somewhere

between the two, for I consider that the real world includes the material world,

the psychological world and so on. Examples of fundamental questions are:

• What is the meaning of computation?

• What is the meaning of computing?

• What are the differences between mankind and machines?

• Can machines succeed in the Turing test? What does intelligence mean?

• Humans compute while they are dreaming, and sometimes they may

even make some arithmetic calculation, but they are not conscious nor

have any control over the thought. Should I consider this phenomena in

a more general notion? Is not it evidence that machine intelligence is

different from human intelligence?

• Etc.

Such questions show the importance of having some knowledge on psy-

chology and philosophy. In particular, the above kind of issues is evidence of

the relevance of philosophy in foundations of computer science. Regarding the

question on whether or not machines may think, in [273], it is presented a num-

ber of pieces of evidence that can explain how a machine may simulate insight

138



and/or intuition. In contrast, there are other philosophical opinions which

have been defended by others. The author of the present dissertation, from a

different philosophical standpoint, makes note that such a simulation should

not be regarded as necessarily similar to real thought for, if simulation had

been really thought, that would simply mean that natural sciences and philos-

ophy already know all about human beings and the universe (This observation

is mainly conceptual and not necessarily related to results that machines may

give, for this in turn can be a matter of up to what extent human beings can

perceive differences in the results). There is an important difference between

to be able to explain a hypothesis from some skeptical point of view over the

reality and to prove the same hypothesis, an issue a little similar to what is

briefly discussed in the present dissertation, section 1.3, on relevance logics.

Moreover, it is already known that there exist notions that cannot be proved

or refuted, as perhaps Gödel incompleteness theorem[144] is the best exam-

ple that truth and proof, among other notions, do not necessarily go together.

Therefore, in the lack of evidence that we humans know all about the universe,

the opinion that machines think should be regarded as part of particular belief

system and a purely philosophical matter.

Considering that humans have unconscious, the task of simulating human

behavior with computers becomes dramatically more difficult. Here I give

one more example of this view. It can be perceived that the sensation of

pleasure conceptually is a mechanism of which the nature makes use to preserve

both the individual and their species. At the individual level, a delicious

(or beautiful) meal is sometimes able to create the wish in some person to

feed themselves, sometimes even without any need. At the collective level,

sexual pleasure can make a person pregnant. According to Jung, the human

unconscious is often projected on things and people that one deals in one’s daily

life, and that mechanism can work individually or collectively. Thus, projection

is a view that the individuals have of their unconscious, both personal and

collective, and the rôle of projection seems to be to make them aware that the

source of the standard of their interactions with the world is in themselves,

139



and possibly that the standard needs change.

Projection is a mechanism of which the psyche makes use to advise the

individual concerning what they do not perceive in themselves. In some sense,

although projections are not normally pathological, the rôle of projection is

somewhat similar to physical pain, which advises the individual that he or she

is sick and, therefore, should seek treatment. Some other physical symptoms

seem to play this rôle but they act at the collective level especially when the

disease is contagious.

The collective unconscious makes sense as a psychological mechanism that

seems to protect the individual and the species. To date, in addition to the

approaches in natural sciences, there are different philosophical positions con-

cerning the nature of psyche, some more complex than others. A recent selec-

tion on the rôle of analogy in the context of cognitive science is in [136].

To establish what computation is, I find a philosophical question: does

any computation exist that cannot be perceived by humans at all? The answer

also depends on the philosophical position. Although I use the term “real”,

I also adopt some idealistic ideas, i.e. computation in the real world regards

human as a central component, but this does not exclude beliefs in God, either

internal or external, and this is another subject in philosophy. The previous

question can be used to provide foundations for a theoretical computer science

based on physics and philosophy, as well as on mathematics. The relationship

between mathematics and computer science is certainly very strong, like the

relationship between mathematics and physics[110].

Here, as an example of computation, I present the reduction steps in some

computation using some version of λ-calculus with some syntactic sugar:

(λf.f 10)(λx.x+ 1)
λ
 (λx.x + 1)10

λ
 10 + 1

λ
 11

An interesting introductory and long study on λ-calculus and models of

untyped λ-calculus is in [32]. Although these steps of computation are de-

scribed as purely abstract objects, at the moment that I read them the actual

140



computation is carried out mentally, in a context at some time and at some

place.

4.6 A notion of computation

Although there are other notions of computation, using local symbol definition,

here I consider that computation can be φ in the following signature:

φ : π × ρ, ρ : τ × U × ψ

where π is the sequential concept of computation, and ρ is an extra philo-

sophical component, which in turn is defined as a product of time τ , space U

and some possible psychological component ψ. Here, place and time can be

those traditional physical dimensions, while ψ is with respect to some observer.

In this piece of work, I do not use the above signature, which was shown as

illustration.

4.6.1 A view of time, a representation

This section describes a view of time in accordance with what is left as param-

eters in chapter 2. In many articles on temporal logics[11, 12, 128] commonly

applied to AI planning systems[13] and other fields, time is often represented

by using real values where, as time goes by, the present moment normally

increases. There might be branches along these lines to represent “futures”.

There are other approaches, such as in [257] that can also be useful for applica-

tions, including system specification, but also to express natural sub-languages

by using particular cases of modality.

In this chapter, I adopt a form of representing time by making use of a

flow. Thus, let us define T as an infinite set of temporal moments and let the

flow be linear in R. I use relational operators over the real numbers to state

temporal relations.

The longer the distance is, the more significant modern physics is. Thus

141



the present model is only a simplification of my intuitive notion i.e. this notion

depends upon a number of factors that do not appear in these semantic rules,

such as those caused by gravity and bodies, as well as what can be discovered

in physics.

Let C be the set of five logical values as defined in chapter 2. In accordance

with the two operators <t: T×T −→ C, −t : T×T −→ T and so on, which I

introduced somewhat informally in chapter 2, the operators over time instants

refer to the daily-life temporal concepts, e.g. a <t b refers to “a happens

before b” and so on. Apart from such order operations, there is no interval

relationship over indexes. Thus, if t ∈ T is used as time variable, tj >t ti

always holds for j > i but ti+1 −t ti is not necessarily equal to tj+1−t tj. If T

is R, therefore <t is < and −t is − without further formalization.

I do not use <s here. −s : S × S −→ S is some approximation of the

Euclidean distance from the first operand to the second one

(xi, yi, zi)−s (xj, yj, zj)
def
= approx

√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

by using some mathematical method, already known for example.

One may want to represent time in a different way.

Here I define computation by defining the set of operations of some abstract

machine.

4.6.2 States of the Real World

In this subsection, both space and time[34] are defined as continuum[78]. Much

current theoretical work in computer science, such as [46], makes use of some

form of continuous time. Because it is not my intention to present and discuss

more than one philosophical view in the current chapter, I choose and present

one as an example, having in mind that it is not necessarily a proposal for all.

One subjective view is needed for supporting explanations in next subsection.

Therefore, since such a model supports the idea of computing in R, it may

142



also support the idea of computing in Z with possible minor adaptation. In

parallel to this, as an example that philosophy is a basis for computer science,

in this subsection, I am regarding a hypothetical situation where agents travel

to some country, for instance, China and, therefore, are culturally exposed

to their very ancient wisdom. However, in India for instance, although it is

another country in Asia, agents would be exposed to some different cultural

background. In general, computer science has been based on modern western

culture, but mobile agents on a global environment is making one think about

the meaning of computation from different perspectives. Furthermore, on the

one hand, complexity theory states what computers can do. On the other

hand, ethics[179] (which is a branch of philosophy) asserts what computers

should and what they cannot morally do, i.e. there are two complementary

approaches. Internethics may be viewed as a good term for this new area.

Following this, during computation, each real state, or here I simply refer

to it as “state”, is not only the context of the program, in its traditional

sense. It is also behaviors, including actions, which are unique in time and

space. Behavior is the part of a state that can be perceived externally, while

the internal state contains the perception of the external world. A state is a

set that can contain behavior and internal state, which in turn can contain

locations, the characteristics of the physical world at a specific time, e.g. the

whole mankind and all computers, the whole world, although not everything is

accessible by the agent in question. In this sense, there is a mismatch between

real states and the machine set of behaviors. The former is uncountable, the

latter is countable[110]. Human experience is continuous in both space and

time2. I tend to perceive time and space as in the structure of the set of real

numbers.

Without defending a particular view, an analogy can be drawn between

this discussion and in the relationship between I Ching and Taoism. I Ching

2The notion of time might also be even individual, e.g. for a 2-year-old child, one year

corresponds to the experience during half of life, and, perhaps because of this, I may feel

that time goes by quicker as I get older.

143



hexagrams are pictorially composed of six lines. Some lines might move from

yin to yang, others might move from yang to yin. Indeed, the I Ching is based

on the binary system. On the other hand, although Taoism is also based on

this pair of concepts, they are pictorially shown inside the Tao circle in such a

way that one is gradually (but without granularity) being moved to the other.

This analogy suggests that the I Ching is only a simplification of the Taoist

view of reality as much as machines, by nature, are simplifications of the real

world.

As another analogy, the classical musical language as well as the capability

of some instruments can also be seen as simplifications of music. For some

instruments, there are only 12 notes, although the scale is cyclical and can be

repeated with higher or lower pitches. However, between any two subsequent

notes rests a continuum interval of frequencies.

Likewise, from a somewhat similar point of view, although digital comput-

ers are useful and much can be improved on them, human computation might

not be a concept limited to the set of integers, or perhaps it is better to define

the notion of computation more precisely. That is, it is important to make

clear up to what extent one is talking about computation, whether e.g. feel-

ing and intuition are really computation, or whether this pair of psychological

concepts and others, say synthetic concepts, can only be a matter of analytical

simulation. Moreover, R certainly suggests the potential for future discover-

ies, as the infiniteness of the tape in the Turing machine model represents

this potential, which is infinite. As a concrete example, if I want to conceive

a circumference in a Cartesian plan, it is sufficient to have its equation, i.e.

x2 + y2 = r2 where r denotes its radius, but, to calculate its coordinates, I

must convince myself that between any two points there exist infinite points.

Although the infiniteness of the tape in the Turing machine model suggests

this potential, proposing a model in R4 may be more natural and easier to

conceive from a different view of computation. As one example of other work

on a continuous three-dimensional space, in [163], the authors introduce an

approach to the solution of the pursuit problem in the Euclidean E3 space.

144



It is known that humans reason and do research in science and mathemat-

ics in many ways, while the mathematical world is pure, exact or precise and

perhaps very clean, tidy and structured in comparison to the psychological

world, with dreams and the unconscious, for instance. An example of this

kind of issue is input-output in purely functional languages, solved by using

monads[145, 310], but a problem that can also be seen from a physical stand-

point instead. There are other different views regarding the match between

mathematical and real worlds, and this is also another piece of evidence that

computation is a philosophical notion. This almost entails that philosophy is

a theoretical basis of computation and computer science.

To compute in R is not a novel idea, and there are good references such

as [298].

In this discussion, I can still see a finite computation in a discrete interval in

time as a sequence of states st0st1 ...stn , where {t0, ..., tn} are chosen instants,

and I simply add the notions of time and space for every state. To define

computation I need to define an abstract machine. My machine is a virtual

machine that supports mobile agents, i.e. a virtual machine for a subset of an

imperative language, such as Pascal or C, in addition to the ability to move

the code, data and state of the computation in accordance with the definitions

here.

Firstly, I define a state as a tuple composed of an internal state (ι), the

external state of behavior (β), a place p ≡ 〈x, y, z〉 and an instant (τ). Thus,

s ∈ S, s
def
= 〈ι, β, x, y, z, τ〉

or, in the @-logic,

s ∈ S, s
def
= @p · τ [(ι, β)]

where S is the set of all possible states. In this chapter, I define ι and β as

sets of propositions. I define the empty state as f ∈ S, f
def
= 〈∅, ∅, 0, 0, 0, 0〉.

Thus, for s1 ≡ 〈ι1, β1, x1, y1, z1, τ1〉 ∧ s2 ≡ 〈ι2, β2, x2, y2, z2, τ2〉 ∧ τ = τ1 = τ2,

145



and ζ being a condition (a predicate as a singleton), there are six properties,

which are the following:

P1:

ζ ∈ s1 ↔ ζ ∈ ι1

That is, if a condition is in a state, it means that it is part of its internal

state. Similarly, two predicates for sets:

P2:

s1

s
⊂ s2 ↔ (ι1 ⊂ ι2 ∨ β1 ⊂ β2) ∧ p1 =s p2 ∧ τ1 =t τ2

Accordingly, s1

s
⊃ s2 ↔ s2

s
⊂ s1.

P3:

s1
s
= s2 ↔ ι1 = ι2 ∧ β1 = β2 ∧ p1 =s p2 ∧ τ1 =t τ2

Accordingly, s1

s

⊆ s2 ↔ s1

s
⊂ s2 ∨ s1

s
= s2.

P4:

s1

s

6= s2 ↔ ι1 6= ι2 ∨ β1 6= β2 ∨ p1 6= p2 ∨ τ1 6=t τ2

and two functions for the spatial sets, in the @-logic from now on.

P5:

s1

s
∪ s2 ≡ 〈ι1, β1, x, y, z, τ〉

s
∪ 〈ι2, β2, x, y, z, τ〉 ↔ @p · τ [(ι1 ∪ ι2, β1 ∪ β2)]

P6:

s1

s
∩ s2 ≡ 〈ι1, β1, x, y, z, τ〉

s
∩ 〈ι2, β2, x, y, z, τ〉 ≡ @p · τ [(ι1 ∩ ι2, β1 ∩ β2)]

I also take the liberty to use ε to denote the idle state. There is only one

occurrence of the idle state in any computation. Notice that ε and f are not

the same notion.

In this chapter, because ι and β are closely related, I collapse ι and β

and refer to them as virtual state. Thus, from now on a state is the tuple

〈rt, x, y, z, t〉 or the proposition @p · t[rt], which is the shorthand for

@p · t[state = rt]

146



where rt is the corresponding virtual state at the time t.

As already mentioned, although I informally consider the possibility of

continuous flow-like multi-dimension set of states with respect to space and

time, here I define a simplified version of computation, i.e. computation in

the real world is a sequence of states, st0st1 ...stn that one selects according to

a particular focus of attention.

Let S be the set of all machine states, S isomorphic to N. I define a (non-

reflexive except for one case, and) anti-symmetric relation
c
→: S×S −→ Bool

to indicate the existence of two subsequent states associated to the computa-

tion. I define
c
→ in terms of its properties as follows:

• s
c
→ s1 ∧ s

c
→ s2 ⇒ s1

s
= s2, s1

c
→ s ∧ s2

c
→ s⇒ s1

s
= s2.

• s
c
→ s⇒ s

s
= ε.

• Its particular case ε
c
→ ε which always holds.

I define
+c
−→ as the transitive relation as follows:

st0

+c
−→ stn

def
= (st0

s

6= ε∧st0

c
→ stn

+c
−→ ε) v (∃st1 ∈ S : st0

c
→ st1

+c
−→ stn

+c
−→ ε)

where v is the exclusive or, and ∀s0, s1, s2 ∈ S : s0
+c
−→ s1

+c
−→ s2 is

defined as s0
+c
−→ s1 ∧ s1

+c
−→ s2 and the same holds with

c
→. Among others,

three important properties of
+c
−→ are the following:

• s
+c
−→ s⇒ s

s
= ε.

• ∀s, s
+c
−→ ε which is my practical view of computation.

• si
+c
−→ sj ∧ si

+c
−→ sk ⇒ (sj

s
= sk v sj

+c
−→ sk v sk

+c
−→ si), i.e.

+c
−→ is

unique with respect to
c
→.

• si
+c
−→ sj ∧ si

s

6= ε⇒ ¬(sj
+c
−→ si)

147



In this way, computation in the real world can be defined as any finite

sequence of states over the time, where every two subsequent states are linked

with an application of
c
→ relation, where the last state of that sequence is the

only inactive state of that computation. The intention might be the same, the

place might be the same but, if the instants are not the same, the external

world is no longer the same. Therefore, from this point of view, computations

performed at different times cannot be the same. With some simplification,

human thought can be an example of
+c
−→, where ε corresponds to the in-

dividual’s death. It is very difficult, if possible, if I want to mathematically

establish when a computation starts and when it finishes for this case. So I

state in this example that human computing starts when they are born and

finishes when they die, and it is also always finite. I can also think in terms of

collective computing which may never finish due to (human) communication,

or may finish due to some colliding asteroid, for instance.

An analogy can be made between computation and a melody being played,

where not only the sequence of notes is relevant but also the duration of

every note among other variables. More generally, there is a subtle difference

between a melody and its performance, whereas, likewise, there is some subtle

difference between the mathematical and physical forms of computations.

In comparison with any rewriting system[23], except for the idle-state case

here, although
+c
−→ is also transitive, such a relation is neither symmetric nor

reflexive as time never goes by backwards nor it stops, i.e. joining together

two of the above properties we obtain the following one:

sti

+c
−→ stj ⇒ (sti

s
= stj

s
= ε) v (sti

s

6= stj ∧ ¬(stj

+c
−→ sti))

Moreover, this relation implies some measure of uncertainty due to the

somewhat unpredictable nature of the real world. While any computation

happens, the probability of its success gradually increases over time. To add

some probability between states is enough to introduce a more general and

physical model, in some sense. Hence, I alternatively define
+c
−→ as follows:

148



st0

+c
−→ stn

def
= ∃m ∈ R, 0 ≤ m ≤ 1 : (st0

s

6= ε ∧ Ψ(m : st0

c
→ stn)

+c
−→ ε) v

(∃st1 ∈ S : Ψ(m : st0

c
→ st1)

+c
−→ stn

+c
−→ ε) (4.1)

where Ψ(n : ϕ) represents the assertion ϕ with probability n. Therefore,

∀s : Ψ(1 : s
+c
−→ ε) and also

∀s0, s1, s2 ∈ S,mn ∈ R, 0 ≤ mn ≤ 1 : Ψ(mn : s0
+c
−→ s2)

def
=

∃m,n : R, 0 ≤ m ≤ 1, 0 ≤ n ≤ 1, mn = m× n : (4.2)

Ψ(m : s0
+c
−→ s1) ∧ Ψ(n : s1

c
→ s2)

The � relation indicates that two states coexist independently. Formally

using the @-logic...

@p1 · τ1[r1] � @p2 · τ2[r2]
def
= @p1 · τ1[r1]

s
∩ @p2 · τ2[r2]

s
= f ∧ p1 6=s p2

Let U be the set of computations and S be the set of states. I define the

function
s
 : U × S −→ Bool, which informs whether the second operand is

the last non-idle state during a computation, which in turn is given as the first

operand.

The function
s
 may have included the influence from the behavior of

other computations, not only interaction with other computations. Thus, a

program running twice produces two different computations (and perhaps two

different behaviors). There are two more significant properties:

(∀C1, C2 ∈ U, ∀s ∈ S) C1
s
 s ∧ C2

s
 s⇒ C1

c
= C2

where C1
c
= C2

def
= ∃n ∈ N : C1 ≡ s0s1 . . . sn ∧ C2 ≡ s′0s

′
2 . . . s

′
n ∧ ∀(i ∈

N, i ≤ n) : si
s
= s′i. And also:

(∀C ∈ U, ∀s1, s2 ∈ S) C
s
 s1 ∧ C

s
 s2 ⇒ s1

s
= s2

That is, computation has the property of being a unique object with re-

spect to its final state. I also define α as the set of all programs, i.e. the set

149



of all mobile agents (or mobile processes), which are the potential for com-

putation. Let U be the set of computations and S be the set of states. The

function d e : U −→ S, that indicates the last active state, is defined as the

following:

dCe =











s0 if C ≡ s0ε, where s0 6= ε ∧ s0
c
→ ε

sn if C ≡ s0...snε, where ((∀i ∈ N) si 6= ε) ∧ sn
c
→ ε

for every computation C which entails some n ∈ N.

4.6.3 The Present Semantics of Computation

In this subsection, I attempt to formalize a simplified version of the previous

notion of computation, informally introduced above in this section, by using

the @-logic.

Let π be a program in some object language with some computation φc

and let all of my definitions in this subsection apply to the scope π, unless

stated otherwise. To avoid being exhaustive, I consider that variables have

their separate scopes in each rule although they have the same names and

meanings, except for variables defined explicitly as global for all rules. Let AR

be isomorphic to R∪{uu} and AL stand for the set of Boolean values, and use

these sets as carriers of the algebra[96, 210] that is going to be defined here.

I also write 〈x, y, z〉 explicitly when I want to stress the relationships be-

tween each of these coordinates and the time, although I do not use them

individually in the semantic rules. There is one global definition, in symbols,

p
def
= 〈x, y, z〉 and it may be indexed, e.g. pi

def
= 〈xi, yi, zi〉. As well as the no-

tation in rules, I make implicit use of first-order predicate logic in these rules.

When t is not the present the predicate expression does not hold. Thus, the

states of the predicate expressions change as time passes. Thus, in the @-logic,

I write logical expressions as well as operational expressions.

The present model is over the following definitions:

• There is a common three-dimensional space in E3, which is the universe.

150



I equate R ≡ E and use Cartesian coordinates 〈x, y, x〉 to refer to the

points in (Euclidean) space E3. Thus, let U
def
= E3, be the universe;

• There is an infinite but countable set of possible agents4
def
= {a1, ..., ai, ...}

written in the language α;

• Every agent has its input queue;

• Every point 〈x, y, z〉 in U contains a finite set Obj
def
= 〈v, {a1, ..., an}〉

where v ∈ V al, V al ≡ AR, that is, v stands for either a real number or

the uu value, and {a1, ..., an} = Y ⊆ 4.

Then, I define the following Σ-algebra

A
def
= 〈AR,AL, V ar, SObj, Loc, S,U , 0, 2, uu, par, p, p0, pi, q,

r, r0, r
p, rp0, rt, rt0 , rt0+Ib

, t1, rti , s, s
′, t, t0, tε, tf , ti,∆t,

Ap
t , A

p
ti
, Ap0

t0
, Ap0

t , At, At0 , A
pi

ti
, Ap0

t0+Ib
, Ad,

u, v, V, x, y, z, x0, y0, z0, xi, yi, zi,
∆l,∆l1,∆l2,∆s,∆s1,∆s2,

I, Iµ, Ia, Ia1
, Ia2

, Ib, Ie, Ii, I:=, IC, Ith, Is, Iwem, ω,Ψ〉

for signature Σ here, where V ar is the set of all variables internal to φc,

and also to π; and since Obj = 〈v, Y 〉 where v ∈ AR, Y ⊆ 4 as stated,

SObj = AR × P(4); Loc is the set of internal locations, and S is the set of

states. Let u, v ∈ V al, V ∈ V ar, p ∈ U , r, s ∈ S, t ∈ R. Then,

Σ
def
= 〈{AR,AL, V ar, V al, Loc, S, SObj}, F 〉

where F is consisted by +, −, /, =, 6=, <, >, ∧, ∨, r2 as usually defined in

mathematics plus the following functions:

(locate) γ : V ar −→ Loc

(lookup) ρ : S × Loc −→ V al

(update) ∆: S × Loc× V al −→ S

(value) Θ : S −→ SObj

(first) ξ : S −→ AR × S

151



(del queue) χ : S −→ S

(ins queue) η : S ×AR −→ S

(fault) fπ : R3 × R −→ AL

(physical move) µ̈x, µ̈y, µ̈z : R −→ R

Intuitively, γ maps a variable to its location; ρ results in the content of

a location in some particular state; ∆ updates the memory according to its

parameters: location and value; Θ, provided a state, results in the value of the

corresponding point in space and time; ξ gives the first element of the input

queue and the state after the operation; χ removes the first element from this

queue; η inserts a value as the last element of this queue; fπ is a predicate that,

given some point p and time t, informs whether there is some fault (e.g. the

presence of another agent) between the current point (an implicit parameter

that denotes the point at the three current coordinates of the running agent)

and p at t; and µ̈x, µ̈y, µ̈z are postfix functions that, given one coordinate

results in the new corresponding coordinate due to possible physical hardware

movement. That is

pµ̈
def
=

√

(xµ̈x)2 + (yµ̈y)2 + (zµ̈z)2 (for an approximation of the real)

For each semantic rule, as it is already clear here, to simplify a little

the notation, I shall assume that the existence of more than one occurrences

of the functions µ̈x, µ̈y, µ̈z and µ̈ is not relevant, that is, I do not formally

consider that the physical shifts of the machine for this tiny intervals might

be at different velocities. However, in this case, to state this independence

of velocities, I could index the occurrences of theses operators, for example,

µ̈x1, µ̈x2, µ̈1, µ̈y1, µ̈2, µ̈y2 and so on. Additionally, let s, s′, r, rt, r0, rt0 , rt0+Ib
, rti, r

p, rp0 ∈

S, as well as let r0 be the initial state of the computing agent.

For the level of abstraction to capture computation, I regard the meaning

of defining operations in terms of some sequence in some microcode. There are

other alternatives. My choice is to divide the rules into two levels. One of them

152



concerns the object of computation, as usual, and I call object rules. The other

concerns the application of the object rules. This applies only for interaction

and mobility operations. Let us start with the three rules as follows:

ät0 ∧ (∀t, (t0 <t t <t t0 +t qi)⇒ ät) ∧Kt0+qi
∧ ∀t, t >t t0 +t qi, (¬ät ∧ ¬Kt)

where ät is the attempt to perform a remote operation (wemove although for

this level of detail there is no timeout, flyto or view or throw) at time t by

using the rule 4.5 (wemove) or 4.6 (flyto) or 4.9 or 4.12 (both rules for view),

or 4.15 (throw); Kt is the action of skipping the executing operation of rule

4.8 (flyto) or 4.14 (view) or 4.17 (throw) at time t; qi = min(q, d), d is the

delay due to the operation in question, q is the timeout for this occurrence of

operation.

I also need to formalize the notion “the sooner the better”. Thus, if ti and

tj are time variables, ät is some action of type A to be performed at t, then

the rule

( (ti ≤t tj) ∧ ♦äti ∧ ♦ätj )→ �äti

states that, given the above conditions, the action äti must be performed first.

Every state is a tuple 〈rt, x, y, z, t〉 where rt is the virtual state at some time

t, and 〈x, y, z〉 are Cartesian coordinates at that locality. I use the notation

r[V/u] to mean that the variable V contains the value u in the virtual state

r. I adopt Ap
t , for ambient state, to refer to a particular state at some place

p and time t. Ambient states are important to stress the mobility of virtual

states. Therefore, rt ∩ A
p
t simply indicates that the virtual state rt is placed

in the ambient Ap
t at place p and time t, once the premise rt ⊆ Ap

t exists. I

use this notation for mobility and other related operations, and simply write

rt to denote the same situation in other rules. In the semantic rules, I use the

definition s
def
= 〈r, x, y, z, t0〉 which can also be represented as @p · t0[r] in the

@-logic. Thus, two or more states s, s′... can happen at the same time, i.e. in

parallel. In this case, I denote this as s � s′ � ... .

Given that ε
+c
−→ ε, any agent segment of computation can also be com-

153



posed in S1‖S2 i.e. in parallel:

S1 |= 〈r
p1

t , x1, y1, z1, t〉
+c
−→ sti S2 |= 〈r

p2

t , x2, y2, z2, t〉
+c
−→ s′ti

S1‖S2 |= (〈rp1

t , x1, y1, z1, t〉 � 〈r
p2

t , x2, y2, z2, t〉)
+c
−→ (sti � s′ti)

where S1 and S2 denote two segments of computation for some ti. For any two

computations, the rule for composing them is different from the previous one:

C1 |= 〈r1, x1, y1, z1, t1〉
+c
−→ sti C2 |= 〈r2, x2, y2, z2, t2〉

+c
−→ stj

C1|C2 |= (〈r1, x1, y1, z1, t1〉 � 〈r2, x2, y2, z2, t2〉)
+c
−→ (sti � stj )

where C1 denotes a computation that finishes at ti and C2 denotes a compu-

tations that finishes at tj.

Parallel computation presents behaviors in parallel. Notice that computa-

tions might interfere with each other.

My abstract model of computation is an extension of the while language

[2], which is an abstract model of computation. Nonetheless, although that

model has the if statement, I observe that this statement can be definable:

that is, for p and q as a Boolean expression and statement, respectively, IF p

THEN q is defined as

x := 0;

while x = 0 ∧ p do

q ;

x := 1;

endwhile

for a new variable x.

For defining the if-then-else, roughly speaking the reader can view two

similar loops, and this change by removing if from the present model will

simplify my effort. I am formulating a model in terms of one set of operations.

It is important to see that these operations do not necessarily correspond to

their suitability in programming languages that permit proactive move because

here I am only defining an abstract model. Chapter 6 contains sufficient

material of programming languages in the presence of global computers.

154



The coordinates 〈x, y, z〉 of E3, for instance, are not normally provided at

the language level, but they are in the model because they provide a suitable

notion of space for my purpose.

In this way, the operations form a somewhat minimal set of primitives for

the present semantics of computation, i.e. it corresponds to an extension of

the while language presented in the literature as in [151, 185, 219, 228, 275,

318, 319]). Thus, I formalize the operational semantics that complement theirs

and give a few local primitives. Thus my working objects are:

• Real constants.

• The space initialization.

• The create statement, which creates another copy of the computation

at another place.

• The arithmetical operators: +,− : R× R −→ R.

• The relational operators: =, <: R× R −→ R.

• The assignment statement.

• The while statement.

• Intentional unity mobility: the wemove statement.

• Broadcasting mobility: the SpreadOut statement.

• Strong mobility: the flyto statement.

• Communication: the view and throw statements for remote communi-

cation, and read and write for local communication.

• The halt operation. The fπ predicate.

• Physical mobility: no operators, but the µ̈x, µ̈y and µ̈z postfixed func-

tions defined in the above algebra. Further,

pµ̈
def
=

√

(xµ̈x)2 + (yµ̈y)2 + (zµ̈z)2,

155



more precisely, some approximation of this number.

Variables can range over an address space, that is, V ar
def
= {V0, V1, ...}, but

here I shall use only the V symbol to denote any variable in V ar.

From the while statement, one builds the if-then, if-then-else and case as

I did or in the same manner. From these definitions, one builds min and max,

then builds the logical operators, and so on.

Now I can present the initial axiom before one places agents and values in

U :

Initial :
(∃t0 ∈ T) (∀s ∈ S, ∀t ∈ T, t0 ≤t t) s ≡ 〈rt0 , x, y, z, t0〉, Θs = 〈uu, ∅〉

and another rule with the
eval
 relation:

ρ(s, γV ) = u

@p · t0[[V, s]]
eval
 @pµ̈ · t0 +t ∆t[u]

where ∆t is the time for accessing a variable at place 〈x, y, z〉 and time t0.

Notice that, in the signature, I defined γ : V ar −→ Loc as the function that,

given a variable, locates its storage.

An agent can create another agent by executing the create statement.

The new agent is a clone but it executes from scratch at a given coordinate.

The semantics for this statement can be as follows:

rp0
t0

* Ap
ti

rp0
t0
⊆ Ap

ti+∆t @p0 · t[t <t t0 +t q ∧ ¬fπ(p, t)]

@p0 · t0[[create〈x, y, z〉 time q, rp0

t0
∩ Ap0

t0
]]

exec
 

@p0µ̈ · t[r
p0

t0
∩ Ap0

t0
] � @p · ti +t ∆t[rp

0 ∩ A
p
t ]

(4.3)

where ti =t t0+tΨ+tIc, Ic is the time for interpreting the create statement.

Ψ is defined globally as

Ψ = approx

√

(x− x0)2 + (y − y0)2 + (z − z0)2

ω

where ω is the velocity of light and, for the rule 4.3, t ≥t ti +t Ψ and ∆t is

the time spent installing the agent at the destination, once the transmission

has completed.

156



For the purpose of simplification and visibility, I allow myself a slight abuse

of notation by not writing the temporal subscript in operations, such as +t,

when they are already part of a temporal expression appearing in subscript

of a formula, for instance Ap
ti+∆t, which appears above. The same is valid for

spatial relations in subscript, as the meanings of the operators are clear.

The semantics for the corresponding timeout situation is as follows:

@p0 · t[t =t t0 +t q ∧ fπ(p, t)]

@p0 · t0[[create p time q, rp0

t0
∩ Ap0

t0
]]

exec
 @p0µ̈ · t0 +t Ic[r

p0

t0
∩ Ap0

t0
]

(4.4)

The halt operation is not a statement of the present language, that is, after

the execution of the last statement in the program, the computation goes to

the idle state. Although it is not a statement, I regard as if it were, as, here,

I am interested in the computation itself:

(∃k ∈ N)
@p0 · t0[[halt, r]]

exec
 @p0µ̈ · t0 +t k[ε]

where halt corresponds to the implicit last operation.

For unity (CE or hardware) mobility, the command wemove moves the set

of agents from the current point p0 : S to another p : S (coordinates 〈x, y, z〉)

as a unity, along with the corresponding value, given the coordinates of the

destination. I assume that sets of agents can share a common place and move

slower or at the speed of light, but robots movements can be a particular

case of this form of mobility as long as I formalize some physical laws as well

as constrain and regard the destination close enough to the source place for

uniform and straight movements, in such a way that more complex movements

could be obtained from a sequence of this simpler physical movements here.

Thus, let p0 represent the coordinates of the original place. While the unity

moves (say, after some delay ζ), the original place becomes without value in the

problem domain. The subexpression 2×(p−sp0)
ω

, below, represents the minimum

interval with value of twice the space through which the light would traverse:

Time for observation and, then, for moving the unity; Iwem, for interpreting

157



the wemove command:

∃(t ≥t t0 +t Iwem +t
2×(p−sp0)

ω
)

p ≡ 〈x, y, z〉 ∧ Θ〈r, x, y, z, t〉 = 〈u,Ad〉 ∧ ¬fπ(p, t)

@p0 · t0[[wemove p, Ap0

t0
]]

exec
 @p0 · t0 +t ζ[〈uu, ∅〉] � @p · t[Ad ∪ Ap0

t0
]

(4.5)

where p0 ≡ (x0, y0, z0). For strong mobility, given the source and destina-

tion ambient states Ap0 and Ap, time t0 and the current state 〈r, x0, y0, z0, t0〉,

an operational semantics for the flyto p time q statement, which moves the

computation to the position 〈x, y, z〉 using a set timeout q, can be as follows:

@p0 · t0[r ⊆ Ap0

t0
] @p · t[r ⊆ Ap

t ] @p0 · t[t−t t0 <t q ∧ ¬fπ(p, t)]

@p0 · t0[[flyto p time q, r ∩ Ap0

t0
]]

exec
 @p · t[r ∩ Ap

t ]
(4.6)

where (p0 6=s p ∧ r ⊆/ A
p0

t ) v (p0 =s p ∧ r ⊆ Ap0

t ) and

t ≥t t0 +t Ψ +t ∆l +t ∆s +t Iµ (4.7)

where ∆l is latency, ∆s is the time interval due to the code size, and Iµ is

the time for interpreting the flyto instruction. The semantics of the timeout

for this operation is as follows:

(∃! t ∈ T)
@p0 · t0[r ⊆ Ap0

t0
] @p0 · t0 +t q[r ⊆ Ap0

t ∧ fπ(p, t0 +t q)]

@p0 · t0[[flyto p time q, r ∩ Ap0

t0
]]

exec
 @p0 · t0 +t q[r ∩ A

p0

t ]
(4.8)

Here is the semantics for the + operation:

@p0 · t0[[a1, s]]
eval
 @p′ · t0 +t Ia1

[〈u, s〉]

@p′ · t0 +t Ia1
[[a2, s]]

eval
 @p · t0 +t Ia1

+t Ia2
[〈v, s〉]

@p0 · t0[[a1 + a2, s]]
eval
 @pµ̈ · t0 +t Ia1

+t Ia2
+t I[〈u+ v, s〉]

where s is any state, I is the time for evaluating the operation once the ma-

chine has the operands. uu permits that almost all operators of the underlying

machine are lazy, according to the following rule:

@p0 · t0[[a1, s]]
eval
 @p · t0 +t Ia1

[〈uu, s〉]

@p0 · t0[[a1 + a2, s]]
eval
 @pµ̈ · t0 +t Ia1

+t I[〈uu, s〉]

The pair of rules for −, = and < are the same as for +, except that the

operator is different. Notice that I am assuming that the above operands

158



do not have any side-effect and, therefore, their evaluations do not move the

computation, although the mobility can exist due to physical movement, µ̈.

Now here the assignment statement:

@p0 · t0[[a, s]]
eval
 @p · t0 +t Ie[〈u, s〉] @p · t0 +t Ie[∆(s, γV, u) = s′]

@p0 · t0[[V := a, s]]
exec
 @pµ̈ · t0 +t Ia +t I:=[s′]

where s′
def
= 〈r[V/u], xµ̈x, yµ̈y, zµ̈z, t0 +t Ia +t I:=〉, and Ia is the interpretation

time for evaluating the expression, and I:= is the time for assigning the value

u to the variable.

The other local expressions and statements are similar to the above. A

semantics for the while statement is as follows:

rt0 ⊆ Ap0

t0
rt ⊆ Ap

t @p0 · t0[[b, rt0 ∩ A
p0

t0
]]

eval
 @p0µ̈ · t0 +t Ib[〈v, rt0+Ib

〉]

v 6= 0 @p0µ̈ · t0 +t Ib[[C, rt0+Ib
∩ Ap0

t0+Ib
]]

exec
 @pi · tt[rti ∩ A

pi

ti
]

rti ⊆ Api

ti
@pi · ti[[while b do C, rti ∩ A

pi

ti
]]

exec
 @p · t[rt ∩ A

p
t ]

@p0 · t0[[while b do C, rt0 ∩ A
p0

t0
]]

exec
 @p · t[rt ∩ A

p
t ]

where ti =t t0 +t Ib +t ICt0+Ib
, t >t ti and ICt0+Ib

is the time for executing

the statement C at time t0+tIb, where Ib is the time for evaluating the Boolean

expression b. A semantic rule for finishing the while loop is as follows:

@p0 · t0[[b, rt0 ∩ A
p0

t0
]]

eval
 @p0µ̈ · t0 +t Ib[〈0, rt0+Ib

〉]

@p0 · t0[[while b do C, rt0 ∩ A
p0

t0
]]

exec
 @p0µ̈ · t0 +t Ib[rt0+Ib

∩ Ap0

t0
]

Once two or more agents are at the same coordinate, they usually com-

municate locally. To provide local communication, every agent has its input

queue, which is part of the state. As briefly defined in the algebra signature,

∆ : S × Loc × V al −→ S updates the queue with a value of type V al, given

a state in S and location in Loc. Moreover, χ : S −→ S removes the first

element from the agent queue by receiving a state and producing another one.

ξ : S −→ AR × S informs the first element of the agent queue (removing

it), which is a pair that contains the value and the new state. As before,

γ : V ar −→ Loc is the function that, given a variable, locates its storage.

Thus, here I am not concerned with delays or faults:

159



ξ@p0 · t0[rt0 ∩ A
p0

t0
] = 〈u, rti〉 u 6= uu ξ@p0µ̈ · ti[rti ∩ A

p0

ti
] = 〈v, rtj〉

@p0µ̈µ̈ · ti +t I2r[∆(χ∆(χrtj , γpar, v), γV, u) = rt]

@p0 · t0[[read to V, rt0 ∩ A
p0

t0
]]

exec
 @p0µ̈µ̈µ̈ · t[rt ∩ A

p0

t ]

where par, which stands for partner, is a system variable that informs the

sender id φpar, t =t ti +t I2r and Ir =t I1r +t I2r is the time for interpretation

of the read statement, composed of these two parts, and ti ≥t t0 +t I1r. I1r

is the interval of time from t0 until obtaining 〈u, rti〉, while I2r indicates the

interval of time from ti until receiving 〈v, rtj〉.

If the queue is empty, the evaluation results in uu, and there is no modifi-

cation in the state of the queue:

ξ@p0 · t0[rt0 ∩ A
p0

t0
] = 〈uu, rti〉 @p0µ̈ · t1[∆(rt0 , γV, uu) = rt]

@p0 · t0[[read to V, rt0 ∩ A
p0

t0
]]

exec
 @p0µ̈µ̈ · t[rt ∩ A

p0

t ]

where t0 <t t1 <t t.

Given η : S × AR −→ S from the signature, which inserts a value in AR

in the queue, the opposite operation is write, which writes the real number

stored in the variable denoted by a, to the channel denoted by h, with the

following semantics:

@p0 · t0[[a, rt0 ∩Ap0

t0
]]

eval
 @p0µ̈ · t0 +t Ia[u] @p0µ̈ · t0 +t Ia[η(η(rh

t0+Ia
, u), c) = rh

t ]

@p0 · t0[[write to channel h from a, rt0 ∩Ap0

t0
]]

exec
 @p0µ̈µ̈ · t[rt0 ] � @p0 · t[r

h
t ]

where rh
t is the state r of some computation πh at time t; and c is the

Id of the computation, which corresponds to φpar, i.e. the sender Id, which

is also used in the read statement. Therefore, the write statement writes

in the receiver’s queue the value in AR and c in this order. As stated in the

corresponding rules, the read statement obtains these elements in the same

order. As well as the µ̈ shift, code mobility and local communication, an

additional facility for mobile agents is remote communication among agents.

To define remote communication formally, I first ought to set the following

rules:

• κ ∈ SObj at 〈x, y, z〉 is visible by all agents if there is no agent at 〈x, y, z〉;

160



• κ ∈ SObj at 〈x, y, z〉 is not visible by any agent at a different point if

there is some agent at 〈x, y, z〉. In this case, any attempt to access this

value results in uu.

• κ ∈ SObj at 〈x, y, z〉 is visible by agents at 〈x, y, z〉. In this case, I say

that κ is local to those agents. And, since κ ≡ 〈v, Y 〉, for all r in Y , v is

visible by r.

In this model, to see the content of a point ∈ R at 〈x, y, z〉, agents execute

the statement view〈x, y, z〉 time q, whose semantics in the @-logic is:

@p0 · t0[p 6=s p0 ∧Θ@p · t1[rp] = 〈u, ∅〉 ∧ u ∈ R]
@p0µ̈ · tf [tf −t t0 <t q ∧ ¬fπ(p, tf)]

@p0 · t0[[view p time q, rp0 ∩ Ap0

t0
]]

eval
 @p0µ̈µ̈ · tf [〈u, rp0〉]

(4.9)

where

t ≥t t1 ≥t t0 +t Ψ +t ∆l1 +t ∆s1 +t Ii (4.10)

and

tf ≥t t1 +t Ψ +t ∆l2 +t ∆s2 (4.11)

where Ii is the time for interpreting the view statement. For remote

attempt to see a value that is local to other agents, there is another rule:

@p0 · t[p 6=s p0 ∧Θ@p · t1[rp] = 〈u, Y 〉 ∧ Y 6= ∅]
@p0µ̈ · tf [tf −t t0 <t q ∧ ¬fπ(p, tf )]

@p0 · t0[[view p time q, rp0 ∩ Ap0

t0
]]

eval
 @p0µ̈µ̈ · tf [〈uu, rp0〉]

(4.12)

That is, the value in the problem domain is not accessible and, therefore,

uu is provided instead.

For local access in permitted time, let {a1, ..., an} ⊂ 4, and c is the Id of

the agent who is currently computing. Thus, the semantics is as follows:

@p0 · t1 +t ∆t1[Θ@p · t1[rp] = 〈u, {c, a1, ..., an}〉 ∧∆t +t Ii <t q]

@p0 · t0[[view p time q, rp0 ∩ Ap0

t0
]]

eval
 @pµ̈ · t0 +t ∆t +t Ii[〈u, rp0〉]

(4.13)

where t1 ≥t t0. The semantics for the timeout situation during the view

request follows the next rule:

161



@p0µ̈ · tf [tf −t t0 =t q ∧ fπ(p, tf)]

@p0 · t0[[view p time q, rp0

t0
∩ Ap0

t0
]]

eval
 @p0µ̈ · tf [〈uu, rp0

tf
〉]

(4.14)

where tf is constrained in accordance with the expression 4.11.

In this model, to provide some form of communication, agents can throw

a real number at any place in space with timeout q, and this operation takes

some time to be completed, as described below. A place occupies one point in

E3. The value uu can also be thrown and indeed can be part of programming

languages constructs as introduced in[106]. Chapters 6 and 7 contain the same

material.

The operational semantics of the throw instruction is as follows:

@p0 · t0[[a, rp0 ∩ Ap0

t0
]]

eval
 @p0µ̈ · t0 +t Ia[〈v, rp0〉]

@p0 · t[t−t t0 <t q ∧ ¬fπ(p, t)] @p0µ̈ · t[Θ@p · t[rp] = 〈u, ∅〉]

@p0 · t0[[throw a to p time q, rp0 ∩ Ap0

t0
]]

exec
 @p0µ̈ · t[rp0 ] � @p · t[〈v, ∅〉]

(4.15)

where

t ≥t t0 +t Ψ +t ∆l +t Ia +t Th

where Th is the time for interpreting the throw instruction.

In the case that there is already some agent at 〈x, y, z〉, if an agent throws

a number from another place, there is no effect. Therefore, if

{a1, a2, ..., an} ⊆ 4

is a non-empty set of agents, and t0 ≤t t1 ≤t t:

@p0 · t0[[a, rp0 ∩ Ap0

t0
]]

eval
 @p0µ̈ · t0 +t Ia[〈v, rp0〉]

@p0 · t[t−t t0 <t q ∧ ¬fπ(p, t)] @p0µ̈ · t[Θ@p · t1[rp] = 〈u, {a1, a2, ..., an}〉]

@p0 · t0[[throw a to p time q, rp0 ∩ Ap0

t0
]]

exec
 

@p0µ̈ · t[rp0 ] � @p · t[〈u, {a1, a2, ..., an}〉]
(4.16)

The timeout condition for the throw statement has the following rule:

162



@p0 · t0[rp0 ⊆ At0 ] @p0µ̈ · t[t−t t0 =t q] @p0 · t0[rp0 ⊆ At]
@p0 · t[fπ(p, t)] @p0µ̈ · t[Θ@p · t0[rp] = 〈u, ∅〉]

@p0 · t0[[throw a to p time q, rp0 ∩ At0 ]]
exec
 

@p0µ̈ · t[rp0 ∩ At] � @p · t[〈u, ∅〉]

(4.17)

Notice that real numbers can contain the codification of some finite mobile

agent. This means that the throw statement is able to model this model. I

formalize the sequence of statements:

@p0 · t0[[C1, rt0 ∩ A
p0

t0
]]

exec
 @pi · ti[rti ∩ A

pi

ti
]

@pi · ti[[C2, rti ∩ A
pi

ti
]]

exec
 @p · t[rt ∩ A

p
t ]

@p0 · t0[[C1;C2, rt0 ∩ A
p0

t0
]]

exec
 @p · t[rt ∩ A

p
t ]

In section 4.5, I consider a possible collective rôle for generating mutations,

while in this section I introduce the operation SpreadOut for agent mobility,

and mutation becomes merely individual and random, as in Darwin’s view.

Mutation can be used by agents e.g. for playing chess, thus implementing an

evolutionary model of computing. This model can be used to solve combina-

torial problems in general. In practice, models for general computation with

mobility and some global environment should assume, for example, that in the

future computers will have receptors of mass electronic media. The essential

difference between this form of mobility and strong mobility is that, in the

latter, the machine has to know the destination address before performing the

operation, while in the former, the machine simply broadcasts the agent. As

a practical consequence, the broadcasting mobility lets agents migrate to a

much greater number of places almost at the same time. Because of these

differences, here I regard that they require two different primitives, with or

without destination address. In this way I introduce broadcasting mobility

and its operational semantics.

The crucial aspect here is that, unlike the flyto statement, this new proac-

tive move is broadcasting publicly, and without any address specification for

the destination. The only condition for the continuation is the agent be ac-

cepted by the destination, and for which I should set the predicate receptive,

which states that the destination is receptive to the present computation. In

163



this way, rec(r) indicates that the surrounding ambient is receptive to the state

r, and now the SpreadOut operation can be conceived and included in the

present model. Because the operation does not require any operand, here I

use the syntax SpreadOut. The semantics is as follows:

∀p ∈ U @p0 · t0[r ⊆ Ap0

t0
] @p · ti[rec(r) ∈ Ap

ti
]

@p · ti[r * Ap
ti
] @p · t[t =t t0 +t q ∧ ¬fπ(p, t) ∧ r ⊆ Ap

t ]

@p0 · t0[[SpreadOut q, r ∩Ap0

t0
]]

exec
 

@p0µ̈ · t0 +t Is[r ∩Ap0

t0+tIs
] � @pµ̈ · t[r ∩Ap

t \ {rec(r)}]

and, finally, one additional rule for the case that there is no receptions:

∀p ∈ U @p0 · t0[rp0 ⊆ Ap0

t0
] @p · ti[(rec(r

p0) /∈ Ap
ti

) ∨ rp0 ⊆ Ap
ti

]

@p0 · t0[[SpreadOut q, rp0 ∩ Ap0

t0
]]

exec
 @p0µ̈ · t0 +t Is[rp0 ∩ Ap0

t0+tIs
]

where both t =t ti +t ∆t and ti ≥t t0 +t Ψ +t ∆l+t ∆s+t Is hold for every

p, and Is is the time for interpreting the SpreadOut statement. Notice that

this operation is asynchronous.

It is not impossible to have timeout for the SpreadOut operation, and

the corresponding rule is as follows:

∀p ∈ U @p0 · t0[rp0 ⊆ Ap0

t0
] @p · t0 +t q[fπ(p, t0 +t q) ∨ rp0 ⊆ Ap

t0+tq]

@p0 · t0[[SpreadOut q, rp0 ∩ Ap0

t0
]]

exec
 @p0µ̈ · t0 +t Is[rp0 ∩ Ap0

t0+tIs
]

Also notice that, from the application point of view, there may exist a form

of mobility in the opposite direction, which would implement the concept of

centralization at a higher level of abstraction by using strong mobility.

As well as efficiency concerns, there are important philosophical issues

here: like sperm cells in a female animal, mobile agents can compete for the

best solution, which leads designers to questions in ethics. “What should

agents be allowed to do?” This is an open question. Ethics for mobile agents

on a global environment may be even more complicated because agents often

transcend boundaries of countries.

Applications such as chess form a model of computing to solve problems

that include the possibility of combinatorial explosion. One can provide an

interesting algorithm to find a mobile agent on a network.

164



Another issue is how should a mobile agent system prevent agents from

multiplying in an uncontrolled manner? What is the reasonable cost, overhead

and burden of such an operation? To date, there has not been a technology

that guarantees total security for a host that receives a broadcasted mobile

agent, but any mobile code system that support such operations should see the

network as public. Chapter 5 introduces a secure model for mobile computing

with agents. A similar problem is to access WWW hosts in parallel by software

modules, while this idea might be desirable from some people’s point of view

but could also cause traffic jams if performed by programs too often. Therefore,

it is clear that there is an open door to philosophy in computer science, while

AI gets closer to the foundations of computer science. In the following section,

I demonstrate that this also holds for applications of computation.

4.7 Computing in the real world

Examples of mobile code languages are: Telescript[316] for strong mobility, and

Java[147] and Obliq[55] for weak mobility, without taking into consideration

the current stage of the technologies that support code mobility.

In comparison to other paradigms for code mobility, a common criticism

of the mobile agent paradigm is that mobile agents do not maintain connec-

tions upon migration[58]. This criticism may be appropriate or not, depending

on the philosophical point of view, the metaphor, the model and, occasionally,

how well the system is implemented. For example, I think that the key concept

for agents and distributed systems is communication and that connection is

an implementation issue. Connection also is a matter of abstraction. In some

models, agents maintain connections during their move by communicating to

each other when appropriate, but this happens at the programming layer of

abstraction, and is not provided by the programming language. Some agents

are sent only for communicating and then halt, for example. This might not

be seen as a problem as humans without mobile phones do not maintain con-

nections either. Dangling pointers as a result of strong mobility, for example,

165



at some level is normal, not a problem: as an analogy, what happens when we

call someone and he or she is not around at that moment? No matter whether

he or she can use a mobile phone, we might want to try again later or leave

a message or dial another number. Such decisions are at the application level

rather than the mobile agent system level.

Regarding communication, the language and its agent-based system are

responsible for providing general and suitable features for programming agents,

and suitability depends on the programming model.

In [105], metaphorically we follow a modern world composed of objects

such as individuals, airplanes, airports, places and providers, and, because of

this, the model for global computing with strong mobility is technically simple

to conceive and use, but there are open philosophical questions that deserve

careful consideration before designing any global system. Some laws can be

established for the whole global system, and these laws ought to be public,

declarative, and fixed.

In a public environment, nature-based models, such as evolutionary com-

puting with individual mutations simulated, ought also to be linked to the

human-based approach because there are a number of peoples with different

cultural, religious and philosophical backgrounds. This also leads the founda-

tions of computer science to ethics and politics, more generally, to philosophy.

We might be able to perceive that the industrial revolution, as well as pos-

itive concepts of liberty, equality and fraternity, reflect a change that underlies

the collective consciousness and have gradually influenced the mankind, and

that computer science is part of this evolutionary process. Nowadays a per-

son inserts a few coins in a coffee machine, chooses what he or she prefers,

picks up his or her preferred coffee, and receives the change. This reflects the

observation that individuality is another keyword in this trend, for programs

and systems must be adaptable to fit the needs of the individuals. Indeed,

as already mentioned in this chapter, one of the applications of mobile agents

is to personalize clients and servers. Somehow, both individuality and gen-

erality are complementary key concepts in technology, since machines usually

166



produce many copies of the same product. However, programs can deal with

these concepts very well adapting themselves to specific needs.

For almost everyone, the source of human intelligence is individual, but

one who travels around abroad can more easily perceive that every country

has its own identity. Thus, I also conceive the ideas of collective intelligence

and qualitative intelligence.

Since global computers are relatively complex machines, among many no-

tions from human sciences, philosophy and religion have consequences on soft-

ware development for this scenario. As an example, if designers or users be-

lieve in God, they may think that spirits are individual intelligent entities

that are maintained after human beings death. Furthermore, if a designer

or user believes in reincarnation (whose doctrine, as well as being found in

Indian religions and philosophy, was held in western philosophy by Plato and

apparently by others including Pythagoras), for example, he or she thinks

that some individual inheritance is brought to human beings from their pre-

vious existences[262]. In most religions, individuality is maintained after life.

The soul is seen as an intelligent entity whose individuality is also manifested

during one’s life.

Platonist scientists normally believe in God, although intuitionist scientists

are not necessarily atheist.

A mobile agent system for the Internet ought to take into consideration

that different peoples mix together. The fact that designers establish their

own laws entails diversity of global systems. I believe that systems that es-

tablish fairer laws attract more users. I also think a model that provides a

definition of agent by establishing rules synthesized from the real life, is eas-

ier, both to implement and to use. The main involved technical difficulty

is to implement a suitable programming language and efficient system with

strong mobility together with a satisfactory level of security[220] and suitable

AI-based features, because an inference engine needs control for its efficient

reasoning process, without interruption from the user’s program. Inferences

can trigger imperative execution which in turn can contain the flyto state-

167



ment, described in the previous section. The efficiency problem is much more

difficult to solve than to move computation from imperative programs, where

virtual machines interpret simple instructions. On the other hand, there are

AI techniques that make it easier to provide an agent-based model inspired

by human beings, as well as providing the programmer with a more suitable

way of representing knowledge on the real world. Uncertainty and reasoning

with partial information are two examples of AI techniques useful in global

computing.

If the global system is public, laws should not be limited to laws of users’

etiquette but preferably laws that constrain agents behaviors. In this way,

agent laws should follow from international human laws.

To design a global computer is similar to creating a simplified world. The

interactions between the computer and the real world become so complex that

subjective factors enter the computer science.

For considering that a notion of computation is more complete than what

has been used to be presented, as previously stated, both psychology and

philosophy have to be considered. As an example of the relevance of the

former, if by any chance a person makes some calculation sleeping, he or

she computes without being conscious or having a precise control over the

calculation. Nonetheless, such an action might be from a different model of

computation. Yet, if that calculation is performed while the person is on a

train, conceptually, there is a new kind of mobility. The person may also

speak as sleeps, or perform another kind of action on the train. Moreover,

since human beings spend around one third of their lives sleeping, this kind of

experience is not so rare in the daily life. And since the presented discussion

on computation is conceptual, such observations under potentially different

computational models become fundamental.

Many models impose constraints upon programming languages. In addi-

tion to uu, a constraint was solved by the adoption of declarative uncertainty

representation, as humans usually make use of subjective judgment based on

feeling. Uncertainty can also be used to represent confidence on a particu-

168



lar public piece of information, which is another subjective feature. Thus,

programmers can declare that some particular data is 80% reliable while the

remaining 20% corresponds to technical faults, for example. Uncertainty is also

present in rules, as some antecedents contribute more than others to validate

a hypothesis.

4.8 Conclusion

Among other conclusions, I discussed mobility and a more general notion of

computation that includes physical, psychological and philosophical factors. I

propose four forms of mobility in this physical and simplified model.

Up to some level of abstraction, a simple and different model in E3 has

been presented here by defining a machine together with a somewhat minimal

set of constructs that complements the traditional notion of computation, as

well as an operational semantics for these constructs.

The Internet is used by people from different places from different back-

grounds as philosophy increases its importance for computer science. Further-

more, this change from mathematics to also include other studies also opens

a door to changes in scientific methods. Science in computer science has a

broader sense.

169





Chapter 5

A Complete Solution

for Mobile Agents

on Global Structures

In the present chapter I introduce a complete and general solution for mobile

agent systems on global environments such as the Internet, informally using

a top-down approach without irrelevant details, and discussing all problems as

well as presenting connected sub-solutions.

While in chapter 4 I introduce a physical semantics of computation regarding

a simplification of the real world as the context, here the solution is based on

global computers and internets. Here I consider human beings. In particular, I

believe that without centralizing the security problem and closing the software

from the public, one cannot guarantee a satisfactory level of security to the

users in a feasible way. This can be viewed as an odd academic proposal, and

I would certainly agree, but it is also a consequence of the nature of the human

condition in the real world.

171



5.1 Introduction

Any subset of an Internet-like network can be abstractly seen as a very large,

inefficient and non-reliable computer, instead of a network. As an example,

[256] is an updated bibliography for data mining research whose approach is

clearly different from ours. Thus, one global computer[57] (GC) consists of

an homogeneous set of interpreters (also called virtual machines) on a global

network where application programs can run. I use here Programming for a

Global Computer (PGC) to stress particular features of such a network, e.g.

to be public. However, it is a good idea to keep in mind that a general purpose

programming language ought to consider a global environment.

5.1.1 Mobility and its Paradigms

In this sub-section I make comparisons between paradigms of code mobility.

Although these paradigms are technical, I am demonstrating that only one of

them is enough for the present theoretical definition later in this chapter. As a

side effect, this discussion might also be useful with respect to general-purpose

programming languages.

So far, as more general than the client-server paradigm of distributed sys-

tems, there are three paradigms of code mobility, namely, remote evaluation

(REV), code on demand (COD) and mobile agents (MA). REV and COD

are based on the concept of weak mobility while MA is ideally and normally

based on the concept of strong mobility. In this chapter, I refer to MA as

having strong mobility. Although this classification3 is important for techno-

logical reasons, both forms of weak mobility can be implemented by using only

3Briefly, for those who are not familiar with those terms, strong mobility is the ability of

a mobile code language to permit the computation to move from one interpreter to another,

possibly remote, while weak mobility is the ability of a mobile code language to permit a

running program to be bound dynamically to some coming code, either because the local

interpreter requested previously or because the code was sent. In the latter case, the coming

code can either be linked or run from scratch.

172



strong mobility. That is, both forms of weak mobility are particular cases of

strong mobility. This is the main subject of this sub-section.

REV can be implemented as MA in which the first instruction is moveto,

which allows the agent to move and evaluate. COD can also be implemented

with MA together with communication between mobile agents: one agent

moves to call another agent to come. The latter agent is the piece of code

that would run in the COD paradigm. Because I am looking for primitives

powerful enough to capture code mobility in the most general sense, I am going

to consider only strong mobility in the present model of computation.

As opposed to client-server (C-S), in [123], the authors present an interest-

ing metaphor to explain the paradigms to support code mobility. There, the

authors explain that C-S, REV, COD and MA are the main design paradigms.

Here I initially consider that they are the possible paradigms, then I introduce

one and include it in the present model of computation.

Here, at a more practical level, I state that MA is probably the most suit-

able paradigm for general-purpose programming languages by explaining that

they are probably the most general for communication and mobility. Several

mobile agents languages and systems were conceived to be based on Java[147]

and JVM[199], developed by Sun Microsystems. Such agents move code and

data but they do not move the execution state. Application programs in

Aglets[194], for instance, reinitialize after migration. Java with COD and

JVM are certainly amazing and deserve respect, among other important tech-

nologies. But although Java is a well designed programming language, its

virtual machine architecture, instruction set and program format are open,

which means that security and privacy are important issues concerning public

mobile agents. Moreover, as JVM does not support a low-level instruction

that implements proactive migration along with state migration, to date tech-

nologies based on JVM is somehow limited, from the point of view of mobile

agents based applications such as electronic commerce. Therefore, a statement

that MA is the most suitable paradigm in programming languages ought to

be regarded in the context of applications in general as a design goal. Special-

173



purpose languages are designed to be more appropriate to certain specific tasks

than a general purpose language. Moreover, in this chapter I am regarding

only MA with strong mobility.

Clearly, MA is a paradigm for code mobility not less general than C-S,

REV or COD. Thus, because applications such as distributed CPU usage, on-

line transactions with subsequent use of CPU as well as the presented model

cannot be implemented by one paradigm other than MA, therefore, MA is

more general than C-S, REV or COD.

The possibility of mixture of paradigms is not being neglected. But here,

because my main motivation is the (informal) semantics of computation, I only

make individual and one-to-one comparisons between MA and C-S, REV and

COD.

5.1.2 Contents of the Chapter

To date, there are not many mobile agent languages and systems, and informa-

tion on them is easily found on WWW. Telescript[316, 317] by General Magic

is pioneering and probably the best example of mobile agent technology. How-

ever, in addition to being suitable for different programming languages, the

concept of identity in the present solution contrasts with the solution adopted

by Telescript, where identity is simply a name. More recently, a few mobile

agent technologies have been designed and implemented atop the Java Virtual

Machine (JVM), such as Aglets Workbench[194] by IBM. However, because

JVM is open, such systems are not secure enough for public applications on

the Internet.

Section 5.2 briefly discusses programming for a global computer. Section

5.3 presents a general model for computation on a global environment by

discussing problems and introducing solutions, and section 5.4 explains why I

leave communication between and among agents untouched. Finally, section

5.5 contains some concluding remarks.

174



5.2 Programming for a Global Computer

As global computers will never be so reliable nor efficient as local interpreters

only, traditional programming might not be appropriate for global environ-

ments. Decisions must be made very often on WWW due to some delay, and

this requires specific language constructs.

I recast here the characteristics of PGC from the programmers point of

view: long distances is the first characteristics of global computers, hence

delays. Programmers are aware of locations of resources. This not only allows

the use of resources spread out on the global computer but also allows the

control of distances between places, because the slowness of light is relevant

here in performance. The programmer should be able to set a time limit under

which his or her statement will wait for a remote operation to complete. If

the operation was not completed by then, his or her program can try the

same operation on a different site. Fault in connection is no longer regarded

as exception but instead as a normal situation. Other requirements of PGC

are security guaranteed by the underlying system, code mobility, robustness

and communication, both synchronous and asynchronous. Slowness of the

sequential computation is another characteristic. Heterogeneity of hardware

and operating systems have been mentioned as typical but they are irrelevant

in programming. Parallel computation is strongly suggested, in such a way

that computing in a global environment may become even more efficient than

local computation only.

I am regarding the above characteristics as being what defines PGC and,

hence, any programming language or system for general purpose must provide

at least all of those characteristics. Because of this, it turns out that no

programming language or system to date is suitable for global environments,

although there are languages on the top of mobile-code systems. Surprisingly,

concurrent programming is not one of the requirements for PGC.

175



5.3 Problems

In this section, I analyze problems together with their solutions, because they

are linked concepts and one solution to a problem may create other subprob-

lems and so on. On the other hand, key words are emphasized for being

searched.

I define provider a stationary agent in the present solution. Here, I define

Individual as a mobile agent to stress that an Individual moves and are not

split, although there are exceptional cases, as are explained later. To general-

ize, I refer to either provider and Individual as agent or module. The former

is dynamic whereas the latter is static.

For philosophical reasons and to keep the solution uniform, both providers

and Individuals contain themselves, that is, they cannot be broken into smaller

modules but instead they are able to create other agents. The present solu-

tion always guarantees a unique identity for different agent although some

attributes are shared after that creation. Moreover, providers do not create

Individuals, and Individuals do not create providers. Symmetrically, providers

and Individuals cannot be dynamically linked but instead they often commu-

nicate, providers with Individuals. In addition, providers can communicate

with other processes designed by using different technologies. Thus, I refer to

providers and Individuals in this solution as self-contained modules to distin-

guish them from mobile agents in some other solutions.

Some mobile code technologies have been designed and implemented but

nowadays there are few applications that offer security in such a way that

the public feel secure. Extending from [308] to PGC, it becomes even more

critical. Thus, we provide security to protect agents and their interactions

as follows: communication between hosts and between CEs; the host from

malicious visitors; visitors from malicious hosts; communication between In-

dividuals; communication between an Individual and a provider; Individuals

from being bothered by other agents; Memory space. CPU from time abuse.

However, incoming agents do not need to be granted access rights, as will be

176



explained in this section.

The interpreter controls accesses by Individuals and providers to operating

system calls.

The easiest and safest way to guarantee security in the solution is to ini-

tially forbid all critical operations and then allow only those operations that

are necessary and do not violate the security policy. Input/output operations

are regarded as such. Thus, the system guarantees that no Individuals, by

definition, perform directly input/output operations, but instead, communicate

with providers that may perform the operations for the Individuals. Therefore,

providers must be able to recognize Individuals, which in turn, require the

definition of the concept of agent identity, or identity for short.

Authentication of messages is easily solved by digital signature, but this

technique is used only when the sender is not the receiver. In the present

solution, at this level, we can safely regard the system as being both the sender

and the receiver, which simplifies the solution, also from the user’s point of

view. Here, there is no need for users to have public and private keys to use

the system, because the authenticity is already guaranteed by the mobile agent

system (MAS) by keeping one secret key (or pair of keys) for the whole system.

I call this key system key, from now on. This also keeps the solution consistent

because the person responsible for a host is not necessarily responsible for the

computations that are sent from his or her host, as Individuals can move

from host to host more than once. Notice that an Individual is not a static

document.

Researchers adopt the idea that incoming computations must be granted

access rights[308], which may be consistent but produces practical problems:

’access’ is a very broad concept when we talk about security in global com-

puters. The concept of access should not be limited to the level of operating

system but, instead, be extended to services at higher levels. To allow an agent

to access files is too risky, for example. We want to state a permission such

as “Abelardo is allowed to read xyz.abc file on Thursdays”, for example. At

such a level of detail and flexibility, there are typically many permissions in an

177



application system and, because of this, I do not adopt the approach of giving

permissions beforehand. Instead, this approach allows providers to respond to

Individuals requests in a programmable way, by accessing directly their iden-

tities and checking authorization on demand. Thus, all levels of access and

services are controlled in a uniform way. Because there are typically so many

permissions, declarative knowledge bases, e.g. composed by logic programming

clauses, are natural candidates for representing such permissions.

In the present solution, the system has to provide a way of distinguishing

Individuals from providers. This can be easily solved statically: if a program

contains some flyto statement, the statement that causes the Individual proac-

tive move, the compiler stamps the status of Individual in the generated code.

On the other hand, if there are critical operations in the program, the compiler

stamps the status of provider instead. A program cannot be Individual and

provider, and, in case of both kinds of operation in the same program, the

compiler reports an error message.

Because of the flyto special nature, it has to be a statement in the lan-

guage, neither a method nor a library function. The same is true in the

interpretable byte code: the flyto statement has to be generated as a corre-

sponding virtual machine flyto instruction. This not only permits the com-

piler and interpreter to distinguish Individuals from providers, but also allows

the interpreter to deliver Individuals to the local airport for departure. A

library function call does not normally provide information at that level of

detail. Therefore, all critical operations in providers are no longer traditional

library functions or methods, no matter their syntaxes: the compiler and in-

terpreter have to be able to recognize such operations, otherwise the system

will probably not provide satisfactory security in the real world.

This creates another problem: how to protect the programming system

from potentially malicious compilers that generate critical operations in In-

dividuals. My solution is to hide the virtual machine architecture and the

Individuals format. Although this solution may cause surprise for being pro-

prietary, it closes the architecture to the world in the same way as purely

178



interpretable languages do. Furthermore, although it prevents other compiler

designers from implementing other programming languages directly on the

runtime system, it allows compilers to translate a program from another lan-

guage to the source language owner of the interpreter. Moreover, the present

solution does not require checking whether an Individual contains critical op-

erations.

Identity in the present solution allows the public to even identify the pro-

grammer of an Individual, if necessary, as compilers could also have identities

to be stamped in the generated code. The present solution does not discard the

possibility of having different worlds, say global computers, that communicate,

each world with its own programming language and implementation.

When a message arrives at a site, a program of the system called airport

recognizes the format as an Individual, decrypts the incoming message by using

the system key, verifies the Individual identity and verifies the integrity of the

Individual. If everything is correct, then the airport verifies the Individuals

passport, updates the passport and keeps a record about that arrival. If the

message is not an Individual or the Individual integrity is not certified, the

airport records the event and ignores the message.

When an Individual departs, the airport updates its passport, keeps a

record about its departure, encrypts the Individual by using the system key,

adds some header, and finally sends the package.

I divide resources in three classes: temporal, material and service. The

first is CPU time plus some overhead due to instruction interpretation. The

second may be persistent data while the third corresponds to responses to

requests by agents. When an Individual arrives at a site, before running, the

runtime system assigns a time interval for the Individual to leave the host,

and this time is controlled by the system before interpreting every instruction.

Thus, when an Individual leaves the host, its intervals of time in the host,

including its effective time and total response time spent by providers, are

available. A similar solution is adopted for memory allocation, controlled by

the interpreter.

179



Another way to prevent from time abuse in some specific applications is to

allow or forbid, as a local policy, Individuals whose programs contain iterative

statements, such as while. Another policy is to inhibit some interpretable

operations, such as system library calls or method invocation. For example,

square roots might not be calculated on a host that offers a simple and public

commercial service. The airport can inspect for both policies at arrival time.

A kind of resource that can be regarded as both material and service

is executable code, which also can be delivered by agents as any material

resource. An Individual can carry and deliver such code in such a way that it

can be executed remotely as long as the parties wish. This partially solves the

problem of a few applications that require more efficiency than interpreters

can provide.

A particular case of porting executable code is when a new version of a

mobile agent system is released. Mobile agents can then visit sites to update

all copies as long as this is part of some contract. In other words, unlike

the real world, the approach does not prevent an Individual from carrying the

whole mobile agent system, including the interpreter and the airport, installing

it and even continuing running on it. In fact, an Individual can install any

application.

Identity is partially generated by the compiler, some other fields are filled

in when the computation starts, and passports are updated by airports when

Individuals arrive and depart. Therefore, the format of object code is not the

same as an Individual format.

Although some systems make use of passwords, for public applications,

identity is not intended to be explicitly passed by the caller as parameter but

instead its passing must be implicit and always guaranteed by the runtime

system. I initially define identity as an abstract data type that contains the

following fields:

Entity flag (whether Individual or provider); Program owner’s identifica-

tion; Home city; Internet Home Address (notice the country code); Postal

Home Address (optional); File name of the Individual at home; Initial inter-

180



preter version; The initial interpreter Id; (Local) Date-Time when the pro-

gram started running; The initial interpreter time zone (optional); Latitude

and longitude of the first interpretation (optional); User’s cryptographic key

(optional); User’s password for the application (optional); Password of the ap-

plication (optional); The Individual passport (list of tuples about departure

or arrival).

Identity is a class in the adopted language. Notice that this concept of

identity is unchangeable and its presence is guaranteed by the present solution.

This concept, however, is normally extended at the level of application, which

will depend on the set requirements for security. Agents use communication

to identify others at the level of application. Here, passwords can be used to

identify Individuals.

An agent is not allowed to move an Individual but instead to request

the latter to move, because every Individual is the responsible for its move.

The exception is a situation when the MAS punishes an Individual because it

violated some security policy. For remote evaluation, a programmer can write

an Individual with enough code and data to accept the request and perform

the operation remotely, while another program simply invokes the Individual.

Therefore, there is no statement in the system for shipping an Individual.

Accordingly, in the present solution, there is no concept of downloading.

An Individual is globally referred to by the 〈Program owner’s Id, Internet

Home address, file name at home, sequence〉 tuple which is unique.

For many applications, a provider normally sleeps and, when awaken by

another program, performs some operations and sleeps again. An Individ-

ual, in its turn, moves to a host, requests some resources, perhaps it blocks

while services are being provided, pays for services, moves on to another host

and so on. Besides the communication is local to a host, I adopt a mecha-

nism somewhat similar to method invocation. But its granularity is wider, i.e.

the communication is between different agents, possibly written by different

companies, with no assumption about static type correctness, nor even the

existence of particular methods. Thus, in accordance with the present holistic

181



philosophical view, compilers and linkers cannot see the whole picture, and

this helps make global MAS feasible. The lack of a static global view is com-

pensated by the ability to deal with partial information at the programming

level, which is very important in any case.

In this solution, the concept of identity also allows a flexible scheme for

porting material resources. As one example, an Individual I1 might migrate

from host H1 to host H2 without resources and, since at the destination,

requests H1 resources from a provider at H2 which, in its turn, sends an

Individual I2 to H1 that locally requests the resources from H1 and take them

back to H2. The provider finally delivers the resources to I1.

To date, almost all mobile-code languages adopt one or two fixed strategies

to manage resources. These strategies are seen in chapter 6. Because I am

looking for generality, in the present solution, whether the strategy is replica-

tion or sharing, or whether the replication is static or dynamic, or whether the

latter is by copy or by move is entirely up to the programmer. For example,

the Individual I1 might migrate from a host H1 to H2 taking the resources

eagerly.

Still regarding communication between programs, it can be synchronous

or asynchronous. When the former is applied, it is possible for an Individual to

migrate as part of its response to some message, while the calling process, the

running interpreter, is waiting. If the Individual comes back before the time

has expired, it might give the response. Otherwise, the calling agent receives

the special signal indicating that the value is unknown. Global MAS should

take this mechanism into account. Thus, the solution guarantees safety and

robustness on communication and migration.

From the point of view of a provider, a simple comparison between two

references is enough to recognize an Individual, but some pattern matching

between the identity fields can also be done. Identity cannot be changed by

application programs at all, but it is public, which means that any program

can access the caller’s identity fields directly.

The Individual identity uniqueness is extremely important for both philo-

182



sophical and security reasons. By no means, the language allows assignment

to identity fields. Individuals never share identities and this is guaranteed by

the system clock along with other fields.

Each interpreter has its unique Id, which is generated when it is delivered,

and used by the system to authenticate Individuals flights. The same for

compilers, thus allowing programmer’s identification.

From the designer’s point of view, a dynamic search for symbolic names

in a program to identify the called object requires that the compiler writes

the identifiers of the interface in the agent. Although Individuals get fat with

so many names, it is a good idea for mobility and persistence to generate

all identifiers, to be used by the virtual machine when saving and restoring

contexts. Generating symbolically all identifiers also provides flexibility to the

language.

By accessing methods and fields declared in the dynamic interface, providers

and Individuals usually establish local communication according to the appli-

cation. This requires the concept of sender and its key identifier. In the present

language, Sender is used by the called program to refer to the calling one in

the same way, and the presence of this key identifier in the calling program

refers to the called one, i.e. the rôles are often reversed during communica-

tion, thus establishing a synchronous protocol. Therefore, every Individual or

provider contains internally a stack of computations. In the present solution,

a response may modify values that are used later by other responses.

Thus, the program interface (public objects, methods and fields) describes

the objects of the program that can be accessed by another agent, local to

the same host. This allows invocation of an external method that does not

exist, for example. The same for accessing an external variable. Thus, there

might be type mismatch between programs while they are running, and this

condition must be dynamically checked and reported to the calling program.

However, in the present solution, dynamic type mismatch is not regarded as

an error, although the corresponding operation is not performed.

The concept of home in Individual identity permits any agent to recognize

183



the person who is responsible for that Individual by his or her Internet address.

This person is also responsible for all messages sent by his or her Individuals.

The system can provide security against tempered interpreters and air-

ports, although total security cannot be guaranteed. I adopt the following

solution: one who develops the system has his or her own police. He or she

often sends an Individual to each host that has an interpreter and then per-

forms a privileged operation in the same programming language that permits

access to the interpreter byte code, the same for the airport. Such Individuals

can run an algorithm that checks whether the interpreter (or the airport) was

tempered and then returns to the police host with the result along with some

other pieces of information, such as the interpreter identity. The algorithm to

check interpreters and airports can vary along the time. The checking result

together with date and time is also of general interest because it certificates

that the former host was not tempered at that time. Because many Individ-

uals might wish to consult the police before critical transactions, the police

itself should be organized in hierarchy, that is, the developer’s police should

be spread out over the network in such a way that every interpreter host be-

longs to some geographical region which is under its local police. Indeed, the

police can provide a sophisticated and efficient distributed mobile system for

the whole network.

In order to protect Individuals from malicious hosts, there can be two

alternative solutions in this framework. In the first solution, the runtime

system keeps a unique file of contexts for all blocked agents. While saving

and restoring agents, the MAS always encrypts and decrypts the file by using

the system key. The only kind of attack that can be done is to delete the

file (therefore all saved agents at once), but the airport records information

on both arrivals and departures of every Individual. The airport file is also

encrypted and decrypted by using the system key, although the information

is available by queries, both locally and remotely. The second solution for the

problem of protecting Individuals from malicious hosts consists in assigning

each Individual to one running interpreter, both forming one process of the

184



operating system. Thus, two Individuals run in two processes, and so on.

When an Individual sleeps, the whole process sleeps and the security of the

Individual is shifted to the operating system level. It is desirable that new

versions of operating systems will provide the concept of public process and

forbid the normal user to kill it. Only privileged users ought to be able to kill

such processes. I tend to adopt the latter solution.

In the security sub-model, I suggest that virtual machines and Individ-

uals format should be hidden, at least from normal users. In this way, the

system protects Individuals against malicious hosts and malicious implemen-

tations. If operating systems provide and manage public process and forbid

normal users to kill such processes running locally, then Individuals are pretty

protected from malicious hosts, although not totally protected from malicious

interpreters. The latter protection lies on that interpreters are general pro-

grams whose object code can be acquired from a public Network and that their

developers are publicly known. Thus, this solution centralizes the responsi-

bility of security towards MAS, while propose diversity. While in different

models[102] encryption is seem as almost pointless if it is intended to protect

the agent from the interpreter, here there is only one key for the whole system,

to be used when it encrypts and decrypts agents, besides application keys. In

security, I make use of the concept of centralization which considerably simpli-

fies the solution because all users assume that the mobile-code system itself is

reliable. In this way, some applications that require security do not normally

require an extra agent to act as a trusted third party (TTP).

To protect Individuals while they are flying, airports encrypt them before

departure key and decrypt them after arrival.

Privacy is another issue in this setting. Solutions that have been adopted

by other programming systems can be used, for example, Java type modi-

fiers are adopted as part of the present solution. In this scenario, privacy is

also guaranteed at runtime. Dynamically, each variable (method) is public or

otherwise.

For applications among known partners, programmers can write passwords

185



in the flyto statement that is checked at arrival. This solution is similar to a

login session on FTP, which can be anonymous or not, depending on the In-

ternet account. Depending on the system implementation, this password may

be encrypted and sent in some message before sending the whole Individual,

as part of the system protocol.

Another problem that arises from programming for a global computer is

naming, that is, to use services, the user who writes an Individual must know

beforehand names in the interface of the providers that he or she will use in

his or her program. If the Individual visits many hosts it must keep different

names for the same service. On the other hand, a provider that wants to

control accesses of resources by different kinds of Individuals, it has to keep a

large database (or knowledge base) of identities and authorizations. This is a

concern on programming languages design or AI techniques[104].

I consider parallel computation as one of the requirements for a general

programming system for global environments and the reason is straightfor-

ward. Because communication to some Individual can be asynchronous, a

provider may trigger more than one Individual that fly over the Internet to

run in parallel. It makes strong mobility one of the requirements.

One of the criticisms to the mobile agent paradigm is the fact that agents

do not maintain connections upon migration. I do not think that this is a

problem: first, connection is a matter of abstraction, that is, a connection

that was interrupted at a lower level might be rescued in such a way that, for

an upper level of abstraction, the interruption did not even occur. Therefore,

an Individual can keep states of a connection at a lower level of programming

in order to maintain the corresponding connection at a higher level. Although

connections are not implicitly maintained by agents during migration at the

language level, conceptually, what is more important is communication. I

think that mobile agents is the most general paradigm, also when communi-

cation is the concern. Some remote communication can be indirect by local

communication with providers that might perform the requested communica-

tion. This scheme improves security. Because Individuals can move more than

186



once, in some cases, another alternative for keeping connections is to move the

Individual to the host in order to communicate locally where the resource is.

Another characteristic of global computers is the existence of failures and

delays. Developers want to program for such environment considering that

failure or delay may be the result from remote operations. A similar problem

that can be solved by this special value is due to special conditions during

the communication between agents, for example, type mismatch or absence of

symbolic identifier in an external program. The solution for these problems

consists of adding a special value for each data type. In this PhD thesis, this

value is called uu. As we know, this value is a key notion. uu in this context

means that a value in the problem domain is not available at moment for some

specific reason. The reason can be available as a MAS variable. Thus, unlike

many distributed systems, I shift failures and delays to the programming level,

and hence I provide language constructs for that.

In order to program with delays, timeouts are part of all language con-

structs that perform external operations.

5.4 Communication Between Individuals

As I discuss problems of dealing with resources here, communication may also

be viewed as a kind of resource. In fact, communication is one of the keywords

with respect to agents at the level of application, such as AI agent systems.

Here I introduce a general solution for systems and, therefore, communication

at such a level of application is outside the scope of the present thesis. For my

proposal, at the language level, to consider communication a resource suffices,

while without going into those details.

Mobile agent communication is one of the issues where AI has much to

contribute, and also because of this reason, now I leave the problem almost

untouched.

However, briefly speaking, communication can be represented by repre-

senting curiosity properly for AI systems. Curiosity generates communica-

187



tion. It is a relatively complex task which I dare not comment here in this

thesis dissertation. Nonetheless, in the remaining chapters, it will be clear

that the intuition reveals that the constant uu is also essential for representing

notions from AI, including curiosity. Thus, one can represent more easily the

motivations for learning in such systems by recognizing that, in some specific

situation, the system does not have the piece of information. Then, communi-

cation becomes a natural consequence in the presence of uu. Thus, uu works

well at a meta-level for communication.

5.5 Conclusion

I define a global computer in terms of its requirements. Taking them, it turns

out that no programming language or system to date has been suitable for

this kind of distributed computer.

In particular, I think that,

• by centralizing the sub-system for security,

• by making the agent format be private to the developers,

• and by closing the architecture of the global computer,

developers may provide the only feasible way to guarantee a satisfactory level

of security on an open environment. In particular, it is desirable that the

organization who propose their “club” also act as the unique trusted third

party.

The present solution is based on a metaphor and describes typical situa-

tions with which travelers are used to dealing. Airports, arrivals, departures,

passports, security and such natural concepts are in the present solution. Be-

cause the metaphor is based on modern life, it is expected that its implemen-

tation will be easy to use. Except for communication and language concepts

and constructs, almost all problems were addressed here with a solution. In

188



general, systems suggest or impose programming language concepts and con-

structs, and the present solution is no exception. However, I believe that I have

explained the solution at such a level of detail that implementors can write

other systems based on Chiron, in particular, providing at least the same level

of security as described. However, programming language concepts and con-

structs for this context is the issue in part II of this thesis dissertation, and

I make use of uu throughout it. In particular, chapter 6 is specific for global

computers.

189





Part II - Concepts of

Programming Languages





Chapter 6

Programming Language

Concepts and Constructs for

Global Computers

In part I, I presented one theorem whose slogan is “programs are not func-

tions”. I have also informally discussed global computing and defined a frame-

work for mobile-agent systems on global environment. We now work on lan-

guage features other than functional programming. Thus this chapter is essen-

tially a summary of part II, however, here I am more focused on mobile-code

languages. After this chapter, chapter 7 concentrates on uu in imperative and

functional paradigms.

This chapter presents programming language constructs that are useful for mo-

bile agents and for the Internet. In particular, I explore the ability to program

with the unknown value, uu, by giving examples of these constructs and of some

possible combinations with others. Although the presented characteristics are

not specific for mobile-code languages, the underlying global environment can

be a unified one.

193



6.1 Introduction

Code mobility is a relatively new field of research that has inspired intriguing

ideas on programming techniques to improve related software. New program-

ming languages have been presented and discussed in workshops and con-

ferences aiming at providing better standards and good examples for future

language designs, commercially or otherwise.

To propose a better model for mobile agent programming for the World

Wide Web, for example, the language designer should consider that the under-

lying connections often fail or delay. A neutral state, which would represent

the lack of result, could be assigned to the variable that takes part in the re-

quest in such a way that the program carries on running safely. Mobile agents

need to be robust and make their own decisions remotely.

Although the present programming language features are not exactly for

mobile-code languages, the underlying environment can be the same for the

sake of generality. Here I explain how this additional value can be useful in

programming for a global environment where the mobile agent paradigm and

technology have become increasingly important. In logics, this value has been

traditionally referred to as uu for providing an alternative value to true and

false. Like many imperative features, the present ones also apply to functional

languages.

Broadly, some pieces of work, such as [216, 217], have indicated similari-

ties between technologies of code mobility and persistence, and some persistent

languages are being explored at some universities. In the present approach,

because I am looking for generality and efficiency, persistence is not provided

directly by the language, but instead by programmable constructs. Because

of that, this approach here is at least as applicable to mobile agents as persis-

tent languages. As well as persistence, communication is another very active

topic of research and much work has been done regarding fault tolerance and

communication between mobile agents. However, relatively few satisfactory

results have been achieved in terms of language facilities and abstractions.

194



Here we concentrate on the use of programming features in the context of

a global environment and mobile agents programming.

The ability to represent and reason with partial information is well under-

stood in the artificial intelligence and logic communities. However, very little

of this work has been related to programming techniques. An exception is

Extended Logic Programming, introduced by Gelfond and Lifschitz[133, 134],

that can be used for the same purpose as that I am discussing here. Extended

Logic Programming makes use of two forms of negation. In [177], the author

suggests that an important practical problem in Extended Logic Programming

is how the programmer distinguishes whether a negative condition is to be in-

terpreted as explicit negation, or as negation due to the absence of any clause

in any closed world as an assumption.

The unknown value, uu, extends the semantics of other logics, such as

classical and intuitionistic logic, according to the  Lukasiewicz [116, 186] 3-

valued logic. Here I extend this value for each data type in programming

for a global environment or for mobile agents. In arithmetic and relational

expressions, uu as a resulting operand implies the expression to result in uu.

Accordingly, statements have to be adapted to make use of this value.

Most Expert System Shells made use of an unknown symbol to represent

lack of information in boolean variables, in a very restrictive way however[107,

108]. I generalize this concept to programming languages in general, although

I apply it here to mobile agents programming.

Agents have to be robust and, because of this, when connections fail or

delay, programs should carry on running despite the lack of information. uu

is a constant in programming languages that can be assigned to any variable

of any datatype. This new constant guarantees both safety and robustness at

the same time, because variables are never committed to any value that is not

in the problem domain. A specific discussion on uu is in chapter 7, for general

purpose programming, not necessarily in the context of global computers. An

excellent introduction on types for functional programming languages can be

found in [267].

195



In section 6.2 I review some recent programming languages for such an

environment, while section 6.3 is dedicated to a programming language that

I have called Plain. Section 6.4 introduces the concept of unknown together

with other related concepts, and explains how they can be used to achieve the

proposed goals. As a consequence, section 6.5 complements those concepts by

stressing the importance of any form of lazy evaluation in programming, as

well as timeouts, no matter the adopted paradigm. Section 6.6 briefly discusses

logic programming on global computers while section 6.7 also describes strong

mobility. Section 6.8 contains other relevant features that are relevant enough

to be mentioned. Section 6.9 contains a local conclusion.

The examples in this chapter are written in Plain and, because the no-

tation has not been established, in section 6.3, I discuss the syntax of the

relevant subset of this language beforehand.

6.2 Some Current Mobile Code Languages

In the past few years researchers have seen the Internet as a popular envi-

ronment for systems. Some of us would like to program and compute using

this structure, i.e. to view parts of an Internet-like network as global comput-

ers[120]. Many companies, for example, are starting to have their own internal

global computers for their specific purposes.

In 1995, Sun Microsystems presented Java[21] programming language with

the stress on the interesting idea of permitting code mobility on the World-

Wide Web. Portability of code has become critical to software development.

Some online portable languages (i.e. taking a running program and port it to

a different architecture while it is running) have recently been designed[59],

whose characteristics will be discussed in this section. Type systems, scoping,

name resolution and dynamic linking are some of the key concepts in this

context. According to Cardelli, “languages that are not on-line portable will

be abandoned because they do not provide what is increasingly perceived as

basic functionality: mobility”[59].

196



However, one of the most interesting ideas is not only to move code, as

Tcl[232] and Java[21] do, but also computation (code along with context) over

the network, that is, a computation which starts at some location may continue

to execute at some other location. Synchronous connections to the original site

may be set while a program is running remotely in such a way that any change

in some variables transparently causes the value to be stored in the original

site. Alternatively, new values of variables can be sent to the original site with

no need for synchronous connections. Other paradigms of mobile computation

already exist and they depend on the kind of entities that are transfered over

the network, with respect to what is moved (code, data, connections, etc).

When the code is moved, what happens if the names it contains are bound

to resources in the source virtual machine? This issue defines two classes of

strategy, replication and sharing. The first strategy may be either static or

dynamic. Concerning static replication strategy, constants, system variables

and libraries, for example, are regarded as ubiquitous resources[188] and they

can adopt such strategy, where bindings are deleted and set after arrival. As

for dynamic replication strategy, the code migrates to another virtual machine

along with bound resources and the original bindings are deleted. The origi-

nal resource in the source virtual machine may be either deleted (replication

by move) or kept (replication by copy). In the sharing strategy, the original

resource is kept and remotely accessed through network references and con-

nections.

In both strong and weak mobility[75], security[308, 309] is a very impor-

tant matter. Locations must check for authorization and capabilities in order

to prevent malicious software running. By the way, the notion of what is “ma-

licious” itself is a subject in philosophy. However, as long as that is ensured by

the system, a global network can be a very interesting and natural platform for

computation. Thus, a new challenge emerges: how to provide these facilities

and prevent the related problems?

Mobility should also be considered not only during the execution of pro-

grams but also during the elaboration of software. The emphasis in perfor-

197



mance is no longer in the run-time code generated by compilers, but in the

(dynamic) compilation process itself (when applicable), transmission and ad-

ditional overheads to guarantee security and other requirements.

Acharya, Ranganathan and Saltz[4, 5] during the design of Sumatra, an

extension of Java, consider three requirements for individuals: awareness,

which is the need to monitor the level and quality of resources in their oper-

ating environment; agility, which is the ability to react to changes in resource

availability, and authority, which is the ability to control the way that re-

sources are used. Although they are important concerns, I think that these

concerns should be treated at the application level, not at the language level.

Some programming languages for mobile computation are described and

analyzed in [75] and other articles, and briefly described here:

• Java[21] is a strongly-typed object-oriented language. Java deals with

security[86] and allows transmitting program byte-code to be interpreted

by the Java Virtual Machine[199], but does not migrate computation. It

supports weak mobility with dynamic linking. Security level is increased

by the byte-code verifier at loading-time. Some security problems have

been found[85]. It was shown that the ability to break Java type system

leads to an attacker being able to run arbitrary machine code[84]. Static

and dynamic type checking.

• Telescript[316] is an agent-based and object-oriented language that ex-

plicitly deals with locality, strong mobility, and finiteness of resources.

There are two kinds of Execution Units: agents and places. Typically,

when an agent is running on an interpreter, the instruction go causes the

agent execution to be suspended, its code and current state are transmit-

ted to a remote virtual machine and, there, the computation is resumed.

However, agents do not maintain connections to remote agents. The

Telescript run-time code is interpreted without security checking since

security is ensured at the language level. The replication strategy is

dynamic, by move. Static scoping and name resolution. Static and dy-

198



namic type checking. In spite of the historical reasons for mentioning

Telescript here, that technology was replaced by Odyssey[72], which is a

Java-based version of Telescript, briefly speaking.

• Tycoon[208] provides thread migration like Telescript. It is a polymor-

phic, higher-order functional language with imperative features, which

may support other paradigms indirectly, including object orientation.

Tycoon provides strong mobility and support for persistent programming.

All objects in this language have first-class status. Static and dynamic

type checking, dynamic replication with strategy by copy, besides static

replication strategy.

• Agent Tcl[148] provides strong mobility where the whole image of the

interpreter can be transfered to a different site by executing a jump

instruction. Agent Tcl also provides weak mobility by executing a submit

instruction which allows transmission of procedures along with part of

their global environment, to a remote interpreter. Typeless language

therefore no type checking. Dynamic replication strategy, both by copy

and by move. Agent Tcl is a PhD thesis[149].

• Safe-Tcl[43] supports active e-mail, where messages may include code to

be executed when an interpreter reads the message after receiving it.

However, Safe-Tcl does not support active e-mail code mobility at the

language level but, instead, code mobility is achieved through a dynamic

code loading mechanism. Typeless language therefore no type checking.

• Obliq[35, 56] is an object-based language that encourages distribution

and mobility. While a mobile object is migrating from one place to

another, new connections are automatically open between source and

destination places in order to guarantee that any change in the variables

will update the state in the source place. Therefore, object references

are transformed into network references. Although a simple language,

there is some loss of efficiency and robustness due to some possibly very

199



large number of connections in an unreliable environment. Dynamic type

checking, sharing strategy.

• Facile[292] is a functional language, a superset of ML with primitives for

distribution, concurrency and communication. Mobile code program-

ming was later added to this extension[188]. Static and dynamic type

checking. Dynamic replication strategy by copy, besides static replica-

tion strategy.

• TACOMA[169, 170], the Tcl language plus primitives to allow a running

Tcl script to send another script and initialization data to another host

in order to execute the script remotely. Typeless language therefore no

type checking. Dynamic replication by copy.

• M0[75, 297] is a stack-based interpreted language which provides weak

mobility and run-time type checking. Dynamic type checking, dynamic

scoping rules, dynamic replication by copy.

Aglets Workbench, developed by IBM, is a mobile agent system based on

Java. Like others, such as ObjectSpace Voyager, the system security and other

issues depend on the Java system[181].

As mentioned before, in the present chapter, I discuss some of the features

of the Plain language.

6.3 Plain

Plain[103, 104] is a language that supports mobile agents, syntactically some-

what similar to Java. It supports strong mobility, as well as some forms of

knowledge representation, reasoning, and uncertainty treatment. As an on-

going experimental project, the language has not been scaled up and security

has not been a concern. Communication between agents has not been imple-

mented either. The Plain Virtual Machine interprets byte-code and the

language provides both replication strategies by programmable handlers[106].

200



BNF legend: boldface letters are keywords; italic words with initial capital

letter are other terminal symbols; words in lower-case letters are non-terminal

symbols; meta-symbols: | indicates alternative, ε is the empty symbol of the

grammar. Other terminal symbols: { ( , ; ) } are used in the grammar. Here,

I introduce a very simple subset of Plain in Backus-Naur Form, with “aprog”

as its grammar starting symbol:

aprog 7−→ classlist commandlist

classlist 7−→ ε | classdef classlist

type 7−→ int | list

modifier 7−→ private | public | ε

onevardef 7−→ Id | assignment

idlist 7−→ onevardef | onevardef ’,’ idlist

vardef 7−→ modifier type idlist ’;’

handler 7−→ evaluator | reactor

evaluator 7−→ when Id ’,’ do command

reactor 7−→ when Id ’:=’ do command

classdef 7−→ class Id ’{’ defs ’}’

defs 7−→ ε | vardef defs | function defs | handler defs

201



command 7−→ assignment | ’{’ commandlist ’}’ | functioncall |

ifcommand | return | return expression

assignment 7−→ Id ’:=’ expression

ifcommand 7−→ if expression then command |

if expression ’,’ command |

if expression ’,’ command ifnot command |

if expression ’,’ command else command |

if expression ’,’ command otherwise command |

if expression ’,’ command ifnot command otherwise command

commandlist 7−→ ε | command ’;’ commandlist

where non-terminal symbols, namely function, functioncall and expression

are as usual. In Plain, they are somewhat syntactically similar to C++ or

Java. The main difference is that the symbol $ can be placed where a variable

identifier is expected, as it will be explained below. There are other details

that will be explained together with the examples. The appendix B formalizes

the semantics that will be explained.

6.4 uu in Global Computers

I start this section copying a few words from chapter 7, which is specific for

uu. Although repetitions are often not very pleasant, because this chapter is

an article[106] and the present dissertation is only a PhD thesis, I shall not

remove text. For every data type, the language designer can add a special

value, namely uu, to represent lack of some domain value, i.e. some known

value in the problem domain. For integers, there is uu
i; for real numbers,

202



there is uu
r and so on. I simply write uu to mean that the type is irrelevant

in such context. Accordingly, I write value in the singular form to mean that

its type is not important in the sentence. Grammatically, uu or unknown is

a constant. Variables either contain uu or some domain value.

Some languages adopt a default value as initial variable contents. But

since one now has uu, we ought to adopt this value as the initial one for every

variable. The programmer should certainly want to initialize some variables

with different values.

For any variable in the program, handlers can be attached. They can be

one evaluator and/or one reactor, independently. As well as other purposes,

one handler can protect a variable. The idea of evaluator is to allow the pro-

grammer to write a piece of code to produce and provide some domain value for

the corresponding variable, while the idea of reactor is to inspect and protect

the variable against assignments. Thus, a reactor allows the programmer to

write a piece of code to react instead of letting values be stored unconditionally

in the corresponding variable.

int x, y;

when x, do { x := 3 ∗ y; }

when x := do { x := $; }

In the above example, two handlers are defined for the variable x. The

first time that the value of x is being requested in an expression, the above

evaluator is triggered, which in turn computes the triple of the value of the

variable y assigning it to x. From the second time on, the computed value 3 ∗ y

is already available in x and, because of this, the evaluator is not triggered.

This idea is not limited to exception handling, a mechanism supported by some

other languages, and this will become clearer soon.

An evaluator can contain return statement (similar to C) as an alternative

to assigning a value to the requested variable. In the case of the return

203



statement and no prior assignment in the evaluator, the evaluator is always

triggered when that variable is being used, unless some domain value has been

assigned to that variable outside the evaluator.

Whenever a value is to be stored in x, the control is jumped to the cor-

responding reactor. Notice that the $ symbol above is used in reactors to

represent the value that, in other languages, would be stored unconditionally.

In the above example, the value is accepted.

Built-in predicates can be provided to check whether a variable contains

uu, for example, known and unknown. In these cases, the value is accessed

directly and the boolean result from the condition is provided by the interpreter

without evaluating the handler of that variable.

The use of variables in expressions can have innovative semantics:

If the variable contains some value in the problem domain, the semantics is

exactly the same as in imperative languages. However, if the variable contains

uu, the semantics is divided by two separate sub-cases: if there is an evaluator,

it is executed. Otherwise, i.e. when there is no evaluator, uu is used instead.

However, the semantics of the execution of evaluators is not similar to the

semantics of function calls, because the latter are always executed. In the case

of Remote Procedure Call or Remote Method Evaluation, this unconditional

call is probably inconvenient or inefficient in programming.

In terms of design, uu and handlers replace exception handling in other

languages. This might relatively simplify the language. Handlers are very

useful during program testing and debugging phases, by inspecting what is

being stored and, since mobile agents might escape from the user, uu together

with handlers can be used in mobile agent programming. For example:

class mycl {

public int x;

private list queue := [ ];

when x := do {

x := $;

204



queue := queue +

[ [ #self + “.x := “ + $ + “ at “ + LocalT ime() ] ];

}

}

mycl c; c.x := 10; c.x := 20; c.x := 30;

In the above class or its subclasses, whenever x receives a value, it is also

stored in the queue together with the name of the object (#self), the name

of the field (x) and the current local time (LocalT ime()). The ’+’ operator

concatenates lists or strings, besides the arithmetic addition, as usual. The

square brackets are used to construct a list of values of any type. Here the

programmer chose list of lists for programming reasons.

For it is known that it is very difficult to implement the mobile agents

debugging system in a satisfactory way, the above simple code can be written

since we have handlers. To generalize, when a mobile agent dies, the local

runtime system ought to provide a way of returning the agent to its home.

By some local query, the programmer can inspect the contents of such queues,

including a general queue for all classes. By writing some declaration (trace)

in the language, a mobile object support system can internally maintain these

queues.

If one thinks of mobile agents that can deal with resources that cannot

move, the difference from other paradigms might become decisive in language

design. On the one hand, a variable in an evaluating expression may cause its

value to be read from a data base or requested from a remote process, provided

that its current value is uu. Thus, a variable may have a cache because in the

subsequent uses, some domain value is available locally and the handler is not

triggered. On the other hand, to assign a value to a variable may cause its

value to be stored on a data base or sent to a remote host.

The following piece of code exemplifies a persistent field p and a remote

field r that can live together in the same class:

205



class remoteandpersistentcl {

public int p, r;

public void ini(int i, int j) {

inttodb(“p”,i);

p := i;

inttourl(“www.aaa.bbb.ccc/cgi/server/r.txt”,j);

r := j;

}

when p := do {

p := $;

inttodb(“p”,p);

}

when p, do {

return intfromdb(“p”);

}

when r := do {

r := $;

inttourl(“www.aaa.bbb.ccc/cgi/server/r.txt”,r);

}

when r, do {

r := intfromurl(“www.aaa.bbb.ccc/cgi/server/r.txt”);

}

}

remoteandpersistentcl c;

206



c.p := 20; // also store the value 20 locally on data base.

sendlocally(home, c.p); // send 〈c.p〉 to the agent home.

c.r := 30; // also update remotely.

sendlocally(home, c.r); // send 〈c.r〉 to the agent home

Notice that, according to the evaluator definitions, while the p field is

retrieved from a data base whenever its value is requested, the r field is pro-

grammed to behave as cache over the global environment. I could write a

method reassigning uu to r to cause the r integer value to be retrieved from

network at the next time that it is requested in some evaluating expression.

The functions inttourl, intfromurl and sendlocally tell the underlying sys-

tem to generate internally mobile agents to take part in the protocol. There

has been a general criticism concerning mobile agents because they do not

maintain connections. I agree that a programming language should hide con-

nections from the agent, but the mobile agent support system should provide

remote communication in an appropriate way. This produces positive effects

and abstractions in the programming language.

As stated, a much more convincing discussion on uu in the context of

general-purpose programming languages is in chapter 7. Here I concentrate

on features for global computing and present some new aspects of uu.

6.5 Lazy Evaluation and Timeout

Lazy evaluation is one of the most interesting characteristics of programming,

in particular in applications where time is regarded as important. In this

chapter, I am not regarding lazy evaluation as being only call by need of

functional languages. If the language provides functions, lazy evaluation can

also be very useful in the same platform, from the same point of view of the

present section.

Programming for mobile agents on a global environment tends to be more

personal. One of the reasons is that patience and mood vary for different

207



people as well as for the same person at different instants, and one of the

purposes of agents is to represent users.

As an example of a situation, a mobile agent ma can communicate with a

stationary agent s which in its turn can send a small agent remotely to ma’s

home in order to return some piece of information to s which in turn can hand

it to the mobile agent ma. To deal with faults and delays in communication,

a timeout can be set, implicitly or explicitly, for every input operation. After

that time, the result is unknown (uu ) and the computation continues normally.

Similarly, every output operation has a timeout.

In this way, the same statement can be executed at different locations[57],

either sequentially or not. This situation happens often. Cache-like variables

might produce a similar result as lazy evaluation. Computing with timeouts

together with uu and handlers is not lazy evaluation, but it can give a some-

what similar impression of impatience and, because the resulting value in this

case of exception is uu, variable values in programs are always sound and

finally this scheme improves agent robustness.

Another way of dealing with faults and delays is to provide a standard

semantics for basic operations such as arithmetic and relational. In particu-

lar, if the first operand is uu, the expression might result in uu without the

evaluation of the second operand. This is a form of lazy evaluation. Finally,

uu in “call by need” is presented in section 7.7.

6.6 Logic Programming

In comparison to imperative programming languages, logic programming is

easy because the former requires a more difficult form of reasoning, for in-

stance, sequences of statements. Here a program is ideally a set of facts and

rules, and these are notions with which all of us are used to dealing in our

daily lives. In agent-based languages and systems, the programmer typically

needs to state permissions of access for users to resources and this can be done

in logic programming quickly, perhaps automatically. On the other hand,

208



logic-based languages that are boolean, such as the famous Prolog, are not

very compatible with global computing because there are delays and failures

in connections in the real world. Perhaps because of this, logic programming

has not been interesting for code mobility or global computers. Prolog nega-

tion as failure is dependent on the closed-world assumption while, in contrast,

global computers contain those mentioned characteristics. This presents an

important problem if one wants to use Prolog in applications other than with

non-monotonic reasoning, similar to locally answering whether there exists a

flight leaving London for New York on Wednesday afternoon, as illustrated in

[138].

6.7 Strong Mobility

Global computers almost imply code mobility, whose most general form is

strong mobility, which in turn can be implemented by mobile agents. To date,

for all mobile agent languages and systems, an instruction that causes mobility

is required, although strong mobility can be easily conceived declaratively,

instead of in the form of an imperative statement. In Telescript, for instance,

this statement is called go while in Agent Tcl the equivalent statement is

called jump. In Plain, as described in chapter 5, the instruction is the flyto

statement. There might be small variations in this statement, in comparison to

the semantics of the µ operation presented in chapter 4. So, given the current

place cur and initial time t0, given the current and destination ambient states

Acur and Adst, also indexed with time, and given the current state @cur · t0[r],

an operational semantics for the flyto dst timeout q; statement, with timeout

q, in the language and semantics presented in chapter 2, can be the following:

@cur · t0[r ⊆ Acur
t0

] @dst · t[r ⊆ Adst
t ] @cur · t[t−t t0 <t q]

@cur · t0[[flyto dst timeout q, r ∩ Acur
t0

]]
exec
 @dst · t[r ∩ Adst

t ]
(6.1)

where t0 <t t. The semantics of the timeout in this operation can be the

following:

209



@cur · t0[r ⊆ Acur
t0

] @cur · t[t−t t0 =t q ∧ r ⊆ Acur
t ]

@cur · t0[[flyto dst timeout q, r ∩ Acur
t0

]]
exec
 @cur · t[r ∩ Acur

t ]
(6.2)

The statement for strong mobility makes the agent execution freeze and

the thread continues at the destination address, which is its operand. There

may be some password and other details, depending on the technology.

6.8 Other Features

Because generality is desirable, choices among various strategies for binding re-

sources should normally be programmed. Handlers may be used to implement

different strategies for variables that are resources, either local or remote.

During the compilation, in order to support higher-level communication

between agents, names of objects in the source program can be written in

the object code, which increases the agent size but it is still a good idea.

A possibility is to generate only names defined in the dynamic part of the

interface. If the language supports artificial intelligence techniques, perhaps it

is even interesting to consider the idea of generating all names. Communication

between agents can be set from a prefix in function calls containing the name

of the destination agent. For example, in x := prov :func(params), the

string variable prov is a name that indicates the agent which in turn might

contain the func function definition. The prov value is an absolute (global) or

relative (to the local host) address. If such a matching name of func(params)

is undefined in that agent when the call is executed, x receives uu. In every

function call (or method invocation) between two agents, a timeout can be

attached. For example, in x := prov : func(params) timeout 3, if the

operation is not completed before 3 seconds, at that time it is interrupted and

x receives uu.

The concepts of home and Id of agents ought to be key words in the

programming language, in a similar way as exemplified above, outside the

class remoteandpersistentcl.

210



Surprisingly, although concurrent programming [52] is an important tech-

nique that can help in certain applications, it is not a specific feature for

mobile agent programming languages, as concurrency can be achieved at the

operating system level.

However, uu permits a large number of parallel operations, not only par-

allel and and parallel or. For example, to evaluate op1 (+) op2, the operands

are evaluated first, possibly in parallel, and if both result in a known value the

sum is finally performed, otherwise the result is uu. See semantic rules for (+)

in the appendix B. There are no side effects in the operation, as the language

can guarantee syntactically the presence of only pure function applications

and pure expression evaluations. Although I do not list all parallel operations,

which lexically I would similarly surround all those sequential operators with

parentheses, very similar semantic rules would apply for the other operators.

In other words, in the appendix B, I only present rules for (+) and not for (−),

(∗), (/) etc. The systematic use of these parallel operators radically improves

programming, as well as improving efficiency of agents running globally.

As mentioned, the examples in the present chapter is written in Plain, a

general purpose language that supports strong mobility. A previous language,

Lidia, was initially conceived to integrate forms of knowledge representation

and programming paradigms. Although I have not implemented, during 1997,

I also defined a three-valued logic programming sublanguage, Globallog,

that might be suitable for global or wide-area applications. I intend to include

the implementation of Globallog in the current Plain implementation.

The whole Plain language has only one negation. Although its security model

and the logic paradigm have not been implemented, some applications in the

main language have been written. Concerning its virtual machine, to guarantee

agents privacy, Plain virtual machine decrypts byte code in some specific

format, obtains the agent and starts interpreting the agent.

211



6.9 Conclusion

At a more refined level, for avoiding repetition in computation when the vari-

able value is requested more than once, there can be two kinds of unknown

states: the first one represents the initial lack of information with potential

for substitution. The second also represents the same lack and is internally

assigned to variables after having attempted to provide some value. From this

chapter, it is easy to deduce both forms of uu.

Local inefficiency is an issue of the features discussed in this chapter. As-

suming that, in practice, mobile agent support systems entail code interpre-

tation, the interpreter has to check the presence of uu whenever a variable is

being requested in an evaluating expression. However, as hardware is getting

faster and larger, this is not considered a significant problem. Moreover, this

problem can be compensated for the fact that mobility and remote accesses

are the bottleneck in applications, and that variables can behave as cache and

operations can be lazy. This combination is encouraged by the language.

212



Chapter 7

uu for Programming Languages

The Internet has motivated new programming languages features. I consider

that programming for such a global environment requires the ability to deal with

what is unknown because connections often fail or delay and programs should

be robust.

In this chapter I present uu, a value that can represent lack of information in

programming languages. A thesis is that this value is a good feature towards

the unification of some programming paradigms. In this chapter I explore

constructs as consequences of uu in such languages together with examples

where this value helps in programming, and I explain the relationship between

uu and another programming paradigm. The uu implementation is also briefly

discussed.

7.1 Motivation

High school students usually solve systems of algebraic equations. They try

to find values, either numeric or symbolic, to be assigned to variables. Once

they find a value for a variable, this value remains constant. Variables in such

a system have two general states: unknown and (subsequently) known. These

states inspire a new programming paradigm, where variables in a program

initially contain the unknown state, and later, might change their state to

213



known as it receives a value in the problem domain. In imperative languages,

if a variable is in the former state, it contains a special value that is called uu.

Otherwise, it contains a value in the problem domain.

As another example, a program presents a question to the user, but the

user does not know or even does not want to answer the question. What state

should we assign to the variable after the input operation?

One more example, in programming for a world-wide network such as

the Internet, the languages designer should take into account that underlying

connections often fail or delay. In such cases, a neutral state could be assigned

to the variable that takes part in the request, in such a way that the program

carries on running safely, that is, the variable could contain a value that would

represent the lack of that piece of information, instead of being committed to

some known value in the problem domain.

A question arises from the above situations: what are the programming

languages concepts and constructs to provide a better abstraction for variables

regardless of the programming paradigm? In this chapter, I partially provide

an answer to this question. Here, I also refer to a non-uu value as known

value.

Section 7.2 addresses somewhat related work. Section 7.3 introduces the

concept of the unknown value together with other related concepts, and sec-

tion 7.4 explains how uu can replace specific constructs for exception handling.

Section 7.5 explains the applicability of uu in OOP while section 7.6 contains

a discussion on the use of the unknown value in the integration with other

paradigms, in particular logic programming. Section 7.7 explains how uu can

support lazy evaluation. Section 7.8 contains a comment on implementation,

section 7.9 presents a synthesis and, finally, the appendix B presents an oper-

ational semantics.

214



7.2 Related Work

The ability to represent and reason under lack of information is well known

in the artificial intelligence and logics communities, and there has been much

work on this subject. However, from the best of my knowledge, none of them is

related to programming techniques: Extended Logic Programming, introduced

by Gelfond and Lifschitz[134] is one exception, where the core idea is the nega-

tion itself, and abstract negation, to provide only one negation in the whole

unifying language. Our approach here consists in using the uu value when a

specific piece of information is unknown to the program. In this way a set

of variables with their corresponding values can represent lack of information.

Another somewhat related work is boxed representation[173], implemented for

functional languages such as Haskell. Here, my main concern is in pragmatics

of a programming language, although such technique can implement uu. The

present ideas do not apply to pure functional languages, in which variables do

not contain values but instead denote them.

In the late 80’s, most commercial Expert System Shells also made use of

similar unknown value to represent lack of information over Boolean variables,

although in a very restrictive way. I generalize the concept to the programming

language level regardless of the application area.

Current programming languages, such as Java[147] and ML, provide the

concept of exception handling and constructs for it. I present more general

constructs that replace this concept at the language level.

The ANSI/IEEE Standard 754-1985 also supports the concept of ”Not-a-

Number” or NaN[167] instead of floating-point values to represent indetermi-

nate quantities. Although it also propagates NaN, the approaches are not the

same since that standard does not concern programming languages constructs.

Moreover, our approach is not limited to some specific data type.

215



7.3 uu : the Unknown Value

In this section, I introduce uu for programming languages design. For every

data type, the languages designer can add a special value, namely uu, to

represent the lack of information. For integers, we have uui; for real numbers,

we have uur and so on. In this paper however, I simply write uu to mean

that the type is irrelevant in the context. I apologize for such slight abuse of

notation. Accordingly, I use the term value to refer to a value regardless of its

type, and a known value to mean a value in the problem domain.

The unknown value, uu, extends the semantics of the classical and in-

tuitionistic connectives according to the  Lukasiewicz[186] 3-valued logic. In

arithmetic and relational expressions, the presence of uu as an operand im-

plies that the expression results in uu without evaluating the other operand.

As a first example, I present a program to find the roots of an equation of

the second degree:

float a, b, c;

float delta := b ∗ b− 4 ∗ a ∗ c;

float x1 := (−b− sqrt(delta))/(2 ∗ a);

float x2 := (−b + sqrt(delta))/(2 ∗ a);

write x1, “ ”, x2;

I believe that the above syntax is intuitive or familiar for programmers.

In comparison to other programming languages, it is not syntactically much

different and here, a bit like Prolog, the corresponding system tries to find

values for variables when they are being requested in an evaluating expression.

Initially, all variables contain or denote uu. The programmer, then, uses the

variables, x1 and x2, in the expressions of the write command and then their

known values are found according to the formulas in the program. Although

delta is used by both x1 and x2, it is desirable that its value be calculated

only once. Thus, the program execution asks for the values of b, a, c, in this

order, before giving the answer.

216



In terms of Domain Theory, uu is a result and there is no order relation

between uu and other values in the domain. Thus, uu is a value in the object

language, and not the bottom (⊥). However, although uu is not “undefined”,

it can be used where a function is undefined to transform a partial function

into a total one. Thus, the factorial function can be written as follows:

int fact(int x) :=

if x == 0, 1

ifnot

(if x > 0, x ∗ fact(x− 1)

ifnot uu )

otherwise uu ;

In the above example, if the value of the parameter x is uu or negative,

the result is uu. Notice that the conditional was extended to accommodate a

3-valued logic. I address conditionals as well as lazy evaluation later in this

chapter.

Variables either contain uu or a known value. Most imperative program-

ming languages adopt a default value as initial variable contents. Here, since I

am introducing uu in this context, I adopt this value as initial for each variable

according to its type. The programmer might want to initialize some of the

variables according to the application.

7.3.1 Evaluators and Reactors

In imperative programming, the present idea is to allow the programmer to

write a piece of code to “discover” the value in the problem domain whenever

a variable that contains uu is being used in some evaluating expression. I

call this piece of code an evaluator. Additionally, the programmer can write a

piece of code, called reactor, to be triggered instead of letting values be stored

in the variables. For every variable in a program, one can attach handlers.

They can be one evaluator and/or one reactor, independently. Among other

217



purposes, such handlers protect the variable. One can write handlers in the

following way, intuitive for Pascal or C++ programmers:

int x, y;

when x do { // this is an evaluator

x := 2 ∗ y;

}

when x := do { // and this is a reactor

x := $;

}

In the above example, two handlers were defined for x. At the first time

that the value of the variable x is being requested in an expression, the above

evaluator is triggered, which in turn computes the double of the value of the

variable y assigning it to x. From the second time on, that computed value

2 ∗ y is already available and the evaluator is not triggered.

The concept of evaluator can contain the return statement (similar to C)

instead of assigning a value to the requested variable. In the case of the return

statement, the evaluator is always triggered when that variable is used, unless

a known value has been assigned to that variable outside the evaluator. Such

an assignment can be statically allowed and dynamically allowed or forbidden,

or simply statically forbidden.

On the other hand, whenever a value is to be stored in x, the control

is jumped to the corresponding reactor. In the above example, the value is

accepted: notice that the $ symbol is used in reactors to represent the value

that, in other languages, would be stored unconditionally.

Two predicates are used to check whether a variable contains uu, namely,

known and unknown. In these cases, the value is accessed directly and

the Boolean result from the condition is provided by the interpreter without

evaluating the uu -valued variable handler.

218



7.3.2 Comparing Handers with Methods and Functions

A pragmatic comparison between the use of handlers and the use of functions

and methods can be done: after implementing an application system, handlers

can always be added and updated without changing the system elsewhere.

However, unlike functions and methods that are called elsewhere, handler def-

initions can always be removed as the system provides a default semantics for

the absence of a handler.

The semantics of using a variable containing a known value is exactly

the same as for other languages. However, the semantics of using a variable

containing uu is not: if there is an evaluator, it is executed. Otherwise, i.e.

when there is no evaluator, uu is used. On the other hand, the semantics of the

use of variables is not the same as the semantics of function calls either, because

the latter are always executed. Therefore, in some sense, uu combined with

handlers are semantically somewhere between use of variable and function.

Before using uu as an operand in the expression evaluation, Plain[103],

a proposed language for the Internet, optionally tries to get the value from

other sources, e.g. asking the end-user, in such a way that in the first run

programmers can be reminded that they forgot to initialize some variable.

Besides using some languages constructs to hide variables (x2, y2, uux,

and uuy, below), the equivalent semantics is then achieved without a built-in

uu in the following way:

int x2, y2;

logic uux := true, uuy := true;

int x(void) {

if uux, { // the evaluator for x

x2 := 2 ∗ y(); // instead of x eq(2 ∗ y());

uux := false;

}

ifnot return x2;

219



}

int x eq(int dollar) { // the reactor for x

x2 := dollar;

uux := false;

}

Notice that the Boolean type, built-in in some languages, has been replaced

by (3-valued) logic. Also, the parentheses that surround conditions in the

if statement (and while statement in other contexts), which might contain

commas in C, C++ and Java, have been replaced by the comma to mean then.

Here, ifnot is being presented instead of the reserved word else, adopted in

other imperative and functional languages.

In an object-oriented context, although it is possible to write a class, say

C1, with the above code, and then to define many instances of that class and

its subclasses, the use of classes does not encourage the use of these ideas as

much as a programming language does. Moreover, the syntax for assignment

and for handlers are more suggestive of the programmers intention, and the

occurrence of variables in expressions should not need to have the same syntax

as function calls. More importantly, handlers contain different code, and this

diversity makes classes and subclasses definitions much more complicated and

less readable. Another important difference: in object-oriented languages,

programmers should take care when they are defining a public field because the

field can be used outside the class and programmers can no longer change the

field definition, e.g. to be private to that class, without considering elsewhere.

Here, although it is not possible to change the field definition either, it is still

possible to insert code related to that variable in a handler without changing

the rest of the system. The use of public fields in the current scheme is

surprisingly harmless. If we think in terms of classes as being downloaded and

linked dynamically on a public network and of mobile agents that deal with

resources that cannot move, this difference itself might become decisive in the

220



language design. Using a variable in an evaluating expression might cause

its value to be read from disk or requested from a remote process, provided

that its current value is uu. Thus, a variable may be a kind of cache, because

in the subsequent uses of that variable its value is already locally available

and the handler is not triggered. Conversely, assigning a value to a variable

might cause its value to be stored on disk or sent to a remote host. Storing

values of variables on disk and restoring the values by using the same variables

implements persistent programming.

7.4 uu in Exception Handling

uu, as being a more primitive and general concept, when combined with han-

dlers, replaces exception handling, which simplifies the language. The pre-

fix operator code gets the exception code for a variable in a context where

the reason for its value be unknown is required. Suppose that I want to ac-

cess a value for a variable at some place on the WWW, given the address

www.somewhere.on.the.earth.

string addr = “www.somewhere.on.the.earth”;

int x = getint(addr) timeout 10;

if unknown x then {

int c = code(x);

if c == exc to then {

write “Time-out in the attempt to access “,addr,nl;

}

ifnot {

write “Exception “,c, “in the access of x at“,addr,nl;

}

}

Thus, if the requested integer value is not retrieved by 10 seconds, the

program execution continues normally. In the above example, the case is

221



treated as an exception, but the lack of information in the problem domain

that was expected to be in x allows the computation to continue normally,

with or without the above treatment, and without x being committed to any

value in the problem domain, which guarantees safety and robustness.

7.5 Object-Oriented Programming with uu

The uu value can be added to any programming language no matter its

paradigm. In this section I give some examples in object oriented program-

ming. Although a hybrid paradigm language can adopt only one construct for

both frames and classes, I discuss them separately here.

7.5.1 uu and Frames

A programming language can adopt the following semantics for the use of a

variable in an evaluating expression:

1. If the value is known, use this value.

2. otherwise, if the evaluator for that variable is defined, execute it. Then

(a) if its value is now known, or the evaluator returns a value, use this

value;

(b) otherwise, use uu.

Success.

3. otherwise, if the variable is a field, look for the value of the corresponding

field in the object class (and recursively, in its superclass), using the steps

1-3 of this algorithm, and then,

(a) if a value in the problem domain is found, use this value in the

expression instead of assigning to the requested variable;

(b) otherwise, use uu ;

222



Success.

4. At this point, the variable is not a field, contains uu and there is no

handler for the variable. If “possible”, ask the application user for the

value of that variable, and then,

(a) If the value is entered, the value is assigned to the variable and the

evaluation of the expression continues.

(b) On the other hand, if the user does not want to answer, uu is

used in the expression and its calculation carries on. The user will

no longer be asked for a value of the same variable, unless uu is

assigned to that variable.

5. If “not possible”, e.g. the application is not interactive, use uu.

Note. Steps 4-5, if implemented, require that the compiler generates the

symbolic names of the variables. Plain has done so and recently, in spite of

the size of the byte-code, it was realized that these names are also useful for

symbolic communication between agents on an open system. Thus, because

Plain was designed for knowledge representation, it has been relatively easy

to adapt it to support mobile agents.

Now, looking back to the first example, of the equation of second degree,

its coefficients a, b and c, do not have evaluators and hence their values can be

asked at the terminal at the first time that they are requested. Assigning the

result from an expression to a variable in its definition is a syntax simplification

of writing an evaluator for that variable containing only that expression. Thus,

initializations might be dynamic and lazy in a sense.

Handlers are very useful for testing and debugging, by inspecting what is

being used, and this can also be done in mobile agents. For these programs,

there can be handlers for other purposes that are outside the scope of this

discussion, e.g. to be implicitly executed before departures and after arrivals.

223



7.5.2 Classes with uu

Using the Internet as an example, if a programmer wants to build a class to rep-

resent some specific measure, they should take into account the fact that some

countries use certain measuring systems while others use different systems.

Consider the temperature representation, either in Celsius or Fahrenheit:

class temperature {

public float Fahr, Celsius;

when Fahr do {

Fahr := 9.0/5.0 ∗ Celsius + 32;

}

when Fahr := do {

Fahr := $; // it accepts the assignment

Celsius := 5 ∗ (Fahr − 32)/9;

}

when Celsius do {

Celsius := 5 ∗ (Fahr − 32)/9;

}

when Celsius := do {

Celsius := $; // accepts the assignment

Fahr := 9.0/5.0 ∗ Celsius + 32;

}

}

The above example is a form of constraint programming. It is represented

here, almost declaratively, the relationship between two variables concerning

measurement of the same concept, temperature, and the handlers keep the

variables always consistent. Regardless of the syntax, this is somewhat similar

to method invocation. However, methods are always executed.

As another example, I consider that classes and frames are concepts that

can be integrated. But while classes come from the set theory, frames come

224



from the prototype theory. While a class is a shape and is conceived for re-

usability and other programming concerns, a frame represents concepts of the

real world. Because both class frames and instance frames are defined, I can

integrate them easily:

class Human {

public logic dies := true;

public int class cardinality := 6000000000; // not exact

public string handed := ”Right”;

}

Human Socrates; // Therefore, Socrates.dies

However, in a frame system, classes are also treated as instances, e.g. it makes

sense to compute Human.cardinality++; when someone is being born. The

reserved word class is being used as a modifier in cardinality to remove the

attribute from the instances of that class, although its subclasses can inherit

the attribute and even change its value to represent exceptions. In the example,

Socrates.cardinality might be meaningless. According to the step 3 of the

algorithm presented in the previous section, the uu contribution here is that

the field values of the instance Socrates is obtained from the class Human

(or possible superclasses) dynamically when they currently contain uu, i.e. if

a definition is changed dynamically inside a frame, its instances will inherit

the new value on demand.

According to the algorithm, uu does not necessarily depend on handlers,

and it can be used as any other value, e.g. it can be assigned to a variable.

Handlers are somewhat similar to ”ties” in Perl, “triggers” in SQL and ”tag

methods” in Lua[164], which are languages that do not provide uu.

Handlers and uu can be used to implement multiple inheritance in an

object-oriented language that provides single inheritance and late binding: the

programmer defines secondary conceptual super-classes as fields in the defining

class as in the example below:

class c1 {

225



public int i;

public float f ;

public void m() { }

when f do { f := 3.14; }

when i do { }

}

class c2 {

public int f ;

public float i;

public void m() { write ”Hello”, nl; }

when i do { }

when f do { f := 15; }

}

class c3: c1 {

private c2 sec; // c2 is a secondary super-class

// here, the conflicts are solved by interception:

public void m() { sec.m(); } // ... from c2

when i do return sec.f ; // ... from c2

when i := do { sec.f := $; } // ... to c2

}

Thus, the language shifts responsibility to the programmer to define the

interpretation of the conflicts among attributes from different conceptual su-

226



perclasses. The exceptions are treated by overriding methods and handlers,

which can be used to rename conflicting attributes when they are needed in

the defining class. In c3 in the above example, by default, the attributes are

inherited from c1 and handlers and methods are written to implement inher-

itance from c2. Because multiple inheritance is not very often needed, single

inheritance in this context seems to be an interesting solution, in particular,

together with late binding.

Classes do not necessarily need the new operator to create objects as

they might be created on demand: when a variable of any class is used in an

evaluating expression and it contains uu, the object referred to is created.

The program below exemplifies the use of uu when the programmer wants

some default value to be assumed. For example, we normally assume that En-

glish ought to be generally used on the Internet when we want to communicate

with the public. Spanish ought to be used in Latin-America mailing lists, and

so on. With uu, value inheritance can be a dynamic relationship:

class General {

public string you := “world”;

public string hello := “Hello,”;

public string sayhello;

when sayhello do

return hello + “ ” + you+ “!”;

}

class MailingList: General {

initial {

hello := “Ciao, ”;

you := “Italia”;

}

}

227



//...

MailingList b;

b.you := “caros brasileiros”;

write b.sayhello, nl;

b.you := uu;

write b.sayhello, nl;

MailingList.hello := uu;

write b.sayhello, nl;

In the above example, after the definition of b, the value of the field b.you

is customized as “caros brasileiros”. In the following line, the field b.sayhello

is requested and evaluated as “Ciao, caros brasileiros!”, and this content is

written followed by the newline: the constant nl. Then, uu is stored in b.you.

When b.sayhello is evaluated in the subsequent line, it is evaluated as “Ciao,

Italia!”, that is, because b.you now contains uu, its known value is picked up

from its class (and so on, upwards, if it is also uu there). Then, this value is

written followed by the newline. The next line assigns uu to the field hello of

the class MailingList. Finally, the string “Hello, Italia” is written followed

by the newline command. In this way, I represent default values. In this case,

sayhallo is always evaluated.

7.6 Imperative and Logic-Based Features

uu can help combine imperative constructs in a hybrid language with other

programming paradigms, such as Logic Programming. A Logic Programming

system, besides answering a query with either true or false, can provide values

for free variables. Some of these variables remain free after the computation

from a query, which means that they represent “any answer”. Thus, besides

the ability to answer a query with uu to mean “unknown”, uu can be used to

implement free variables.

228



On the other hand, if a variable of the imperative paradigm is passed

to a query of the logic paradigm and its value is uu, the algorithm of the

called paradigm will understand that the query includes a request for the value

of that variable. After receiving the answer, the calling program interprets

variables containing uu as an appropriate answer, and continues normally.

If the answer list is empty, that means “no answer”, while uu is normally

interpreted as “unknown answer”. As above, depending on the contract, uu

can be interpreted as “any answer”.

7.7 uu in Lazy Evaluation (Call by Need)

As stated in the section 6.8 with reference to appendix B, uu can support lazy

evaluation in almost all sequential operations in a language, that is, when the

first operand results in uu, the second operand is not evaluated. Chapter 6

describes in detail the application of uu and lazy evaluation in programming

for internets and mobile agents. Thus, in the rest of this section, I mention

only call by need.

Some functional languages are eager (e.g. ML) and some are lazy (e.g.

Haskell), but I can think of lazy and eager evaluations as concepts related to

functions in the following way:

logic lazy f(int x, int y) :=

if x+ x > y, true

ifnot false;

//...

logic y := f(1 + 2 + 3, 2 + 2);

Here, although the parameter x is used more than once in the function f, x

is evaluated only in its first occurrence in the expression. The lazy modifier

postpones the evaluations of the parameters, e.g. 1+2+3 and 2+2. Regarding

the implementation of this mechanism, it is not difficult with uu : The compiler

229



generates code to skip the actual parameter list. It also creates a pointer

to every expression in the actual parameter list, 1 + 2 + 3 and 2 + 2 in this

case, including references to the activation record[7], transforming every actual

parameter into a local subroutine, and then passes the expression pointer to

the corresponding formal parameter handler, x or y. As already explained, for

the first time that a uu -ed parameter is being evaluated, the corresponding

actual parameter, either 1 + 2 + 3 or 2 + 2, is evaluated. From the second time

on, the value is known and, because of this, it is not evaluated. However, if

the formal parameter is not used, the corresponding actual parameter is not

even evaluated.

It seems to be bizarre to provide lazy evaluation and imperative features

because of side-effects. However, a hybrid paradigm programming language

can provide the concept of “pure function” as its compiler forbids assignments

and global objects inside its code.

7.8 Implementation

Although efficiency is not the main issue in the present paper, inefficiency

might be the only negative point of the present ideas, in comparison with im-

perative languages that do not provide object-oriented constructs, because the

interpreter has to check the presence of uu whenever a variable is being used

in an evaluating expression. References to handlers for a variable also increase

the size of the object code. This detail is not really a languages feature, but

instead it depends on the decision of implementation which might require some

analysis on the source code in terms of frequency of use of handlers, which in

turn depends on use and experiments. Therefore, the implementation of uu is

a challenge. The comparison is relative to application because method invoca-

tion, for example, requires pattern matching and search algorithm. Moreover,

like a mobile-code language, a uu -based language entails some form of code

interpretation, which is becoming a normal conduct in programming languages

as hardware is getting larger and faster.

230



7.9 Conclusion

As a consequence of the adoption of uu, expressions in a programming language

have to be able to consider this special value. Assuming that not uu results

in uu, statements such as if -then-else and while, as well as their semantics

are adapted to deal with three logical values. The conditional statement or

expression in their full forms, for example, becomes if -then-ifnot-otherwise.

uu and handlers can simplify a programming language by replacing com-

mon constructs such as multiple inheritance.

Handlers and uu have been experimented within Plain for a number of

years successfully. Their application, along with other features, to program-

ming for mobile agents and the Internet has been investigated.

The idea of a hybrid paradigm for programming allows programmers feel

free to choose their own way of working. Some definitions are better written in

some particular paradigm while others are better written in other paradigms.

At a more refined level, there can be two kinds of unknown states: the first

represents the initial lack of information with potential for later discovery. The

second kind also represents the lack of information after having attempted to

discover its value. Plain distinguishes one kind from the other, to allow the

inference machine to recognize variables whose value was already asked.

231





Chapter 8

uu and Uncertainty for Global

Computing

Humans often make decisions based on subjective factors, such as opinions,

feeling, measure of confidence and so forth. On the other hand, decisions are

basic characteristics of any programming language. This chapter applies the

connection between uu and uncertainty to programming.

In chapter 2, I introduced a logic and calculus/system that provide both uncer-

tainty and uu. Here, I use these two notions at a more practical level. The

present chapter, not only the others, helps form the first study on uu in pro-

gramming.

Uncertainty is a research topic which is well known to the artificial intelli-

gence community, and some commercial expert systems environments provide

models for uncertainty[109], such as Bayesian networks, Dempster-Shafer and

production systems with confidence factors. This chapter adapts an uncer-

tainty model to programming for internets. One of the key motivations for the

present model of uncertainty is to reduce the number of remote accesses making

programs more efficient and robust in this environment. Perhaps more impor-

tantly, I argue that agents naturally require a different model of programming

233



and, therefore, different constructs at programming language level. One of the

reasons for this is that, because agents are also conceived to autonomously rep-

resent individuals, programming agents is a task that is becoming increasingly

based on subjective factors, such as personal taste.

234



8.1 Introduction

Uncertainty and fuzziness[278] are research topics which are well known to the

artificial intelligence community, and some commercial expert systems environ-

ments even provide some model for uncertainty, most commonly, production

systems with confidence factors. In the last two decades, most expert systems

have been based on some uncertainty model, in particular, a few variations of

the MYCIN model of uncertainty[272]. However, to date computation under

uncertainty and under “the absence of pieces of information” have been little

investigated in the programming languages community. In [153], the author

classifies deductive logics as analytical. In this sense I agree with his philo-

sophical viewpoint. However, in a sense, the synthetic and inductive form of

reasoning is important in logics.

A thesis of mine is that, once there is a established paradigm for pro-

gramming agents, uncertainty[191] is probably going to play an important

rôle in programming. Models that require many probabilities are mathemat-

ically accurate and appropriate in many cases. I refer to such inferences as

uncertainty-based inferences.

I observe that logical deduction and uncertainty-based reasoning form a

pair of opposite but also complementary notions. The former represents some

analytical reasoning while the latter represents some synthetic reasoning. On

the one hand, humans should be able to deduce and make decisions, for in-

stance, after perceiving new facts. On the other hand, although humans often

make use of deduction while thinking, there are many situations where they

use a more subjective way to deal with hypotheses and to act according to feel-

ing and beliefs. For agents, both deduction and uncertainty are necessary and,

therefore, a programming language for mobile agents has to provide constructs

based on both forms of reasoning. Between this pair of notions, I can introduce

another component, uu, a constant which represents lack of information.

I believe that (mobile) agents and the Internet itself can provide a new

support environment where agent-based systems and techniques of artificial

235



intelligence can succeed. In particular, while one of the original aims in arti-

ficial intelligence was to program and represent expert knowledge in systems,

now, with agents, we humans not only expect intelligent machine behaviors,

but also to simulate natural intelligence, for agents also represent their cor-

responding individuals in a complex society. In chapter 6, I observed that

because people’s patience varies, programming agents for global environment

tends to be more personal. In general, regardless of the kinds of application,

agents should contain personal knowledge about their corresponding users,

such as their preferences, dislikes and so forth. Here, I can see the rôle of

uncertainty-based programming in the technological scenario, and this can

partially be due to subjectivity, but partially due to other factors, such as the

nature of the subject being represented.

Individuals differ. As an example, some people might take a decision in a

given situation when they are 60% sure that they will succeed, while others

will only take the risk in the same situation if they are 70% sure that they will

succeed. The evaluation itself, i.e. whether 60% or 70%, depends on different

subjective perception and internal factors. In this context, it is easy to observe

that judgments under thresholds can provide the flexibility needed to represent

personal characteristics. The work of reviewing academic articles by others is

an example of this kind of inference in science and, because of this, there are

often a number of referees.

In this chapter, I present an uncertainty model suitable for programming

agents or global computing. Given the simplicity needed for programming, the

uncertainty model might not be new in the AI community, although I have

not found another author for the same model, which is certainly based on the

classical MYCIN[272]. The combination of significance with originality of the

present work consists in:

• Adapting the MYCIN model and bringing the adapted model at the

language level. I add two notions to the MYCIN model:

– uu.

236



– The ability to evaluate each hypothesis as resulting in either false

or true (or unknown) without exploring all of the premises of the

hypothesis. And because the premises of a hypothesis might corre-

spond to or include remote accesses, one of the practical motivations

in this chapter consists in the ability that agents may have to reduce

the number of remote accesses.

• Providing a formalization to the present model.

• Illustrating the importance of uncertainty in programming for global

computing.

Moreover, at the time of writing this text, I am assuming that application

programs with uncertainty at the language level are absent from the literature

on programming languages.

In this chapter, the following sections are organized as follows: Section 8.2

introduces related concepts. Section 8.3 explains the relative concept of truth

in this model, while section 8.4 explains forward and backward evaluation

under uncertainty, including how a program with uncertainty can compute

efficiently on the Internet. In addition to the present model, section 8.4.4

introduces a set of built-in inference operators that can provide other choices

to programmers. Finally, section 8.5 contains the conclusion.

8.2 uu and Uncertainty

Here I present the formal syntax of a hypothesis declaration, another subset

of Plain without handlers, with starting symbol hyp:

hyp 7−→ hypo Id factor ’{’ opthreshold if premlist ’;’ ’}’

factor 7−→ ε | ’(’ Number ’)’

237



opthreshold 7−→ ε | threshold Number ’;’

premlist 7−→ ε | prem cnf | prem cnf ’,’ premlist

prem 7−→ ’{’ premlist ’}’ | Id | ’(’ expr ’)’ |

inferop ’(’ premlist ’)’ | inferop ’(’ Number ’,’ premlist ’)’

cnf 7−→ ε | cnf Number

inferop 7−→ uand | uor | unot | dand | dor

expr 7−→ . . . – any three-valued logical expression.

Number 7−→ – any real number in [−1.0,+1.0].

In the text, ?? can replace cnf here.

We all know that the real world is full of rules of causes and consequences

and, because of this, as an alternative to deductive clauses such as Horn clauses

or Prolog-like rules, uncertainty can also be used to permit an agent to make its

own decisions. Like most expert systems environments, a Plain-like program-

ming language can provide constructs for representing uncertainty as follows:

hypo awebfault {

threshold 0.4;

if {

(!httpaccessok(“www.aaa.bbb.ccc.dbf”)) cnf 0.2,

(!httpaccessok(“www.ddd.eee.fff.dbf”)) cnf 0.2,

(!httpaccessok(“www.ggg.hhh.iii.dbf”)) cnf 0.2

}

when self true { /* make some decision... */ }

}

238



When an agent contains a great number of such hypotheses, the system

is deemed to be intelligent, with the ability of making decisions given the

complex and subjective nature of the objects (0.2 of certainty, in each of the

above cases). Additionally, operators are provided to be used with certainty

factors, as well as nesting expressions with their corresponding factors. In such

contexts, parentheses surrounding an expression indicates that its negation

does not contribute to refute the consequent, it is simply ignored instead.

In this model, I shall make use of two forms of unknown value for variables:

uu and tf , although there is one constant in the language for both meanings,

unknown. In this chapter, uu is a lexical sugar for either uu or tf at points

where the difference does not matter. uu is the initial or partial unknown state

while tf is the final unknown state after the evaluation is performed. I write

uu where this difference is not relevant in a particular formula.

Initially, all hypotheses in the program contain uu. For every logical vari-

able z in the program, if z 6= uu, there is an internal state composed by

a pair of thresholds (False, T rue) where −1 ≤ False(z) < True(z) ≤ +1

and which are stated by the programmer and will be clearer in this chapter

later; a pair of certainty measures (at least, x(z), and at most, y(z)) where

−1 ≤ x(z) ≤ y(z) ≤ +1, which are inferred dynamically; and three alternative

external values that correspond to ff , uu and tt, namely false, unknown and

true (internally, there are four values in {ff, uu, tf, tt}), one of which is the

result from the following conditions intuitively written in Plain:

logic val(logic z) =

if z.x ≥ z.T rue then true;

else if z.y < z.False then false;

else unknown;

or, in a more mathematical style, still in Plain:

logic val(logic z) = true if z.x ≥ z.T rue,

239



false if z.y < z.False,

unknown otherwise;

Thus, I write z.x, z.y, z.False, z.T rue instead of x(z), y(z), False(z),

T rue(z). In this chapter, I omit the variable name when the context applies

to all logical variables without the need to specify some particular variable.

In this adapted model, by default, False = 0 and True = +0.5 in the range

[−1.0,+1.0].

There is a built-in unary prefix operator, ?, that can be applied to any

logical variable. Thus, for a variable z, ?z is the certainty measure of z, whose

value corresponds to the arithmetic mean of x and y of z. ?z is the form in

Plain for any z while here, in this text, the z?m form is used with the same

meaning.

Logical variables are conceptually classified as hypotheses and pieces of ev-

idence. A hypothesis has a premise list, while evidence does not have premises.

Premises can be classified as hypotheses, evidence, logical expressions and in-

ference operators (inferop). Besides the certainty measure, logical expressions

and inferops can result in {ff, uu, tt}.

An example of syntax is as follows:

hypo h(-0.2,0.7) {

if a cnf 0.3,

c,

(b ∗ b− 4 ∗ a ∗ c < 0) cnf 0.2,

(c),

uand (0.5, a cnf 0.2, b, c cnf 0.8 ) cnf 0.9,

{ a cnf 0.2, b cnf 0.2, c cnf 0.3 } cnf 0.8

;

}

The above hypothesis h contains the thresholds False = −0.2 and True =

+0.7, and its list of premises as follows: a, a logical variable whose certainty

240



factor is 0.3 above (0.3 is actually the certainty factor for the relation with

(a, h), but stated here in a simplified way); c, another logical variable whose

certainty factor is 1.0 above, by default; the expression (b∗b−4∗a∗c < 0) whose

certainty factor is 0.2; (c), another expression whose certainty factor equals 1.0,

the default certainty factor; one instance of uand inference operator with truth

threshold 0.5, certainty factor 0.9 and whose premises are variables a, b and c

with certainty factors 0.2, 1.0 and 0.8 respectively; and a composition among

the premises: a, b and c with certainty factors 0.2, 0.2 and 0.3 respectively,

and the result from the composition is meant to be multiplied by the certainty

factor 0.8 as will be explained later. As suggested in the above example,

premises can be nested. Expressions are always between parentheses, and the

semantic difference between a variable and an expression containing only the

same variable is that when an expression results in false its effect is null with

respect to the hypothesis, i.e. it does neither contribute to prove nor refute

the hypothesis. As for an occurrence of a variable in the list of premises, if

the variable is false its certainty measure is negative. At first sight the use

of expression might appear limited, but since an expression can be written

in the list of premises more than once with different certainty factors, the

use of expressions is flexible and even slightly more general. Thus, c ?? 0.8

corresponds to {(c) ?? 0.8, (not c) ?? − 0.8}.

Like measure, certainty factors are in the real interval [−1.0,+1.0] and

are written by programmers to measure how the corresponding premises con-

tribute to prove or refute the hypotheses, depending on the sign, positive or

negative. While certainty factors are specified in the program, certainty mea-

sure is a dynamic value in the same real interval [−1.0,+1.0]. For simulating

a subjective judgment, in this model, the concept of truth is relative to the

programmers beliefs, as well as to beliefs of possible users when the corre-

sponding system is applied. Therefore, each relation between one premise and

one hypothesis or between one premise and one inferop has one certainty fac-

tor and one certainty measure attached. Syntactically, certainty factors can

be floating-point expressions. I simplify the present model by allowing only

241



constants in that interval. During the evaluation, a certainty measure is mul-

tiplied by the corresponding certainty factor, and its result is finally an input

to the hypothesis.

By combining hypotheses and premises, the programmer can represent

complex knowledge forming an acyclic graph.

8.3 Uncertainty Handling

The four figures below represent the four possible states of a logical variable. A

possible initial state in which a variable can be regarded as uu if the condition

x < False ∧ y ≥ True holds is as follows:

-1 0 +1False True
x y

The initial state is not necessarily x = −1 ∧ y = +1, but instead both

values can be calculated by the compiler.

Eventually, a variable can be regarded as true, if the condition x ≥ True

holds:

-1 0 +1False True
x y

Or eventually, a variable can be regarded as false, if the condition y <

False holds:

-1 0 +1False True
x y

Or eventually, a variable can be regarded as tf , if the condition x ≥

False ∧ y < True holds:

-1 0 +1False True
x y

In an alternative model, there might be other values such as non-False

(x ≥ False ∧ x < True ∧ y ≥ True) and non-True (x < False ∧ y ≥

242



False∧y < True). Both are regarded as unknown (uu) in the present model.

The difference y − x means the amount of non-evaluated evidence. An

inconsistent state does not occur in the present model since x ≤ y and False ≤

True always hold.

A simpler model equates the thresholds, FT = False = True. Further,

FT = 0 is the default value. Graphically, it reduces a hypothesis to only three

states:

The initial unknown state (but here, the correspondence is with the pos-

sibly known, kk, value defined in chapter 2 and not the uu value) as the

condition x < FT ≤ y holds:

-1 0 +1FT
x y

Eventually, a variable can be regarded as true once the condition x ≥ FT

holds:

-1 0 +1FT
xy

Or eventually, a variable can be regarded as false once the condition

y < FT holds:

-1 0 +1FT
x y

Both schemes permit variables to contain uu in the premises and, because

of this, hypotheses can also result in uu in the latter case.

The ability to permit premises and hypotheses to result in uu is a flexible

characteristic of the present programming model.

Before describing the two directions of evaluations, I should set some de-

fault values for a premise z according to its category:

• Hypothesis: as described above, FT (z) is statically given by the pro-

grammer. x(z) and y(z) are calculated as the agent is initialized, or at

the time of compilation of the program;

243



• Logical evidence: FT (z) = +0.5, x(z) = −1, y(z) = +1;

• Expression: FT (z) = +1, x(z) = 0, y(z) = +1;

• Inferop: FT (z) = 0, x(z) = −1, y(z) = +1.

8.4 Evaluation

Here the present work provides forward and backward evaluations. The former

starts from some evidence and goes upwards to the hypotheses while the latter

starts from one hypothesis and goes downwards trying to calculate its certainty

measure according to its premises. In the following subsections, I provide a

scheme, for both forward and backward directions.

Let [−1,+1] ⊂ R, F ≡ [−1,+1],¬,�,∧, &,∨, ..............................................
............
..................................... ,→,→,�,

.
=,↔,

.
=/ =

{ff, uu, tf, tt}. For this section, for a logical variable, its value and certainty

measure can be represented as a tuple in O ≡ F× F× F×¬,�,∧, &,∨, ..............................................
............
..................................... ,→

,→,�,
.
=,↔,

.
=/×F×F. The elements of such a tuple are the following, whose

description order corresponds to left-right order in the tuple:

• The minimum certainty measure x;

• The maximum certainty measure y;

• The certainty measure;

• The logical value;

• The false threshold False;

• The true threshold True.

Let (px, py, ??p, pv, pFalse, pTrue) be such a tuple, where px and py corre-

spond to the certainty measures (at least and at most) as explained, and so

on. Let ??p be (px + py)/2. It will always be in this way, computed on

demand.

244



8.4.1 Forward Evaluation

Forward evaluation is invoked by a built-in function call, perhaps impera-

tive, and usually after some data has been entered. After the evaluation has

finished, some imperative actions are typically performed once hypotheses be-

come true or false, and perhaps after other conditions.

The forward evaluation starts from the pieces of evidence and goes up-

wards. Because a hypothesis can be declared as a premise to another hypoth-

esis, the forward evaluation continues recursively until no more hypotheses

need to be calculated.

The composition of a list of premises, whose representation in Plain is

between a pair of braces, has the same algorithm regardless of the number of

premises. Before describing composition, I consider only two premises, namely

P with logical value (px, py, ??p, pv, pFalse, pTrue) andQ with (qx, qy, ??q, qv,

qFalse, qT rue), to the hypothesis H with (Hx,Hy, ??H,Hv,HFalse,HTrue).

Considering that px = py = 0 if pv = uu in P and qx = qy = 0 if qv = uu

in Q, the certainty measures of H are defined by a set of formulae computed

as follows:

Hx =
ϕ(px, qx)=



























px + (1− px) · qx, if px ≥ 0, qx ≥ 0.

px + (1 + px) · qx, if px < 0, qx < 0.

px + qx, otherwise.

Hy =
ϕ(py, qy)=



























py + (1− py) · qy, if qy ≥ 0, qy ≥ 0.

py + (1 + py) · qy, if py < 0, qy < 0.

py + qy, otherwise.

H.?? = mean(Hx,Hy) =
Hx +Hy

2

245



and judgment for the value Hv = H.v = A(H) in the following:

H.v =
A(H)=























































tt if H.x ≥ H.True.

ff if H.y < H.False.

uu if (H.x < H.False ∨H.y ≥ H.True)

∧H.x < H.y.

tf if H.x ≥ H.False ∧H.y < H.True.

where H.v denotes the attribute of logical value of H, and H.x and H.y

correspond to Hx and Hy, respectively. For strict evaluation, which is an

alternative form here (the default form in Plain), the reader shall see that

there is a condition, H.x = H.y, in addition to the above one for the machine

to consider H.v = tf . See later.

One of the positive points of these formulae is that the evaluation of the

corresponding scheme is both commutative and associative. That is, although

the premises are statically written in a sequence in the program, they become

available dynamically in any order, and the order does not affect the result of

the hypothesis certainty measure.

The structure for every hypothesis H follows: Let P be the finite set

of all premises of the program, where every premise is of type F × O. Let

H ≡ O × N × P(P) be the set of hypotheses of the program. For every

hypothesis H : H, besides its value, the list of premises that lead to H is of

the form 〈n, {H.P1, H.P2, ..., H.Pn}〉. The whole list is addressed as H.P , of

type N× P(P). The list length is addressed as H.P.n.

Every premise P is of type F×O. The fist element of P , denoted as P.??,

is the certainty factor between P and its corresponding hypothesis. From the

hypothesis H, given some i ∈ N, this certainty factor is referred to as H.Pi.??

while the certainty measure of Pi is referred to as H.Pi?m.

Thus, for this chapter, H is the set of hypotheses and P is the set of

premises. Further, from now on I generalize the notation by writing H.x and

H.y, instead of writing Hx and Hy, respectively. And from now on I am going

246



to consider any number of premises. For every hypothesis H, I have its finite

list of premises, P1, P2, ..., Pi, ..., Pn. For every Pi, for i ∈ [1, n] ⊂ N, the Pi

value is in {ff, uu, tt}, as well as their certainty measures. Furthermore, in

addition to the logical value and certainty measures, every premise contains

the certainty factor to link to the hypothesis, that is, the certainty factor helps

prove or refute the corresponding hypothesis. Given that every Pi : F × O,

the first element of that Pi is the certainty factor towards the corresponding

hypothesis.

Letting Pi.v = uu ⇒ Pi.x = 0 and Pi.y = 0, the certainty measure of H

is defined by a set of formulae, given new values pi for some occurrences of

i ∈ [1, n], for some n, as follows:

Let [−1,+1] ⊂ R, F ≡ [−1,+1], ¬,�,∧, &,∨, ..............................................
...........
...................................... ,→,→,�,

.
=,↔,

.
=/ ≡

{ff, uu, tt},O ≡ F× F× F× ¬,�,∧, &,∨, ..............................................
...........
...................................... ,→,→,�,

.
=,↔,

.
=/× F× F.

Suffix functions:

.x : O −→ F; (x, y, c, v, f, t).x = x.

.x : F× F −→ F; (x, y).x = x.

.y : O −→ F; (x, y, c, v, f, t).y = y.

.y : F× F −→ F; (x, y).y = y.

?m : O −→ F; (x, y, c, v, f, t)?m = c.

.v : O −→ ¬,�,∧, &,∨, ..............................................
............
..................................... ,→,→,�,

.
=,↔,

.
=/; (x, y, c, v, f, t).v = v.

.False : O −→ F; (x, y, c, v, f, t).False = f .

.T rue : O −→ F; (x, y, c, v, f, t).T rue = t.

α : F×H −→ F;

α(z,H) = z · H.Pi.??

where H.Pi.?? corresponds to the certainty factor

between Pi and H.

δ : P −→ F;

247



δ(P ) = P.y − P.x.

F : H× P(P)× N −→ F× F;

F (H, P, n) =



























































































































































( (F (H, P, n− 1)).x+ δ(P ) · α(Pn.x,H),

(F (H, P, n− 1)).y )

if n > 0 ∧ α(Pn.x,H) ≥ 0.

( (F (H, P, n− 1)).x,

( (F (H, P, n− 1)).y + δ(P ) · α(Pn.y,H))

if n > 0 ∧ α(Pn.y,H) < 0.

( (F (H, P, n− 1)).x, (F (H, P, n− 1)).y)

if n > 0 ∧ Pn.v = uu.

( 0, 0 ) if n = 0.

and after having calculated the final values x and y,

H?m =
H.x+H.y

2

where H?m is the confidence measure of the hypothesis H, calculated as fol-

lows:

H?m =
(F (x, y,H, Pi, n)).x+ (F (x, y,H, Pi, n)).y

2

In the forward evaluation, because states can be changed, expressions in

the list of premises are always evaluated when the virtual machine visits some

hypothesis.

Forward evaluation is cyclical, and the process is repeated while hypotheses

feed other hypotheses with new certainty measures. The process is repeated

by possible imperative handlers whose actions can be triggered just after the

248



virtual machine has proven some particular hypothesis. Since such actions

can change the program state, they can require an extra cycle of forward

evaluation. The process finishes when the objects involved become stable, i.e.

all set of hypotheses have the same values for more than one subsequent cycle.

This model has the advantage of representing and dealing with lack of

information. Moreover, unlike Boolean models, the present model represents

the condition of being unable to prove or refute a hypothesis.

8.4.2 Operational Semantics - Forward Evaluation

Here, I present an operational semantics for the forward evaluation during

computation of a program Π. Given a program Π as a set of symbols, let

E ⊂ Π be the set of pieces of evidence, H ⊂ Π be the set of hypotheses,

Op ⊂ Π be the set of occurrences of inference operators, and X ⊂ Π be the

set of expressions. Let P = E ∪X ∪ H and E ∩X = E ∩H = X ∩H = ∅.

Let S be the set of states of computation.

Briefly, for our semantics of uncertainty-based inference, I define two re-

lations for forward and backward evaluations, respectively:
fw
 and

bw
 leading

to some state of computation. Another relation,
eval
 for expression evaluation,

also leads to a state, although I only represent the resulting pair of values,

the minimum and maximum certainty measures in [−1.0,+1.0] and the logical

value in {ff, uu, tt}.

ι : H × S × P −→ O. Intuitively, ι(h, s, p) is the result from the forward

evaluation from state s and premise p to the conclusion h.

Where it is suitable, I write h.P to denote the list of premises of the

hypothesis h. I define ι(h, s, P ) to make the sequence of operations explicit in

Plain, in terms of σ, which in turn results in a pair (x, y), which in its turn is

a certainty measure (minimum,maximum), and to state that ι does not change

the state, in the Plain syntax (although the words and other tokens are not

the same):

α(p, h) = p?m · h.p.??;

249



δ(e, l) = true if [e] == head(l),

δ(e, [h, t]) = δ(e, t) if [e] ! = h;

σ(h, s, p) = (h.x + (h.y − h.x) · α(p, h), h.y

mean(h.x + (h.y − h.x) · α(p, h), h.y),

A(h), h.False, h.T rue)

if α(p, h) > 0,

σ(h, s, p) = (h.x, hy + (hy − hx) · α(p, h),

mean(h.x, hy + (hy − hx) · α(p, h)),

A(h), h.False, h.T rue)

if α(p, h) < 0,

σ(h, s, p) = h if α(p, h) = 0;

ι(h, s, p) = σ(h, s, P ) if δ(p, h.P ),

h otherwise;

where p ∈ P, p?m is the certainty measure of a premise p and h.p.?? is the

certainty factor from the premise p to the hypothesis h, which is static from

the source program.

Since every hypothesis can have hypotheses, expressions, inference oper-

ators and pieces of evidence as premises (for proving or refuting the former

hypothesis itself), let Op(h) ∈ Op be the set of inferops in the list of premises

of h, more precisely,

∀i, j ∈ Op, (i ∈ h.P ⇒ i ∈ Op(h)) ∧
(i ∈ j.P ∧ j ∈ Op(h)⇒ i ∈ Op(h))

Similarly, for some h ∈ H, let Obj = E ∪X ∪H be the set of all pieces of

evidence and expressions and hypotheses of the program, and let C(h) ⊆ Obj

be the set of objects that can contribute to prove or refute h. Let p ∈ Obj.

250



Thus, p ∈ h.P ⇒ p ∈ C(h), (p ∈ C(g) ∧ g ∈ C(h)) ⇒ p ∈ C(h), and

(∃i ∈ Op(h), (p ∈ i.P ))⇒ p ∈ C(h).

Then, considering that the symbol a in the forward command is grammat-

ically a piece of evidence, an operational semantics for the forward evaluation

can be as follows:

a ∈ h.P 〈h, s〉
fw
 s′[h?m = ι(h, s′, a)]

〈forward a, s〉
fw
 s′

while, as usual, a state (s, s′ or s′′) followed by an expression between square

brackets indicates that the expression holds in the state. For instance, s[x = 0]

means that the expression x = 0 holds in the state s. The forward statement

can change the state of more than one hypotheses by propagating uncertainty

from a hypothesis to another as follows:

a ∈ C(h1) ∧ h1 ∈ C(h2)

h1 /∈ C(h2)⇒ (〈forward a, s〉
fw
 s′[h1?m = ι(h1, s

′, a)])

〈forward a, s′〉
fw
 s′′[h2?m = ι(h2, s

′′, h1)]

〈forward a, s〉
fw
 s′′

Finally, to state that forward is an imperative command in Plain, I can

insert it in a rule for sequence of commands:

〈c, s〉
fw
 s′ 〈forward a, s′〉

fw
 s′′

〈c; forward a, s〉
fw
 s′′

8.4.3 Backward Evaluation

While the forward evaluation is invoked by a command to discover those hy-

potheses that become proven and those hypotheses that become refuted, the

backward evaluation is invoked for a particular hypothetic goal, more precisely,

when a hypothesis is used in any evaluating expression such as from imperative

constructs. The virtual machine then tries to decide that particular hypothesis

(i.e. the machine tries to prove or refute it), visiting the premises backwards

until it reaches the pieces of evidence, by running handlers to change values

of the related evidence. After that, the control is returned to that hypothesis.

251



Finally, the control continues normally in the expression evaluation with the

new requested result in {ff, uu, tt} while the certainty measures are ignored

for the context is deductive.

In a local context, the order of evaluation is not relevant for the result,

but since I intend to apply the present model to programming for internet, I

propose a way of predicting the best path in terms of efficiency.

Because certain pieces of evidence might not be available at that moment,

the hypothesis h that has been expected to be proven or refuted might remain

unknown, that is, h.x < h.False ≤ h.T rue ≤ h.y.

An expression as a premise can also result in {ff, uu, tt}. The correspond-

ing certainty measures are −1 and +1 and 0. It is arguable whether it is

worth allowing programmers to state some uncertainty inside expressions to

allow the virtual machine to use the factors to compute the certainty measure

of the expression, in particular if the expression may result in many possible

alternative values, such as integer expressions, not only two or three values.

Thus, for safety reasons, Plain adopts the conservative idea that only logical

variables have certainty measures.

The Most-Interesting First Strategy

In this section I introduce uncertain lazy computation with the most-interesting

first strategy, which is probably useful for global computers[57]. Although it

is easy to evaluate all premises of the requested hypothesis sequentially, I in-

troduce a strategy that tries to minimize the number of premises necessary to

prove the hypothesis, or to refute it, or both (this case happens where some

premises contribute to prove the hypothesis while other premises contribute

to refute it. In this case, both subsets are relevant). Such a strategy becomes

particularly significant in programming for a global computer because remote

accesses are considerably much more expensive than use of local resources,

although Internet 2 and other global networks in the future tend to mini-

mize this difference. Thus, I classify three possible intentions for a hypothesis

252



containing uu:

• It: To make the hypothesis be true.

• If : To make the hypothesis false.

• Itf : To make the hypothesis either true or false (or tf).

All logical variables containing uu, as well as all non-lazy expressions,

are valuable. For a valuable hypothesis or logical evidence or expression or

inferop occurring as a premise p of a hypothesis h, in It what I look for is

(h.T rue− h.x) / |h.p.??|: for more than one hypotheses or pieces of evidence

or expressions or inferops, the smaller this value is, the more interesting p is,

but I only consider positive results for the premises. Similarly, in the intention

If what I look for is (h.y−h.False) / |h.p.??|: the smaller the value is, the more

interesting p is, and here I consider only non-negative results for the premises.

In Itf what I look for is the value of (h.T rue−h.x + h.y−h.False) / |h.p.??|:

the smaller, the more interesting, and here only positive values are included

in comparisons. For future work, every of these three values can be multiplied

by the number of variables with uu and that play the rôle of p, for including

the associated cost in the strategy. Sometimes this cost may be important

because, as an example, connections might have to be set in order to associate

values to variables.

Then, intuitively, the strategy consists in calculating these values for every

premise of some hypothesis, and then to choose the smallest value obtaining

the premise to be exploited first, in the backward direction. Then, the process

is repeated until the hypothesis is no longer valuable, that it, until its logical

value is either true, false or tf . Although the strategy does not generally

guarantee the most efficient proof or refutation, it is natural and efficient.

Therefore, I refer to this final measure as the most interesting.

Among the valuable premises, the virtual machine can make use of d(h, I)

to identify the most interesting premise (that is, its index in [1, n]) in a list

P with n valuable premises of a given hypothesis h, some intention I. The

253



function definition is the following:

Valuable premises only

ε(∅) = ∅,

ε({P} ∪Q) = if ψ(P ) in {false, tf, true}

then ε(Q) else {P} ∪ ε(Q);

ψ(x, y, F, T ) = true if x ≥ T ,

false if y < F ,

tf if F ≤ x ∧ y < T ,

uu otherwise;

Unary ψ

ψ(P ) = ψ(P.x, P.y, P.False, P.T rue);

d(h, I) = −2 if ε(h.P ) = ∅,

d(h, I) = d(h, ε(h.P ), I) otherwise;

Ternary d

d(h, {Pi}, I) = i,

with intention It

d(h, {Pi} ∪Q, T ) = if

0 < (h.T rue− Pi.x) / |h.Pi.??| ≤

(h.T rue− h.Pd(h,Q,T ).x) / |h.Pd(h,Q,T ).??|

then i else d(h,Q, T ),

with intention If

d(h, {Pi} ∪Q,F) = if

0 ≤ (Pi.y − h.False) / |h.Pi.??| ≤

(h.Pd(h,Q,F).y − h.False) / |h.Pd(h,Q,F).??|

254



then i else d(h,Q,F),

with intention Itf

d(h, {Pi} ∪Q,U) = if

0 < (h.T rue− Pi.x + Pi.y − h.False) / |h.Pi.??| ≤

(h.T rue− h.Pd(h,Q,U).x+ h.Pd(h,Q,U).y − h.False) /

|h.Pd(h,Q,U).??|

then i else d(h,Q,U);

Finally, the backward evaluation finishes only when the hypothesis is no

longer valuable. The c function repeats d until that condition holds, as follows:

U(h, x, y) = (ϕ(h.x, x), ϕ(h.y, y), mean(ϕ(h.x, x), ϕ(h.y, y)),

ψ(ϕ(h.x, x), ϕ(h.y, y), h.False, h.T rue), h.False, h.T rue);

c(h, I) = if d(h, I) = −2 then h else c(h, h.P, I);

Ternary c (every hypothesis has at least one premise)

c(h, {Pi}, I) = if ψ(Pi) = tf then h else

let p = newstate(Pi) in U(h, p.x · h.Pi.??, p.y · h.Pi.??),

c(h, P, I) = h if ε(P ) = ∅,

c(h, P, I) = let j = d(h, P, I); p = newstate(Pj) in

c(U(h, p.x · h.Pi.??, p.y · h.Pi.??), P\{Pj}, I)

otherwise;

Thus, the operational semantics for using a hypothesis in some lazy ex-

pression can be as follows:

〈c(h, Itf ), s〉
bw
 s′ 〈lazy(h), s′〉

bw
 (s′, ι(h, s′, c(h, Itf )))

〈lazy(h), s〉
bw
 (s′, ι(h, s′, c(h, Itf)))

Accordingly, there are also built-in functions in the programming language

for the other intentions:

255



〈c(h, It), s〉
bw
 s′ 〈h, s′〉

bw
 (s′, ι(h, s′, c(h, It)))

〈lazy(prv(h)), s〉
bw
 (s′, ι(h, s′, c(h, It)))

〈c(h, If), s〉
bw
 s′ 〈h, s′〉

bw
 (s′, ι(h, s′, c(h, If)))

〈lazy(rft(h)), s〉
bw
 (s′, ι(h, s′, c(h, It)))

for trying to prove (It) and refute (If), respectively, some hypothesis h. The

above rules are not complete.

Lazy and Strict Computations

In the backward evaluation, for the requested hypothesis, there can be lazy

and strict computations. Lazy computation is the one which makes use of the

most-interesting first strategy while strict computation evaluates all premises

of z in any case until z.v = tf for every logical variable z.

By default, the virtual machine adopts strict computation and, to specify

lazy computation, the programmer writes the lazy keyword. Thus, lazy is a

unary-prefix function with one of the highest precedences.

During the lazy computation of backward evaluation, for every variable z,

one of the conditions z.x ≥ z.T rue, or z.y < z.False, as stated previously, is

enough to prove or refute the hypothesis, respectively. Thus, an operational

semantics for uncertain lazy computation is as follows:

s[h.x ≥ h.T rue]

〈lazy(h), s〉
bw
 (s, tt)

s[h.y < h.False]

〈lazy(h), s〉
bw
 (s, ff)

s[h.x ≥ h.False ∧ h.y < h.True]

〈lazy(h), s〉
bw
 (s, tf)

let z = ι(h, s′, h.Pc(h,I)) 〈c(h, I), s〉
bw
 s′

〈h?m, s′〉
bw
 (s′, z) s′[h.False ≤ z.x ∧ z.y < h.True]

〈lazy(h), s〉
bw
 (s′, uuf)

256



〈c(h, I), s〉
bw
 s′ 〈h?m, s′〉

bw
 (s′, ι(h, s′, h.Pc(h,I)))

ι(h, s′, h.Pc(h,I)).x ≥ h.T rue

〈lazy(h), s〉
bw
 (s′, tt)

〈c(h, I), s〉
bw
 s′ 〈h?m, s′〉

bw
 (s′, ι(h, s′, h.Pc(h,I)))

ι(h, s′, h.Pc(h,I)).y < h.False

〈lazy(h), s〉
bw
 (s′, ff)

Some rules for prv:

s[h.x ≥ h.T rue]

〈lazy(prv(h)), s〉
bw
 (s, tt)

s[h.y < h.False]

〈lazy(prv(h)), s〉
bw
 (s, ff)

s[h.x ≥ h.False ∧ h.y < h.True]

〈lazy(prv(h)), s〉
bw
 (s, tf)

let z = ι(h, s′, h.Pc(h,It)) 〈c(h, It), s〉
bw
 s′

〈h?m, s′〉
bw
 (s′, z) s′[h.False ≤ z.x ∧ z.y < h.True]

〈lazy(prv(h)), s〉
bw
 (s′, uu)

〈c(h, It), s〉
bw
 s′ 〈h?m, s′〉

bw
 (s′, ι(h, s′, h.Pc(h,It)))

ι(h, s′, h.Pc(h,I)).x ≥ h.T rue

〈lazy(prv(h)), s〉
bw
 (s′, tt)

〈c(h, It), s〉
bw
 s′ 〈h?m, s′〉

bw
 (s′, ι(h, s′, h.Pc(h,It)))

ι(h, s′, h.Pc(h,I)).y < h.False

〈lazy(prv(h)), s〉
bw
 (s′, ff)

and some rules for rft:

s[h.x ≥ h.T rue]

〈lazy(rft(h)), s〉
bw
 (s, tt)

s[h.y < h.False]

〈lazy(rft(h)), s〉
bw
 (s, ff)

257



s[h.x ≥ h.False ∧ h.y < h.True]

〈lazy(rft(h)), s〉
bw
 (s, tf)

let z = ι(h, s′, h.Pc(h,If )) 〈c(h, If), s〉
bw
 s′

〈h?m, s′〉
bw
 (s′, z) s′[h.False ≤ z.x ∧ z.y < h.True]

〈lazy(rft(h)), s〉
bw
 (s′, uu)

〈c(h, If ), s〉
bw
 s′ 〈h?m, s′〉

bw
 (s′, ι(h, s′, h.Pc(h,If )))

ι(h, s′, h.Pc(h,I)).x ≥ h.T rue

〈lazy(rft(h)), s〉
bw
 (s′, tt)

〈c(h, If ), s〉
bw
 s′ 〈h?m, s′〉

bw
 (s′, ι(h, s′, h.Pc(h,If )))

ι(h, s′, h.Pc(h,I)).y < h.False

〈lazy(rft(h)), s〉
bw
 (s′, ff)

On the other hand, for uncertain strict computation, the request for the

value of a hypothesis can also mean to exploit all its premises in order to get

a more accurate certainty measure. The order of computation in the list of

premises is static as follows:

b(h, I) = if d(h, I) = −2 then h else b(h, h.P, I);

Ternary b

b(h, P, I) = h if P = ∅;

b(h, P, I) = let p = newstate(P1) in

b(U(h, p.x · h.P1.??, p.y · h.P1.??), P\{P1}, I) otherwise;

The operational semantics of the strict evaluation is as follows:

s[h.v = tf ]

〈h, s〉
bw
 (s, h.v)

s[h.v 6= tf ∧ h.x < h.y] ∧ 〈b(h, I), s〉
bw
 s′

ι(h, s′, h.P1).x ≥ h.False ∧ ι(h, s′, h.P1).y < h.T rue

〈h, s〉
bw
 (s′, tf)

258



s[h.v 6= tf ∧ h.x < h.y] 〈b(h, I), s〉
bw
 s′

ι(h, s′, h.P1).y ≥ h.T rue

〈h, s〉
bw
 (s′, tt)

s[h.v 6= tf ∧ h.x < h.y] 〈b(h, I), s〉
bw
 s′

ι(h, s′, h.P1).x < h.False

〈h, s〉
bw
 (s′, ff)

8.4.4 Inference Operator - Inferop

Inferops result in a pair of type (F × F) × ¬,�,∧, &,∨, ..............................................
...........
...................................... ,→,→,�,

.
=,↔,

.
=/,

in which the first member is a pair which in turn consists of the at least and

the at most certainty measures, in [−1.0,+1.0], and the second member, in

the outermost pair, is a logical value in {ff, uu, tt}. The operational semantics

for the built-in inferops are:

Uncertain and:

〈a, s〉
eval
 (u, α) 〈b, s〉

eval
 (v, β) min(u.y, v.y) < T

〈uand(T, a, b), s〉
bw
 ((min(u.x, v.x), min(u.y, v.y)), ff)

〈a, s〉
eval
 (u, α) 〈b, s〉

eval
 (v, β)

min(u.x, v.x) < T ∧min(u.y, v.y) ≥ T

〈uand(T, a, b), s〉
bw
 ((min(u.x, v.x), min(u.y, v.y)), tf)

〈a, s〉
eval
 (u, α) 〈b, s〉

eval
 (v, β) min(u.x, v.x) ≥ T

〈uand(T, a, b), s〉
bw
 ((min(u.x, v.x), min(u.y, v.y)), tt)

Uncertain or:

〈a, s〉
eval
 (u, α) 〈b, s〉

eval
 (v, β) max(u.y, v.y) < T

〈uor(T, a, b), s〉
bw
 ((max(u.x, v.x), max(u.y, v.y)), ff)

〈a, s〉
eval
 (u, α) 〈b, s〉

eval
 (v, β)

max(u.x, v.x) < T ∧max(u.y, v.y) ≥ T

〈uor(T, a, b), s〉
bw
 ((max(u.x, v.x), max(u.y, v.y)), tf)

〈a, s〉
eval
 (u, α) 〈b, s〉

eval
 (v, β) max(u.x, v.x) ≥ T

〈uor(T, a, b), s〉
bw
 ((max(u.x, v.x), max(u.y, v.y)), tt)

259



where min and max are functions defined as usual as in table entitled “A

Total min and max Definitions with uu.” or formula in chapter 2,

Uncertain not:

〈a, s〉
eval
 (u, γ) 1− u.x < T

〈unot(T, a), s〉
bw
 ((1− u.y, 1− u.x), ff)

〈a, s〉
eval
 (u, γ) 1− u.y < T ∧ u.x ≥ T

〈unot(T, a), s〉
bw
 ((1− u.y, 1− u.x), tf)

〈a, s〉
eval
 (u, γ) 1− u.y ≥ T

〈unot(T, a), s〉
bw
 ((1− u.y, 1− u.x), tt)

Note that unot inverts the minimum and maximum values and swaps the

positions.

Determinable and: (for any f > 0)

〈a, s〉
eval
 (u, α) 〈b, s〉

eval
 (v, β) u.y < T ∨ v.y < T

〈dand(T, a, b) cnff, s〉
bw
 ((−f,−f), ff)

〈a, s〉
eval
 (u, α) 〈b, s〉

eval
 (v, β)

(u.x < T ∨ v.x < T ) ∧ u.y ≥ T ∧ v.y ≥ T

〈dand(T, a, b) cnff, s〉
bw
 ((0, 0), uuf)

〈a, s〉
eval
 (u, α) 〈b, s〉

eval
 (v, β) u.x ≥ T ∧ v.x ≥ T

〈dand(T, a, b) cnff, s〉
bw
 ((f, f), tt)

Determinable or:

〈a, s〉
eval
 (u, α) 〈b, s〉

eval
 (v, β) u.y < T ∧ v.y < T

〈dor(T, a, b) cnff, s〉
bw
 ((−f,−f), ff)

〈a, s〉
eval
 (u, α) 〈b, s〉

eval
 (v, β)

u.x < T ∧ v.x < T ∧ (u.y ≥ T ∨ v.y ≥ T )

〈dor(T, a, b) cnff, s〉
bw
 ((0, 0), uuf)

〈a, s〉
eval
 (u, α) 〈b, s〉

eval
 (v, β) u.x ≥ T ∨ v.x ≥ T

〈dor(T, a, b) cnff, s〉
bw
 ((f, f), tt)

for any f > 0.

Finally, users are able to define their own inferops.

260



8.5 Conclusion

The Internet has raised many issues in programming. The fact that con-

nections are neither reliable nor efficient makes us consider the possibility of

programming with uncertainty.

I formally introduced uncertainty as a programming language feature, con-

sidering the current scenario in the presence of code mobility and the Internet.

Additionally, the present uncertainty model permits evaluation with partial

information, by considering unknown[106] as part of the model in both the

variables used as premises and in resulting hypotheses. I also introduced a

number of inference operators. As a result, uu can permit the unification of

this paradigm with others.

261





Chapter 9

uu in Globallog

In chapter 2, I introduced a logic and a calculus which provide the notion of uu.

Here I apply this notion to logic programming. The present chapter helps form

our first study on uu in programming. The full programming study includes

the other chapters in part II of the present PhD thesis.

This chapter presents a three-valued logic programming language which per-

mits definitions of clauses under closed-world assumption or without it, due

to the presence of a constant, uu, at the language level. A third truth value

is used to provide only one negation, defined here as abstract negation, while

Extended Logic Programs adopt two kinds of negation. I present an operational

semantics for both propositional and the predicate forms, including variables.

The language can be seen as an adaptation of Prolog capable of capturing lack

of information. In particular, the language can be viewed as as an appropriate

compromise solution between logic and a global structure such as the Internet.

Little work has been done combining logic with such a platform.

263



9.1 Introduction

Since Prolog was designed, several programming languages, techniques and

paradigms have been proposed and developed. Much research work has been

done combining logic programming with other paradigms. A few examples in-

clude the languages λProlog[225] and LIFE[8], which combine logic with func-

tional programming. However, in spite of the great importance of such work,

no logic programming language provides representation of lack of informa-

tion together with only one negation. The proposed language (Globallog)

has two relevant attributes, namely, the abstract negation and the ability to

distinguish a refutable clause from the one which is not proven from a list

of clauses. The need for such a distinction has become increasingly relevant

for Internet programming, because connections sometimes fail and programs

must be robust enough to continue running. Thus, in a distributed knowledge-

based system over the Internet, a remote query that is not able to prove some

predicate results in unknown instead of false.

Many important theoretical contributions[111, 112] have been made to

logic programming by researchers, including well-founded semantics [113, 132]

and stable models[244], also, the work of Przymusinsky and Gelfond[135],

Ginsberg[141] among others. A more recent proposal is [25], which is a seman-

tics for Prolog programs based on a 4-valued logic. Theories on negation have

been proposed since the close-world assumption (CWA)[253]. [19] presents a

survey on this subject. In general logic programs (GLP), negation as failure

(NAF)[68] is used to infer negative information. In fact, NAF is a concept

which depends on the CWA1. A GLP clause has the form

L0 ↼ L1, . . . ,Lm.

where ↼ is an implication symbol (for instance the :− symbol in Prolog), Li,

for 1 ≤ i ≤ m, is a literal possibly with the not symbol, i.e. the negation as

1That is why the proposed negation is called “abstract negation” in the sense that its

use does not depend on whether the world is assumed to be closed or not.

264



failure operator, while L0 does not accept negation, although there has been

some recent work on this constraint[166].

A newer approach called Extended Logic Programming (ELP) provides

two forms of negation: NAF and explicit negation[45, 97, 177]. As well as

ELP, Gelfond and Lifschitz[133] present a proposal which is based on the

stable model semantics and answer sets. The authors define an extended logic

program as being a sequence of clauses of the form

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln

where 0 ≤ m ≤ n and each Li is a literal, i.e. either a predicate or the explicit

negation (¬) of a predicate, and not is the negation as failure operator. Thus,

in ELP, the CWA for a predicate p can be represented by ¬p(X)← not p(X).,

which, although flexible, makes use of two kinds of negation.

Contributions have been done by Pereira[9, 238], Kowalski and others[260],

also in ELP. There are other new approaches, such as [314] based on Well-

Founded Semantics. However, Globallog is outside the scope of ELP.

ELP was not conceived to allow programming under the choice of open-

or closed-world assumptions. If the programmer uses NAF in a predicate p, it

means that he or she is assuming a closed world. If he or she uses the explicit

negation instead, it means that he or she is assuming an open world for that

use of p. However, it is not clear how to use positive predicates choosing

either assumptions, which is exactly what Globallog allows programmers

to do. In other words, ELP is more closely related to the negations than the

assumptions.

Like ELP, there exist three possible results: false, true and unknown.

While what is stated as false is simply regarded as false, what is not repre-

sented in the program (or what is unable to be proven) is simply regarded, by

default, as unknown. The distinction between false and unknown allows the

inference machine (also called system here), not only the application program,

to recognize the need for learning. For example, if a query from a predicate

p results in unknown, the system could ask the user whether he or she would

265



like to insert some definition in order to improve the knowledge base.

There are some situations, however, in which CWA with NAF are much

more appropriate[18, 94]. For example, considering in Prolog the clauses for

defining a member of a list, one (the programmer) can write the following

rules:

member(X, [X| ]).

member(X, [ |Z]) :− member(X,Z).

Without the CWA, the programmer would have to explicitly write the inter-

pretation of failure by stating what is not a member of the list, otherwise a

query, such as member(a,[b,c,d]), would result in unknown in a three-valued

logic language. This is true for many situations. However, in many other

contexts, such as in constraints representation, even using CWA with NAF, it

would be useful to regard what fails as true, instead of false, in such a way

that the sequence of clauses becomes flexible, more readable and smaller, thus

allowing faster proofs. Thus, Globallog provides both open- and closed-

world assumptions. I am going to use the term open-world assumption as

opposed to the CWA. Formally, I define both here as

CWA
def
= (∀ϕ)

¬(∆ ` ϕ)

∆ |= ϕ = ff

that is, closed-world assumption can be defined as for every formula ϕ, if ϕ

cannot be proven from the set of formulae ∆, ϕ is interpreted as false, and

accordingly,

OWA
def
= (∀ϕ)

¬(∆ ` ϕ) ∧ ¬(∆ ` ¬ϕ)

¬(∆ |= ϕ = tt) ∧ ¬(∆ |= ϕ = ff)

That is, if we cannot prove ϕ or its negation from ∆, we cannot interpret

ϕ as tt nor as ff . Thus, I use uu for this intermediary value:

OWA
def
= (∀ϕ)

¬(∆ ` ϕ)

∆ |= ϕ = uu

Apart from this three-valued logic programming paradigm, I intend to

integrate this paradigm with others including mobile agents[105]. Because

266



uu is present in every one of these sublanguages, it is particularly easy to

integrate them. I therefore prefer the term hybrid paradigm instead of multi

paradigm. Finally, the present chapter describes the programming language

Globallog.

One can observe that logic and the Internet are two orthogonal concepts.

Formal logics ought to match reality. The work on Globallog aims at

reconciling both concepts. In fact, the name of the language, Globallog, is

a shorthand for global logic programming. Globallog is part of the Plain

programming language[103].

9.1.1 Conventions

In this chapter, the choice for the operational semantics is not only for being

uniform regarding the previous chapters but also for stressing details that are

relevant for possible implementations. Implicitly, the semantics is of space

and time, defined in chapter 2. However, as the syntax is similar to Prolog,

the referred to language is described intuitively during the text, together with

the formalism. I use the constants ff , tt and uu to mean false, true and

unknown, respectively. I use both terminologies interchangeably.

9.1.2 Contents of this Chapter

Section 9.2 introduces the language together with its operational semantics.

The semantic rules are defined for both propositional form and predicate form,

i.e., our formulas capture the semantics of Globallog. The need for the

concept of “intention” is also explained in this section. Section 9.3 contains

an operational analysis of the language by comparing it with Prolog. Section

9.4 gives examples of queries in the language by tracing the programs whereas

section 9.5 contains some remarks on consistency of the knowledge base and

gives more examples. Section 9.6 concludes the chapter.

267



9.2 Syntactical and Semantic Definitions

Briefly speaking, like Prolog, Globallog is a sub-language of first-order pred-

icate calculus. When proving the body of a rule, the system considers the sub-

goals from left to right and searches for solutions by using depth-first strategy

and backward chaining. Before definition 6, I do not consider variables in the

formal semantics, only propositions.

A program in Globallog is a sequence of clauses, and not an unordered

set of clauses. This is because the flows of control are sequential and Glob-

allog is deterministic. They start from the first clause and go downwards.

Let ∆ be a program formed by the sequence of clauses c1, ..., cn. Then it is

said that a computation by ∆ proves a goal g iff there exists some clause ci in

∆ such that g is an immediate consequence of ci, assuming that the body of

ci, b(ci), can be proven. Formally,

(∃i, 1 ≤ i ≤ n) b(ci) ∧ ci `i g

c1, ..., cn ` g

There might be zero or more solutions, that is, zero or more clauses that

prove g. In the case of zero is the case where there is no solution. A solution

s denotes one clause that proves the goal. Let S be the sequence of solutions,

either ∅ or sl0, ..., slm, 1 ≤ m ≤ n, semantically defined as follows:

sl0
def
= u if (∃i, 1 ≤ i ≤ n)(b(ci) ∧ ci `i g) ∧ (∀j, 1 ≤ j < i) ¬(b(cj) ∧ cj `i g) ∧ ci = u

slk+1

def
= u if (∃i, k, k < i ≤ n)(b(ci) ∧ ci `i g) ∧ (b(ck) ∧ ck `i g)∧

(∀j, k < j < i) ¬(b(cj) ∧ cj `i g) ∧ ci = u

For the definition of the operational semantics of Globallog, let ∆ be a

program in Globallog and Θ be the set of all states for some computation

carried out by ∆.

Definition 6 There are three predefined constants in Globallog, namely,

ff, tt, and uu. Let V 3 be the set of truth values, {ff, tt, uu}.

Remark: In terms of domain theory, uu is a value in the domain, and not

the bottom (⊥). uu is a result, as ff and tt are, and does not represent non-

268



terminating computation. There exists no order relation between elements of

{ff, tt, uu}.

Definition 7 The unary symbol not is the only negation in Globallog,

called abstract negation. Its basic semantics is defined in the following two

paragraphs, although the chapter itself is necessary to describe details concern-

ing its semantics.

For the rules, let  be the semantic relation for language constructs of

Globallog as will be defined later, and let
s
 be the semantic relation for

implicit actions by the system, resulting in another state.

Semantics 4 The uu value, uu, extends the semantics of the classical con-

nectives according to  Lukasiewicz[116, 186]: not ff  tt, not tt  ff ,

not uu  uu. In the presence of the conjunctive operation (definition 10),

as well as the Boolean results, uu ∧ ff  ff and finally tt ∧ uu uu. For

details, see semantics 9.

Definition 8 A constant symbol is a term, a variable is a term, if f is an

m-ary function symbol and t1, ..., tm are terms, then f(t1, ..., tm) is a term.

Remark: A constant symbol is also called 0-ary function. Lexically, func-

tions and variables are written as literals: a function symbol starts with a

lower-case letter and a variable symbol starts with an upper-case letter.

Definition 9 If p is an m-ary predicate symbol and t1, ..., tm are terms, then

both p(t1, ..., tm) and not p(t1, ..., tm) are predicativeformulae, predicates

for short: the former is a positive predicate and the latter is a negative pred-

icate. If q is a predicate, then both pm(q) and not pm(q) are meta−predicates

and the letter m here is not arity but instead part of the symbol. There ex-

ist three Boolean meta-predicates in the language, namely, istrue, isfalse,

isunknown, with obvious meanings.

Definition 10 A program in Globallog is a sequence of clauses. Clauses

have one of the forms below:

269



[not] p(t1, ..., tn).

or

[not] p(t1, ..., tn) ⇐ [not] p1(t1,1, ..., t1,r), ..., [not] pm(tm,1, ..., tm,s).

where⇐ stands for an inference operator, either← (open) or ↼ (closed). The

first clause is a fact while the second is a rule. The square brackets are at the

meta level and indicate that the not operator is optional in these positions.

The predicate symbols are denoted as p and as pi, for 1 ≤ i ≤ m.

As usual, the predicate before the inference symbol is the head of the rule,

while the sequence of predicates after the inference symbol is the body of the

rule. The comma is the lazy non-commutative three-valued and operator with

left association (semantics 9).

9.2.1 Syntactical Definitions

In this sub-section, I describe the Globallog syntax by using Backus-Naur

Form, or BNF for short. In the current chapter, I have only symbolic constants

or literals, and no numerical constants. In the definition of the non-terminal

symbol variable below, like in Prolog, the symbol ” ” stands for a new or

anonymous variable which cannot be bound anywhere. The terminal symbols

are in double quotation marks and keywords are in bold face. Thus, the

syntactical definition is as follows:

program 7−→ clauses | clause clauses

clauses 7−→ ε | clause clauses

clause 7−→ opNot lowercaseletter string ′(′ listOfParameters ′)′ body ′.′

| close contantOrvariable ′.′

opNot 7−→ ε | not

constant 7−→ lowerCaseLetter string | ′tt′ | ′ff ′ | ′uu′

lowerCaseLetter 7−→ ′a′ | ... | ′z′

string 7−→ ε | lowerCaseLetter string | upperCaseLetterstring

270



| ′ ′ string

upperCaseLetter 7−→ ′A′ | ... | ′Z ′

listOfParameters 7−→ factor | factor ′,′ listOfParameters

factor 7−→ constant opParameters | variable

opParameters 7−→ ε | ′(′ listOfParameters ′)′

variable 7−→ upperCaseLetter string | ′ ′

body 7−→ ε | ′ :−′ listOfterms | ′<−′ listOfterms

listOfterms 7−→ term | listOfterms ′,′ term

term 7−→ opNot constant opParameters | metaPredicate ′(′ clause ′)′

metaPredicate 7−→ istrue | isfalse | isunknown

contantOrvariable 7−→ constant | variable

Key words: tt, ff, uu (definition 6), and isunknown, istrue, isfalse

(definition 9), and not. The :− symbol corresponds to the CWA inference sym-

bol, while the <− symbol corresponds to the OWA inference symbol. However,

in our analysis, as already defined, I refer to them as ↼ and←, respectively. I

also make use of some syntactical sugar, e.g. the relational operators are infix

with the usual notation, 6= and =, instead of literal predicates.

Syntax 5 An essential requirement: For a given predicate definition, there

exists no list of rules with mixed inference symbols, and this is guaranteed by the

syntax. Formally, in accordance with definition 11 below, R[←] ∩ R[↼] = ∅.

Although the context-free grammar introduced above does not capture this, this

syntactical constraint must be considered.

9.2.2 Semantic Definitions

As we shall see, the semantic rules for Globallog make use of some notions

and notations specific for defining the semantics whereas it is not common

to present operational semantics for logic-based languages. I present some

definitions in this subsection and subsequently use these notions.

271



Definition 11 Let ∆ ∈ Globallog, R[←] be the set of all rules in ∆ that

contain the ← symbol, and R[↼] be the set of all rules in ∆ that contain the

↼ symbol. Let -R be the set of all rules in ∆ that contain the not connective

in their heads, and +R be the set of all rules in ∆ that do not contain the not

connective in their heads. Let −R[←] = −R ∩R[←], +R[←] = +R∩R[←],

−R[↼] = −R ∩R[↼], and +R[↼] = +R ∩R[↼].

For later definitions, I informally define an operator ι (x, (x1, ..., xn)) =

(∃i) x = xi to check whether a particular value is an element of a tuple.

Let V ar be the set of variables in the program ∆ (each variable is denoted

by a string), and let V al be the set of values in the program. I write here x/v

to denote a variable x having value v as a syntax sugar for (x, v), which is

an ordered pair in V ar × V al, since I shall not use the / arithmetic operator

in this chapter. Let AnS denote an answer set, possibly with some subscript,

with structure {f(x0/v0,0, ..., xn/v0,n), ..., f(x0/vm,0, ..., xn/vm,n)} where f is a

predicate formula (possibly with not) or, depending on the focus, {sl0, ..., slm},

with two important properties: sli = slj ⇒ i = j and i 6= j ∧ ι(xi, slk) ∧

ι(xj , slk)⇒ xi 6= xj, which states that the same variable cannot appear more

than once in the same solution.

Let ] be the concatenation of two answer sets and A be the set of answer

sets. Formally,

] : A×A −→ A

] (ans1, ∅) = ans1

] (∅, ans2) = ans2

] ({e1}, {e2, ..., en}) = {e1, e2, ..., en}, n ≥ 2

] ({e1, ..., en}, ans2) = {e1} ] ({e2, ..., en} ] ans2), n ≥ 2

In the semantic rules, I use the rewriting relation to denote evaluation of

some expression resulting in a three-tuple 〈value, answer, state〉 where value

is in V 3, answer corresponds to the ordered answer set in A, and state is the

272



state of the computation. The current answer set is part of the state in such a

way that, in other contexts, I write s[AnS] whenever I want to state explicitly

that the answer set Ans is in state s.

Let the type V be V ar×V al. Thus, I define the operation�: V ×A −→

Boolean as � (x/v, {sl1, ..., sln}) = (∃i) ι(x/v, sli) to mean that the value

of a pair x/v is in at least one solution from a given set {sl1, ..., sln}. Like ],

I use � as an infix operator in the semantics rules. I also use �/ as syntax

sugar for the ¬(x � y) construct. This infix notation also applies to ≡, the

syntactical equivalence relation, which simply stands for the same variable in

some context, e.g. xi ≡ yj meaning that, although these variables are different

in the formula, they denote the same variable in the program ∆, or, in other

contexts, ≡ is used to compare two operands of type V .

Substitution

Substitution is carried out implicitly in the Globallog machine. All free

variables contain a typed uu. Here, the meaning of a typed uu is that the cor-

responding variable is universally quantified. Thus, substitution is informally

defined as the operation which binds a variable to some value in the domain

of the variable. Substitution is also done in the unification procedure.

I can define the substitution σ using an extension of PCF[218, 267] as

follows. I initially define the SList type:

SList = µ t.unit + ((V ar × V al)× t)

where µ t.unit+ ((V ar×V al)× t) is a syntax sugar for fix(λt.unit+ ((V ar×

V al)× t)).

σ : SList× SList→ SList = λL1 : SList. λL2 : SList.

if L1 = ∗ then ∗ else if L2 = ∗ then ∗

else σ(tail(L1), σ′(head(L1), L2))

and, for σ′, given s containing one substitution 〈x, v〉, i.e. value v for variable

x, and list L,

273



σ′ : V ar × V al × SList→ SList = λsub : V ar × V al.λL : SList.

letrec x : V ar = Proj1 sub in

if L = ∗ then ∗

else if x = Proj1 head(L) then

cons(〈x, v〉, σ′(〈x, v〉, tail(L))) else

cons(〈x, uu〉, σ′(〈x, v〉, tail(L)))

where cons constructs a list from its head and its tail. I also define substitution

in a tuple from an answer set generating another answer set as follows:

AnswerSet = µ t.unit + (SList× t)

where µ t.unit + (SList× t) is a syntax sugar for fix(λt.unit + (SList× t)).

σα : AnswerSet× SList→

AnswerSet = λL1 : AnswerSet. λL2 : SList.

if L1 = ∗ then ∗

else σ′(head(L1), L2) ] σα(tail(L1), L2)

The same three functions can be defined in the Plain[103] syntax as fol-

lows:

fnc List σ (List L1, List L2) =

if L1 == [ ] or L2 == [ ] then [ ]

else σ(tail(L1), σ′([head(L1)], L2));

and, for σ′, given s containing one substitution (x, v), i.e. value v for variable

x, and list L,

fnc List σ′ (List s, List L) =

let V ar x = V ar(s), V al v = V al(tail(s)) in

if L == [ ] then [ ]

else if x == V ar(List(L)) then

[ [x, v] ] + σ′([x, v], tail(L)) else

[ head(L) ] + σ′([x, v], tail(L));

274



where + here concatenates two lists as operands, and a construct of the form

[〈exp〉] constructs a list from a sequence expression 〈exp〉, the only operand,

possibly empty. In the particular case above, [ [x, v] ] constructs a list of only

one element which in turn is a list of two values (hence, a pair containing) x

and v. The corresponding σα function can be written in Plain as follows:

fnc List σα (List L1, List L2) =

if L1 == [ ] then [ ]

else σ′(head(L1), L2) ] σα(tail(L1), L2);

The Semantic Rules

Semantics 6 I start presenting the operational semantics of a sequence of

clauses of ∆ as follows:

Let SEQ be a sequence of clauses {c1, ..., cn}. Then, for any query q,

〈[p(x0, ..., xn)⇐ b.], s〉 (tt, AnS1, s
′)

〈SEQ, s′〉 (v, AnS2, s
′′)

〈{p(x0, ..., xn)⇐ b.,SEQ}, s〉 (tt,](AnS1, AnS2), s′′)

where⇐ denotes either← or↼ and p denotes a predicate symbol. That is,

the final answer set is formed by concatenating the answer sets of the clauses.

The above rule applies to tt. For the other results,

〈[p(x0, ..., xn)⇐ b.], s〉 (u, ∅, s′) u 6= tt
〈SEQ, s′〉 (v, AnS2, s

′′)

〈{p(x0, ..., xn)⇐ b.,SEQ}, s〉 (v, AnS2, s′′)

Therefore, intuitively, answers are obtained chronologically in the same

order as the physical order of the clauses, from top to bottom.

Semantics 7 The inference symbol ‘←’ has the following operational seman-

tics for any query:

〈b, s〉 (tt, AnS, s′) ∀(i, j, 0 ≤ i ≤ m, 0 ≤ j ≤ n)
wi,j = vi,j if xi,j/vi,j � AnS ∨ wi,j = uu if xi,j/vi,j �/ AnS

〈[p(x0, ..., xn)← b.], s〉 
(tt, {(x0/w0,0, ..., xn/w0,n), ..., (x0/wm,0, ..., xn/wm,n)}, s′)

275



where b denotes the body and p denotes a predicate symbol with possible not

operator (the condition wi,j = uu above is necessary because there can be

parameters in the head of the rule that is not used in its body). I represent

the other rules in a more simplified way as the following:

〈b, s〉 (⊥, ∅, s′)

〈[h← b.], s〉 (⊥, ∅, s′)

〈b, s〉 (ff, ∅, s′) ∨ 〈b, s〉 (uu, ∅, s′)

〈[h← b.], s〉 (uu, ∅, s′)

where h and b are the head and the body of a rule respectively; s, s′, s′′ ∈

Θ, v ∈ V 3 and ⊥ indicates infinite computation.

Intuitively, if the body of a rule is tt, so is its head (9.2.2). If the body

diverges so does the head (9.2.2). If the body is either ff or uu (9.2.2), the

system ignores the rule and the search carries on to the next rule on (9.2.2

and 9.2.2), with result in {tt, uu} (syntax 5).

Remark: Regarding the resulting value uu, the above semantics also

comes from the observation that, in both classical and intuitionist logic, a

valid conditional has two alternative values for the consequent (either tt or ff)

when the antecedent is ff .

Semantics 8 The inference symbol ‘↼’ has the following operational seman-

tics for any query:

〈b, s〉 (tt, AnS, s′) ∀ i, j, 0 ≤ i ≤ m, 0 ≤ j ≤ n,
wi,j = vi,j if xi,j/vi,j � AnS ∨ wi,j = uu if xi,j/vi,j �/ AnS

〈[p(x0, ..., xn) ↼ b.], s〉 
(tt, {(x0/w0,0, ..., xn/w0,n), ..., (x0/wm,0, ..., xn/wm,n)}, s′)

〈b, s〉 (⊥, ∅, s′)

〈[p ↼ b.], s〉 (⊥, ∅, s′)

〈b, s〉 (ff, ∅, s′) ∨ 〈b, s〉 (uu, ∅, s′)

〈[p ↼ b.], s〉 (ff, ∅, s′)

Intuitively, if the body of a rule is tt, so is its head (9.2.2). If the body

diverges so does the head (9.2.2). If the body is either ff or uu (9.2.2), the

276



system ignores the rule and the search carries on to the next rule on (9.2.2 and

9.2.2), with result in {ff, tt} (syntax 5). The above rules keep Globallog

semantics compatible with CWA and NAF.

Semantics 9 The comma which separates goals in the body of a rule is the

three-valued ∧ operator, in accordance with the following semantics. The for-

mulas 9.2.2-9.2.2 do not present the not operator in the semantics, as this

level of detail is not necessary here. I also remove parameters when they are

not necessary.

〈p(x0, ..., xn), s〉 (tt, AnS, s′)

〈σα(AnS, (y0, ..., ym)), s′〉
s
 s′′[AnS2]

〈q(y0, ..., ym), s′′〉 (tt, AnS3, s
′′′)

〈[p(x0, ..., xn), q(y0, ..., ym)], s〉 
(tt, {(x0/w0,0, ..., xk/w0,k), ..., (x0/wk,0, ..., xk/wm,k)}, s′′′[Ans3])

where n ≤ k ∧ m ≤ k ∧ k ≤ m+n, and also (xi/wi,j � AnS ⇒ (xi/α�

AnS2 ⇒ α = wi,j))∨ (xi/wi,j �/ AnS∧xi ≡ yi∧yi/wi,j � AnS2). Notice that,

in the numerator, there are implicit substitutions such that (∀i, j) xi/v �

AnS ∧ xi ≡ yj ⇒ yj/v � AnS2 holds, after the system action σ between the

states s′ and s′′.

Removing those tuple repetitions in formula 9.2.2, I can also state here

the order between those sets of solutions, in a way which is equivalent to

lexicographic order. Thus, let AnS(p, q), the answer set from the goal (p∧ q),

be

{(x0/w0,0, ..., xk/w0,k), ..., (x0/wk,0, ..., xk/wm,k)}

as in formula 9.2.2, without parameters.

Furthermore, let the infix v be the subset relation between two tuples that

can be defined here as v: V × V −→ Boolean. t1 v t2
def
= (∀x) ι(x, t1) ⇒

ι(x, t2). Then,

(∀x/u, y/v � AnS(p, q)) x/u ≡ sli(p, q) ∧ y/v ≡ slj(p, q)⇒
(i < j ⇒ (∀a, b, c, d)(sla(p), slc(q) v sli(p, q) ∧ slb(p), sld(q) v slj(p, q))⇒

(a < b ∨ (a = b ∧ c < d)))

277



and for equal solutions:

∀(x/u, y/v � AnS(p, q))x/u ≡ sli(p, q) ∧ y/v ≡ slj(p, q)⇒
(i = j ⇒ (∀a, b, c, d)(sla(p), slc(q) v sli(p, q) ∧ slb(p), sld(q) v slj(p, q))⇒

(a = b ∧ c = d))

where sli is defined in the formulae at the beginning of section 9.2 for some

goal g. Here I write the goal as an explicit parameter. Furthermore, for the

cardinalities of these answer sets, namely β = |AnS(p, q)|, m = |AnS(p)| and

n = |AnS(q)|, all of β < m, β > m, β < n, β > n, β = m, β = n may hold.

For failure, the rules are the following:

〈p(x0, ..., xn), s〉 (tt, AnS, s′)

〈σα(AnS, (y0, ..., ym)), s′〉
s
 s′′

〈q(y0, ..., ym), s′′〉 (ff, ∅, s′′)

〈[p(x0, ..., xn), q(y0, ..., ym)], s〉 (ff, ∅, s′′)

〈p(x0, ..., xn), s〉 (tt, AnS, s′)

〈σα(AnS, (y0, ..., ym)), s′〉
s
 s′′

〈q(y0, ..., ym), s′′〉 (uu, ∅, s′′)

〈[p(x0, ..., xn), q(y0, ..., ym)], s〉 (uu, ∅, s′′)

〈p(x0, ..., xn), s〉 (ff, ∅, s)

〈[p(x0, ..., xn), q(y0, ..., ym)], s〉 (ff, ∅, s)

〈p(x0, ..., xn), s〉 (uu, ∅, s)

〈[p(x0, ..., xn), q(y0, ..., ym)], s〉 (uu, ∅, s)

While goals are being satisfied in the body of a rule, the control continues

from the left to the right of the rule as follows:

〈[listOfterms, q(y0, ..., ym)], s〉 (tt, AnS, s′)

〈σα(AnS, (z0, ..., zo)), s
′〉

s
 s′′[AnS2]

〈q(z0, ..., zm), s′′〉 (tt, AnS3, s
′′′)

〈[listOfterms, q(y0, ..., ym), r(z0, ..., zo)], s〉 (tt, AnS3, s′′′)

where listOfterms corresponds to a non-terminal symbol of the Global-

log grammar that denotes a sequence of satisfied goals in the above formula.

Notice that, from the above set of rules, there is no need to represent the

backtrack when the second operand results in uu or ff .

278



Definition 12 A closed predicate 2 is a predicate defined by a list of rules

in R[↼] or facts under CWA, or both. A fact is under CWA if there exists

some rule in R[↼] whose head contains the same predicate as the fact does,

or defined by the close statement, defined in the following paragraph:

Definition 13 To explicitly define a list of facts of the same predicate p as

being under CWA, the programmer writes the clause close p. in the program.

To set CWA for all facts that do not have some predicate defined in R[←],

the programmer writes the clause close X. in the program, where X is a valid

name of variable.

Definition 14 An open predicate is a predicate which is not closed. In

Globallog, a predicate defined by only facts is an open predicate by default.

Definition 15 Clause is the general term used for either fact or rule. A fact

is syntactically a rule without the body nor the inference symbol. If p(...) is

a fact, then it is equivalent to the rule p(...) ⇐ true, where ⇐ is one of the

two inference symbols. The fact not p(...) is equivalent to not p(...) ⇐ true.

If a fact or rule contains the not connective in its head, I generically refer to

it as a negative clause, as usual. Let C− be the set of all negative clauses in

∆. If a fact or rule does not contain the not connective in its head, I also

generically refer to it as a positive clause. Let C+ be the set of all positive

clauses in ∆. A closed clause is either a rule in R[↼] or a fact defined under

CWA. An open clause is a clause which is not closed.

Syntax 10 The clause close p. is inconsistent with predicates p in R[←], and

such a consistency is guaranteed by the language, both statically and dynam-

ically. Although the present context-free grammar does not capture this, this

syntactical constraint must be taken into consideration.

Syntax 11 For a given closed predicate, both positive and negative clauses

do not coexist. Formally, C+ ∩ C− = ∅. Although the present context-free

2This terminology is similar to open/closed formula and they have different meanings,

but both have been used in the literature.

279



grammar does not capture this, this syntactical constraint must be taken into

consideration.

Semantics 12 If a closed predicate is defined by positive clauses, as Prolog

does, failure for this predicate means ff . However, if a closed predicate is

defined by negative clauses, failure for this predicate means tt.3

Formally, ¬(C+ `i q) ⇒ C+ |= (q = ff) where q is a closed predicate

symbol in C+, and also ¬(C− `i q) ⇒ C− |= (q = tt) where q is a closed

predicate symbol in C−.

Definition 16 The default logical value (δ) is the value assumed for the

failure in the search for a given predicate. Failure leads to δ which is either tt,

ff or uu.

Definition 17 A goal is an occurrence of a predicate when it is being used

in a proof. When the predicate contains the not operator the goal is said to

be negative, otherwise the goal is positive. A subgoal is a goal written in the

body of a rule, while a main goal is a goal at the uppermost level. A query

is the computation from a set goal. A subquery is a query from a subgoal. A

positive query is a query from a positive goal. A negative query is a query

from a negative goal. Because a computation can result in tt, ff or uu, I avoid

using the term proof, which should also mean a computation that results in ff

or uu.

For the following semantic definitions, let C ][ be the set of clauses defined

under OWA, and C [] be the set of clauses defined under CWA. In Globallog,

C ][ ∩ C [] = ∅ holds.

Semantics 13 If no clause unifies a goal g, δ depends on whether the cor-

responding predicate is open or closed, and whether the goal is positive or

negative: if the predicate is open, the query results in uu. On the other hand,

3The idea is that the programmer ought to state only the exception cases for a predicate

under CWA.

280



if the predicate is closed, the query results in ff in the case of a positive goal,

and the query results in tt in the case of a negative goal. See also semantics

7, 8 and 12:

〈(@p) µ(g, p) ∧ g ∈ C ][, s〉
s
 (tt, ∅, s′)

〈g, s〉 (uu, ∅, s′)

where µ is the unification algorithm (Section 9.2.3. The only difference

between my unification algorithm and others’ is described as follows: the al-

gorithm receives in an additional parameter the intention, which is relevant

during the unification, and returns the information about whether or not pred-

icates with opposite signs are unified when the received intention is Itf (see

section 9.2.3, below). For the other intentions, the algorithm returns false in

the latter parameter).

〈(@p) µ(g, p) ∧ g ∈ C [], s〉
s
 (tt, ∅, s′)

〈g, s〉 (ff, ∅, s′)

〈(@p) µ(not g, p) ∧ g ∈ C [], s〉
s
 (tt, ∅, s′)

〈not g, s〉 (tt, ∅, s′)

9.2.3 Intentions

As well as binding variables, a proof from a goal may be the result of one of

the following different intentions:

It: Proving that a predicate is true;

If : Proving that a predicate is false;

Itf : Trying to find the truth value for a predicate, either uu, ff or tt.

If the intention is It, the system will look for the positive clauses that unify

the established goal. On the other hand, if the intention is If , the system will

look for the negative clauses that unify the established goal. With Itf , the

system may unify both positive and negative clauses, and it is done at once,

downwards. Thus, at a declarative semantics level, the first two cases combined

do not form the third case because the order of the clauses is relevant.

281



Semantics 14 For open predicates, if the subgoal is positive the system adopts

the intention It, otherwise, the system adopts the intention If .

Semantics 15 For closed predicates, the system always adopts the intention

Itf , although it finds either positive or negative clauses. If the subgoal g is

negative, the sub-query results in the classical negation of the query whose goal

corresponds to the positive predicate:

〈g ∈ C [] ∧ (∃[p ↼ b]) µ(g, p, ∅, Itf), s〉
s
 (tt, L, s′)

〈b, s′〉 (tt, L′, s′′)

〈g, s〉 (tt, σ(L′, g), s′′)

〈g ∈ C [] ∧ (∃[not p ↼ b]) µ(g, p, ∅, Itf), s〉
s
 (tt, L, s′)

〈b, s′〉 (tt, L′, s′′)

〈not g, s〉 (tt, σ(L′, g), s′′)

〈g ∈ C [] ∧ (∃[not p ↼ b]) µ(g, p, ∅, Itf), s〉
s
 (tt, L, s′)

〈b, s′〉 (tt, L′, s′′)

〈g, s〉 (ff, σ(L′, g), s′′)

〈g ∈ C [] ∧ (∃[p ↼ b]) µ(g, p, ∅, Itf), s〉
s
 (tt, L, s′)

〈b, s′〉 (tt, L′, s′′)

〈not g, s〉 (ff, σ(L′, g), s′′)

Example 2 A query p to the program {not p.} results in ff , while a query p

to the program {not q. p ← q.} or to the program {q. p ← not q.} results in

uu. See remark 9.2.2.

In a case where there does not exist unifying clause:

〈g ∈ C [] ∧ (@[p ↼ b]) µ(g, p,X, Itf), s〉
s
 (tt, Y, s)

(@[not p ↼ b]) µ(g, p,X, Itf), s〉
s
 (tt, Z, s′)

〈g, s〉 (ff, ∅, s′)

〈g ∈ C [] ∧ (@[p ↼ b]) µ(g, p,X, Itf), s〉
s
 (tt, Y, s)

(@[not p ↼ b]) µ(g, p,X, Itf), s〉
s
 (tt, Z, s′)

〈not g, s〉 (ff, ∅, s′)

282



Semantics 16 In general, for any query with intention Itf , if a negative

clause is proven from a positive goal (9.2.3), the query results in ff . Like-

wise, if a positive clause is proven from a negative goal (9.2.3), the query

results in ff . If a negative clause is proven from a negative goal (9.2.3), or a

positive clause is proven from a positive goal (9.2.3), the query results in tt.

9.3 An Operational Analysis

In this section, I analyze the language at the operational level. Prolog will be

used for comparisons because it is well known, but the comparisons apply to all

languages that are based on GLP. Most of the proofs are by bissimulation[146]

together with structural induction over the syntax, defined in section 9.2.1.

Proposition 3 Let P be a Prolog program and Qo be a program in Glob-

allog formed by simply adding to P the clause close X.. Then, for every

query, Qo gives the same answer as P.

[Proof:] First, whenever a goal does not unify any clause in both P and Qo,

both programs answer false. In both cases, if the goal unifies a fact, the

answer is true with the same values for the variables in the query, according

to the unifications.

In both cases, if the goal unifies the head of a rule, both bodies are evalu-

ated. In both P and Qo, whenever the body of a rule fails, its head becomes

ff and the system backtracks. In both cases, whenever the body of a rule

succeeds, its head becomes tt, with the same substitution set, according to the

unifications.

Let not p be a negative subgoal in the body of a rule. As the rules are in

R[↼], Qo assumes the intention Itf . Since there are no negative rules in the

program, the goal not p matches p clauses, which, like P, the computation

results in either tt, ff or the computation diverges. After obtaining a resulting

value in {ff, tt}, the value is negated and then the computation produces the

same effect as the negation in P. In both cases, if the goal is tt the search

283



carries on by proving the next subgoal on the right. Otherwise, both systems

backtrack, looking for another solution on the left, according to the depth-first

strategy.

Finally, in the case of recursion, it is clear that P diverges iff Qo diverges.

�

Proposition 4 Let P+ be a Prolog program with only strict Horn clauses and

Q+ be a program in Globallog formed by just replacing all instances of the

‘↼’ symbol in P+ by the ‘←’ symbol. Then, for every query, Q+ gives the

same answer as P+, except that whenever P+ answers false, Q+ answers

unknown.

[Proof:] Firstly, whenever a goal does not unify any clause in P+, the answer

is false. On the other hand, whenever a goal does not unify any clause in Q+,

the answer is unknown. In both cases, if the goal unifies a fact, the answer

is true with the same values for the variables in the query, according to the

unifications.

In both cases, if the goal unifies the head of a rule, both bodies are eval-

uated. In P+, whenever the body of a rule fails, its head becomes ff and the

system backtracks. In Q+, whenever the body of a rule fails, its head becomes

uu and the system backtracks. In both cases, whenever the body of a rule

succeeds, its head becomes tt, with the same substitution set, according to the

unifications.

Both unification algorithms provide the same response (including the same

set of substitution) because there are neither negative goals nor negative heads

of rules in either programs. These were the only cases where the Prolog unifi-

cation algorithm was modified. Finally, in the case of recursion, P+ diverges

iff Q+ diverges.

�

The proposition 4 shows that Globallog is sound with respect to Horn

clauses.

284



For the propositions from 5 to 11, let P be a Prolog program and Q be

a program in Globallog formed by just replacing all instances of the ‘↼’

symbol in P by the ‘←’ symbol.

Proposition 5 All rules in Q that contain some negative goal in their bodies

either result in uu or diverge.

[Proof:] Let not p be a negative subgoal. Then not p does not match any

clause in Q, because Q is obtained from P which does not contain negative

rules and Q makes use of intention If . In this case, not p results in uu and the

Q system backtracks, looking for another solution. Therefore, no such rules in

Q provide either solution or refutation, i.e. all rules in Q with some negative

goal in their bodies either result in uu or diverge.

�

Proposition 6 For any rule in Q no predicates on the right of the first neg-

ative goal are searched for.

[Proof:] The same reasoning as the proof for proposition 5.

�

Proposition 7 For every query, if Q diverges, P diverges.

[Proof:] By definition, both systems adopt the same flow of control, except in

one case: let not pi be the first negative subgoal of a rule in both programs.

In Q, not pi does not match any clause, because Q does not contain negative

rules and Q makes use of intention If . In this case, not pi results in uu and

the Q system backtracks. On the other hand, in P, not pi means that pi is the

subgoal to be proven. If pi becomes tt, the flows of control are still the same.

Thus, suppose that pi becomes ff in P. Then, the search continues after the

predicate not pi, i.e. either the predicate pi+1 or not pi+1. This is the only

situation where the flows of control separate from each other. However, Q has

a pruned search tree in respect to P and hence, it is possible that P diverges

285



where Q simply answers unknown (by proposition 5). On the other hand,

it is possible that Q diverges when P finds some solutions as a result under

the CWA. Even in this case, after some more steps of inference, P backtracks

to the point where the flows of control separated from one another and, after

some more possible solutions, P diverges in the same way as Q. Therefore, if

Q diverges P diverges.

�

Proposition 8 For every query, if Q answers true, P answers true.

[Proof:] Proposition 4 has already showed that this holds for programs without

negation. Now, I consider the case where negation occurs. But it follows from

the proposition 5 that no rules with negation in their bodies in Q provide

solutions. Therefore, if Q answers true P answers true.

�

Proposition 9 Q never answers false.

[Proof:] It follows directly from propositions 4 and 5.

�

The propositions 8 and 9 show that rules in +R[←] are sound with respect

to Prolog. The following proposition is related to the fact that Prolog always

assumes a closed world while Globallog does not.

Proposition 10 For every query, if P answers false, Q answers unknown.

[Proof:] Proposition 4 already showed that it holds for programs without

negation. Now, let not p be a negative sub-goal which occurs in the body of

a rule in R[↼] of P and in the body of the corresponding rule in R[←] of Q.

Then, in order for this P rule to become ff , it is necessary that some of its

sub-goals fail. Without loss of generality, let not p be such a sub-goal. In this

case, p had matched a rule in R[↼] of P whose query resulted in tt, causing

not p be ff . In parallel to this and by proposition 5, a terminating rule in

286



R[←] of Q with negation always results in uu. But Q does not diverge, by the

contrapositive form of proposition 7. Therefore, for every query, if P answers

false, Q answers unknown.

�

Proposition 11 There exists some query to which P answers true and Q

answers unknown.

[Proof:] By presenting an example. Let P be a program with only one clause,

namely, p(a) ↼ not q(a), and Q be the corresponding program p(a) ←

not q(a): for the query p(a), P answers true and Q answers unknown.

�

The proposition 11 also follows from the fact that P always makes use of

the CWA while Q does not. As Q offers only the abstract negation, not uu

results in uu.

Proposition 12 Let P be a Prolog program and Q−1 be a program in Glob-

allog formed by replacing all instances of the ‘↼’ symbol in P by the ‘←’

symbol, by replacing all occurrences of the predicates (both in the heads and

in the bodies of the rules) in P by their negative forms, and by replacing all

occurrences of negative predicates in P by their corresponding positive forms.

Then, for every positive query q,

a) Q−1 never answers true;

b) if Q−1 answers false, P answers true;

c) if P answers false, Q−1 answers unknown;

d) there exists some query to which P answers true and Q−1 answers

unknown;

e) if Q−1 diverges, P diverges.

[Proof:] The proof is by applying the same reasoning as in the previous

propositions obtaining symmetric results in Q, and by applying symmetric

intentions. Thus, sentence a follows from proposition 9, b from proposition 8,

c from proposition 10, d from proposition 11 and e from proposition 7. �

287



9.4 Examples

Consider the classic non-flying bird example:

fly(X)← bird(X),not penguin(X).

not fly(Y )← penguin(Y ).

bird(tweety).

penguin(Z) ↼ bird(Z), polar(Z).

To answer the query fly(tweety), the system initially assumes the inten-

tion Itf .Then the system unifies the goal with the head of the first rule, binding

X to tweety. Then, the system finds the subgoal bird(tweety) which unifies

the third clause according to the intention It (semantics 14). In the first

rule, not penguin(tweety) is the next subgoal to be explored with intention

Itf (semantics 15), as penguin is a closed predicate. The subgoal unifies the

fourth rule, binding Z to tweety. As the subgoal bird(tweety) had already

been proven, the next subgoal is polar(tweety). To explore this subgoal, the

system adopts the intention It because polar is an open predicate by default

(definition 14). The system does not unify any clause and, because of this,

this subquery results in uu (semantics 13). The fourth body results in uu

and hence the subquery penguin(tweety) results in ff (semantics 8 and 13),

as the fourth rule adopts the CWA. Then, not penguin(tweety) results in tt

(semantics 13), making the body of the first rule result in tt. Finally, the query

results in true.

Now, suppose that a new clause, polar(tweety). is asserted and the system

places it at the end of the list of clauses. For the same query, fly(tweety), the

system now answers false.

In the example, a similar Prolog program would give the same answers for

fly(tweety), because the fourth clause alone ensures that only a polar bird

is a penguin. However, for a query such as fly(airplane), the above pro-

gram answers unknown while Prolog would answer false for a corresponding

program.

288



As another example, suppose I know that Berne is the capital of Switzer-

land and that each country has just one capital. We can easily conclude that

Zurich is not the capital of Switzerland. In Globallog, the programmer

could write:

1 : capital(berne, switzerland).

2 : not capital(X, Y ) ← capital(Z, Y ), X 6= Z.

According to the semantics of Globallog, a non-ground query, for exam-

ple, capital(bern,X). (note the Swiss spelling) would result in X = unknown,

while a ground query such as capital(zurich, switzerland). would definitely

result in false. This goal would not unify the first rule but would unify

the second one because the presence of the not operator does not fail dur-

ing the unification process for Itf . In this case, X is bound to zurich and Y

is bound to switzerland. Then, the system tries to prove the subgoal capi-

tal(Z,switzerland) and unifies the first rule, the fact capital(berne,switzerland),

binding Z to berne. Now the system evaluates the expression X 6= Z, which is

tt as zurich is not berne. Since all the premises of the rule are tt, the system

concludes that the head not capital(zurich,switzerland) is tt and, hence, that

capital(zurich,switzerland), the response of the query, is false.

9.4.1 A Global Extension

In this chapter, I am not formalizing the semantics of remote operations in

Globallog. I give an example in this subsection that describes the informal

semantics of a remote operation. Suppose that Globallog is implemented

on the Web and that WWW directories contain Globallog programs. I can

include global clauses in such programs, i.e. clauses that can be accessed by

any other program anywhere on the Internet. By default, clauses are private.

Therefore, I add the keyword public to indicate that the following list are the

names of the clauses in the program that can be accessed by queries outside

the program or, alternatively, that the transitive closure from those clauses can

289



migrate on the fly and be linked on demand. For example, in some host whose

address is www.somewhere.on.earth , there can be the following program in a

file programming.txt :

public likes.

likes(X, λ−calculus) :− likes(X, fp).

likes(X, logic) :− likes(X, λ−calculus).

likes(X, philosophy) :− likes(X, logic).

The sequence of clauses above states publicly that every person who likes

functional programming (probably) likes λ−calculus; that a person who likes

λ−calculus also likes logic, and so on. Now, a program at another site can

have the following clauses:

likes(X, Y ) => 15s : www.somewhere.on.earth/programming.txt.

likes(X, fp) :− likes(X, haskell).

likes(anna, haskell).

At the former site, an agent can make the query likes(anna, philosophy).

As the clause likes is public, an encrypted version of the file programming.txt

can come from that site, www.somewhere.on.earth/programming.txt, and then

be linked to the running program. After this, the execution continues by

using clauses of that file and, after some more steps of computation, the given

answer is “yes”. As likes is a clause defined under CWA, the answer could

be either yes or no. However, if the remote operation is not completed within

15 seconds, the answer is unknown. Although Globallog does not permit

mixture of open and closed clauses in a program, it is possible to do this in

other programs that are linked. This constraint is basically one structured

programming technique that I impose if programmers adopt this language.

Here, there are many details that are outside the scope of this chapter, but I

hope this example provides a clear picture of the use of this language in such

a global environment.

290



9.5 Consistency of a Knowledge Base

Due to the flexibility of the language, inconsistency might arise, e.g. the rules

{p(a). not p(a).}. Over the last ten years, some proposals have been made to

solve this problem[93], such as setting priorities, possibly in some implicit way,

for all clauses. Some researchers have also defined four-valued logics in which

the fourth value means “inconsistency” [30]. In the case of Globallog, it

is easy to see that answer sets could be used to remove only inconsistent (i.e.

both positive and negative) answers from the set. Therefore, inconsistency

could also be interpreted by the system as uu. The literature on inconsistency

in deductive databases and logic programs is large[268] but, naturally, there

is little on abstract negation.

However, Globallog is a paraconsistent logic programming language, in

the sense that dealing with inconsistency is left up to the programmer. The

idea is that the language ought not only to represent inconsistency but also

allow the program to give specific treatments to it. Mainly if the language is

regarded as a subset of a hybrid language, where the fourth value is meaningless

outside the scope of the rules, this makes the proposed approach particularly

interesting.

In some modes of operation however, it is possible to check consistency

easily. For instance, during the edition, whenever the user adds a new clause to

the knowledge base, the system automatically checks consistency. Continuing

using the previous example, suppose that while editing the rules, it is asserted

that Brasilia is the capital of Brazil. The new clause, capital(brasilia,brazil),

is to be added to the knowledge base. However, before doing so, an implicit

consultation may be automatically done by the system in order to guarantee

consistency after the addition of this new fact. The insertion of a new fact

may be allowed only if the result of the corresponding query is uu. If the result

is ff the system may tell the user that the new fact could not be added to the

knowledge base because, if it were added, it would lead to inconsistency. It is

possible that the implicit consultation diverges. In this case, a time-out may

291



be configured in the editor in such a way that a warning be presented to the

user.

In the current example, the predicate capital(brasilia,brazil) does not match

the first rule but matches the second rule, binding X to Brasilia and Y to

Brazil. Then the system starts to explore the body of the second rule, taking

the first predicate capital(Z,brazil) as the current subgoal. Since the intention

is It, and there is no positive clause which matches this subgoal, the result

of this sub-query is uu, causing failure in the second rule, and therefore, the

answer of the main (implicit) query is unknown. The system now allows the

insertion of the new fact:

1 : capital(edinburgh, scotland).

2 : not capital(X, Y ) ← capital(Z, Y ), X 6= Z.

3 : capital(brasilia, brazil).

Now, consider the addition of the fact capital(rio, brazil). The system matches

the second rule binding X to Rio and Y to Brazil. Then it makes the sub-query

capital(Z,brazil) with the intention It. The first two rules fail to match but

the third rule matches the sub-query binding Z to Brasilia. Then control is

returned to the body of the second rule and the system evaluates the next

subgoal, the relational expression X 6= Z, now bound to rio 6= brasilia which,

in its turn, results in tt. As all clauses in the body of the second rule are

tt, so is the head. Since the head is in the negative form, the implicit query

results in ff . Thus, the system is able to interpret the straightforward rules

and to prove that Rio is not the capital of Brazil, warning the user about the

inconsistency.

In the last query, a similar result (from a slightly different list of rules)

would also be given by GLP languages. However, a GLP program to answer

queries like

?− capital(vienna, austria).

292



in a realistic way would be much more difficult to write than in Global-

log. Here, the system matches the second rule binding X to Vienna and

Y to Austria. Then it makes the sub-query capital(Z,austria) with the in-

tention It, but nothing matches this sub-query. Thus, the second rule fails.

The third rule does not match either and hence the system concludes that

capital(vienna,austria) is unknown.

9.5.1 Dealing with Inconsistency

Because Globallog is a more expressive language, the programmer should

take care to avoid inconsistency. However, the program itself can also catch

contradictions easily and give the appropriate treatment. Suppose that the

programmer wants to guarantee that no contradiction results from the predi-

cate p(X, Y ). Then, they may rename p as pp and write a new and stronger

version called p(X, Y ), which is not contradictory:

p(X, Y ) ← pp(X, Y ), isunknown(not pp(X, Y )).

not p(X, Y ) ← not pp(X, Y ), isunknown(pp(X, Y )).

Thus, pp is either uu, ff or tt, but not inconsistent. Note that if pp is in-

consistent, p is uu. Inconsistency is actually a fourth truth value, but this

leads to some practical problems when this value is part of the language, not

only in terms of efficiency (any query would have intention Itf ) but also in

terms of integration with other programming paradigms, which was the orig-

inal motivation for the design of Globallog. Furthermore, Globallog is

more flexible for allowing the programmer to make use of the ability to treat

contradictions. Another more subtle example:

p(a,X).

not p(X, b).

293



which holds for both p(a, b) and not p(a, b). In general, it is up to the program-

mer to avoid inconsistency. Sometimes, however, e.g. in planning systems, the

notion of inconsistency may be useful. For example:

might rain(tomorrow).

not might rain(tomorrow).

which represents (with a slight abuse) the statements “it might rain tomorrow”

and “it might not rain tomorrow”. Both facts together may allow reasoning

about possibilities, and once one of the above possibilities is no longer valid,

the corresponding clause ought to be retracted from the knowledge base.

Although this model also works with predicates containing variables and

constants, sometimes the result of a query is not as simple as those exemplified

above. In general, the answer to a complete query results in an ordered set

of tuples, either positive or negative (the exceptions), for the arguments in

the query. For example, {p(a, b). p(b, c). not p(c, a).} and a complete query

such as ?p(X, Y ) binds p(X, Y ) to {p(a, b), p(b, c),¬p(c, a)} in this order. It

means that {p(a, b), p(b, c)} is the set of possible solutions for p(X, Y ) and that

{p(c, a)} is the set of possible solutions for not p(X, Y ).

9.6 Conclusion

I provide a semantics for Globallog which leads to the possibility of in-

consistent programs. For agents, the ability to reason about inconsistency is

essential. Thus, for any query, Globallog allows testing if there exist one

proof and one refutation for the same goal, and trigger some action according

to this.

In terms of practice, while Globallog provides only abstract negation,

ELP provides two different negations which, although more flexible than Glob-

allog negation, make the programming work harder. This is justified because

while programmers define a predicate only once, they normally use it many

294



times in the program. On a global network, this simplification becomes even

more significant. The negation is called “abstract” because, from the program-

mer’s viewpoint, it does not matter whether the predicate of a negative query

was defined as open or closed.

In comparison to Prolog, while NAF is a concept which depends on the

CWA, Globallog adopts the idea that predicates may be defined as being

either open or closed, which makes negation an independent concept of whether

or not a closed world is assumed. Globallog adds a different inference

symbol but I believe that this addition is more a matter of choice than a

problem. Moreover, it is equally easy to define either open or closed clauses.

Like in ELP, the addition of the third value as representing what is un-

known may increase the expressiveness of the language considerably, while

allowing knowledge to be written in a more natural way. The ability to repre-

sent and reason despite a lack of knowledge is desirable in many applications.

Globallog provides such representation by simply assuming unknown for

non-existing clauses.

Because there are two forms of negation, ELP is technically more expres-

sive than Globallog. However, there normally is only one meaning for

negation in natural languages such as English[174] although there are differ-

ent forms of negating a sentence. In other words, the expressiveness produced

by two forms of negation is not necessary, since in ELP the choice of negation

determines the assumption, either closed- or open world, which is not a normal

situation in the real world. Furthermore, ELP possibly requires a higher level

of intelligence.

295





Chapter 10

Conclusion

10.1 Another Approach

In this chapter, I summarize conclusions of each of the previous chapters and

then draw my synthesis. I also add comments from section 10.7 on. How-

ever, before doing so, I would like to stress that, although this PhD thesis

is, broadly speaking, in the area of philosophical foundations of computer

science and programming languages, it is also closely connected to artificial

intelligence. Moreover, the whole thesis can be viewed from the artificial in-

telligence standpoint, as AI may be at one level above the present discussion,

i.e. the application level.

It is known that programming is one of the key subjects in computer

science. However, if one observes the somewhat empirical characteristics in

programming, the ideas contained here will become clearer. Yet, there seems

to be nothing wrong in the way that programmers still work, and will probably

continue doing. Furthermore, although one can prove that a given program is

correct, there can be proofs of proofs of program correctness etc. Programs are

either correct or not with respect to some representation of a relevant model

from the real world. Therefore, although there are programming techniques

including those suggested and imposed by programming languages, program-

ming is a complex task that requires some basic synthetic skills.

297



10.2 Foundations of Computer Science

The operational semantics in chapter 4 as well as in part II make use of the

notions of space and time, implicitly or explicitly. I introduced a space-time

logic, a somewhat unified logic that includes the concepts of space, time, and

uncertainty, as well as uu and inconsistency. I also defined a space-time de-

ductive system for this logic. Both together represent and reason on real-world

objects, capture mobility, and were helpful in many applications, and are part

of the present PhD thesis. Both are also linked to AI and the author’s back-

ground in AI.

Intuitively, both Turing machine and λ-calculus can be used to produce

any natural number f(x), given any input x. Additionally, for any input x,

there exist an infinite number of sequences of steps that lead to the same

result f(x). On the other hand, composition is an important property of

function application. However, unexpected effects produce unpredictability in

the notion of computation, and while Turing machines have to deal with that

problem, λ-calculus does not. Following this, I have demonstrated that the

class of Turing machines is not isomorphic to the class of computable functions.

Thus, from chapter 3, we obtain the following summary relatively relevant for

the foundations of computing:

• Programs do not necessarily correspond to functions.

• There exists some computation of composition that does not correspond

to any functional application.

As a consequence (and taking Turing machines as forming a true model of

computation), it is also part of the present thesis the following: The class of

computations strictly contains the class of computable function applications.

As regards code mobility, I demonstrated that traditional models of compu-

tation[155] are not as general as mobile agents with strong mobility.

A simple and more general model of computation, an extension of the

while programming language, has been presented, by defining a virtual ma-

298



chine and a small set of operations that complements the traditional notion of

computation.

I have introduced one operation, namely SpreadOut, which is not present

in current models of computation, and formally included this operation in the

notion of computation which I have presented.

Global computers need international laws, and because these laws depend

on subjective factors, diversity of global and mobile-code systems should be

encouraged. Ethics[279], a branch of philosophy, becomes a more important

notion.

Philosophy is essential in the foundations of computer science. As an

example, I have presented a philosophical view in computer science. However,

there are others.

In chapter 5, a published paper in [105], I design a global computer. I

introduce a framework for mobile agent system that can be regarded as sym-

metrically secure, in the sense that it equally protects visitors and hosts. In

that model, I propose the centralization of the responsibility for the security

in the whole system, and, in this way, such solutions become transparent to

mobile agents. A more recent article which contains claims that are essentially

the same as the author’s PhD proposal in 1999 is [222]. In chapter 5, as well

as in the already mentioned [105] above, I improved significantly those ideas

in many points, and one can also observe that there is no virus in the system

and no need for trusted third parties in applications, for instance. Designers

of systems based on that model are already trusted third parties.

The present framework is based on a metaphor and describes typical sit-

uations which travelers face. Notions such as airports, arrivals, departures,

passports and security are in the present framework. Because the metaphor

is based on modern life, it is expected that its implementation will be easy,

as well as the system will be easy to use. Except for details, the main prob-

lems were solved here, and the present framework suggests and imposes some

programming language concepts and constructs.

299



10.3 Concepts for Programming Languages

This work on uu is based on the  Luckasievick and Kleene three-valued logics,

as well as the Belnap four-valued logic. As it has become clear, uu is not

partiality, for we can have both partial functions with infinite computation,

as well as a sub-class of total functions, such as uu → uu, uu → 1, ..., uu →

1, uu → 2, ..., for instance, using a sequence of two blank symbols from the

Turing machine model as a previous convention for uu.

Since a programming language designer adopts uu in their language, ex-

pressions and statements accommodate the presence of this value. For exam-

ple, a version of the full conditional statement becomes if -then-else-otherwise,

or using ifnot instead of the keyword else.

Local inefficiency is an issue of the present features. Assuming that the

existence of mobile agent support systems almost entails code interpretation,

the interpreter has to check the presence of uu whenever a variable is being

requested in an evaluating expression. However, as hardware is getting faster

and memory is getting larger in capacity, this is not considered a significant

problem. Moreover, this problem can be compensated for by the fact that

mobility and remote accesses are the bottlenecks in applications, and that

variables can behave as a cache and operations can be lazy. This combination

is encouraged by the discussed language concepts and constructs, in particular,

lazy evaluation with timeouts, a larger repertoire of parallel operators and uu.

Handlers and uu have been successfully experimented within Plain for a

number of years.

The idea of a hybrid paradigm for programming allows programmers to feel

free to choose their own way of working. Some definitions are better written

in some particular paradigm whereas others are better written in a different

paradigm.

At a more refined level, there can be two kinds of unknown states: the first

one represents the initial lack of information with potential for later discovery,

while the second kind represents the lack of information after having attempted

300



to discover its value. Plain distinguishes one kind from the other, to allow

the inference machine to recognize variables whose values had already been

requested.

The fact that global network connections are neither reliable nor efficient

leads one to find ways to program despite this. Thus, as well as uu, I presented

uncertainty as a programming language feature to cover this gap, among other

purposes. The present scheme permits reasoning under lack of information, by

both considering unknown as part of that uncertainty model in the variables

used as premises, and in the resulting hypotheses. As a result, uu permits

unification of this paradigm with others that include uu .

In chapter 9, I introduced Globallog, which makes logic programming

and mobile agents compatible, and also provides uu as expected. While Glob-

allog provides only abstract negation, extended logic programming provides

two different negations. On the other hand, for any predicate, Globallog

allows programming under either open- or closed-world assumption.

Whereas negation as failure is a concept which depends on the closed-

world assumption in Prolog, this does not hold in Globallog. That is, in

the latter language, predicates may be defined as being either open or closed

as a matter of choice, and the negation has a semantics which is compatible

with the definition.

Like in Gelfond and Lifschitz’s extended logic programming, the addition

of the third value as representing what is unknown increases the expressiveness

of a Prolog-like language considerably, while allowing knowledge to be written

in a more natural way. The ability to represent and reason under the lack

of knowledge is desirable in many applications. Globallog provides such

representation by only assuming unknown for non-existing clauses.

10.4 Further Work

It is interesting to open a book on future research directions such as [313],

observe the time when the book was written and compare the contained ideas

301



with the current scientific context or with the state of the art in technology.

Regarding computer science, it is particularly difficult to predict what will

happen in the near future. In the present example, the book was written in

1996 and hardly contains comments on mobility. Nonetheless, I still share

many of the discussed subjects without need to repeat them here.

Because this foundation work is broad and is placed at some proper level

of generality, in this section, I state only a few ideas for possible further work.

I also give some idea of what is not contained in the present PhD thesis dis-

sertation.

• Philosophy of computer science as part of the foundations. This means

that literature in this subject can continue to be written, not philosophy

as a separate or satellite area in computer science, but instead as part

of the theoretical work.

• The investigation of connections between what has been discussed in the

present work and subjects that were not discussed in this thesis but are

somewhat related, for instance, computational learning theory[182] and

constraint programming[90, 205, 266], among many others.

• The logic introduced in chapter 2 for describing semantics in those chap-

ters is only a simplification of the logic that I had conceived. Although

the @-logic and some deduction for it have been developed, some more

work is needed for checking their soundness, completeness and imple-

mentation.

• At the application level, a good amount of complementary work ought

to be done regarding communication between agents in mobile-agents

community, because in this PhD thesis, I left this issue almost untouched.

This more detailed level of abstraction involves more technical issues, e.g.

[29].

• Implementation of the ideas contained in chapter 5 as part of the Plain

project. Although the flyto command is implemented in Plain, other

302



involved issues such as safety and security have not been implemented.

Since those ideas are general and not limited to Plain, other virtual

machines can implement the presented model.

• Further exploitation of the holistic view in computer science. More can

be discussed and written. For instance, another volume might be con-

ceived for investigating rôles and connections between natural languages

and computing science from the present standpoint.

• Although the Plain compiler and virtual machine are efficient, much

work can be done in terms of performance. One of the bottlenecks is

in the communication between agents. Code mobility in global environ-

ments, in practice, requires special attention to efficiency, for, in general,

there is much overhead.

The above list is far from complete. They are only examples of work to

attempt to complete the subjects, issues or approaches that one deals directly

with in the present PhD thesis.

10.5 Sciences and Deductive Logics

Based on observation, we can classify concepts related to computer science,

such as methods, forms of inference, mental abilities and subjects of research,

dividing them in two classes, i.e. synthetic and analytical, as explained here,

in chapter 10. This classification, for being original, differs, for example, from

the classification of Immanuel Kant[180]. Here, there is no formal nor precise

definition of synthetic and analytical. Roughly speaking, analytical concepts

are more or less motivated by exactness, whereas synthetic concepts are more

or less motivated by generality. In this way, this classification itself is synthetic,

fuzzy and incomplete. The analytical class is divided in two subclasses, namely,

ω and π, whilst the synthetic class is divided in two other subclasses, namely,

φ and ψ. Deductive logics is a key concept that belongs to the analytical class,

303



whereas induction and analogy are two of the key concepts that belong to the

synthetic class.

Logics and exact sciences, in turn, as it is known, are partially based on

deductions as well as observable and deduced facts, while such facts can be

used as examples, which in turn can be used as proofs for existential propo-

sitions. On the other hand, propositions based on a finite number of cases

are traditionally regarded as less relevant. As an example, it is known that

belief, induction and analogy have not been accepted as valid methods of

sciences[245], in particular, mathematics and exact sciences.

Nonetheless, synthetic concepts are significant in computing science and,

among them, there are those empirical concepts, together with belief, induc-

tion, analogy and so on. A few forms of inference, such as the ability to weigh

up possibilities, can be deeply studied in computing science, while the abil-

ity to weigh up possibilities is not traditionally regarded as a mathematical

method.

Here it can be observed that computing science not only profits directly

from logics and mathematics but that that science has a direct connection with

the real world, while it belongs to the same world. Furthermore, the typical

place where computing science has many notions of the synthetic side is in the

interaction with the real world, including the interaction with our senses at

work, and in the applications of the analytical notions. I see computing science

or computer science as the organized knowledge about the world. In fact, while

the logical, scientific and mathematical kind π in the foundations of computing

science has been well studied since Babbage, no significant contribution was

done in philosophy of computing science. Today, this is a new side of the

foundations of computing science.

10.6 The Conceptual Diagram

This section and the following ones introduce one classification that can be

used as a tool. The connection between this tool and the sample paradoxes that

304



I will present below is the following: there exist two large classes of concepts,

analytic and synthetic. Roughly, the former is the concept of smallness while

the latter is the concept of greatness. Thus, the former can be seen as smaller

than the latter and, hence, if in some observation a subject from the latter is

seen as belonging to the former, there can be some contradiction, which can

lead to a possible refutation.

As one of the possible conclusions from this PhD thesis, I identify some of

the usual concepts of computing science and place them in only four classes.

Therefore, here I attempt to justify the present classification but knowing that

it is a transcendental matter impossible to be either proven or refuted or both.

Most attempts to classify real world concepts necessarily lack precision,

although attempts are often helpful. Because such classifications are empiri-

cal but takes a life time, here I present a classification from my standpoint,

which illustrates the orthogonality of some paradigms and issues, skills, meth-

ods and approaches in the theoretical foundations. I illustrate how I identify

the analytical and synthetic sides of computer science. Due to its empirical

characteristic, our four-kind diagrams can be seen as simply a diagrammatic

form of representation by some holistic view in computer science. Although

fuzzy systems have been regarded as logics in their own right, I place these

two notions as opponents in those diagrams, and this is because logics (which

one can see as an analytical subject) is traditionally seen as the subject of

the valid reasoning, hence, has some general meaning for all individuals. In

contrast, fuzziness (which I see as a synthetic subject) typically requires indi-

vidual truth threshold for each hypothesis, while fuzziness suggests, for every

hypothesis, different truth threshold for different individuals. Furthermore,

for I am placing logics and logic programming in the same analytical side in

the referred to diagrams, and I am stating that any hypothesis that involves a

synthetic subject cannot be generally proven, i.e. with a universally-quantified

claim, the thesis of the validity of these diagrams, including my synthetic and

empirical classification, is not provable or refutable. This itself seems to be in

accordance with Gödel incompleteness theorem[276], as I shall explain briefly

305



later.

10.7 Synthesis in Programming

The work presented in the part II of this PhD thesis can be very briefly

represented by the following diagram:

ψ

φ

π

ω

uu

One of these hypotheses that I am presenting here is that the program-

ming paradigms which I represent here in the Greek letters that were carefully

chosen, π, ω, φ, ψ, for example, (functional-logic programming, equations,

constraint programming, consistency can be placed in π), (imperative features

including side-effects, states, communication between machines, interaction,

small mobility can be placed in ω), (internet programming, strong mobil-

ity can be placed in φ), and (uncertainty, fuzzy systems, inconstancy can be

placed in ψ), are orthogonal ways of seeing the world from the programming

standpoint. Given this, Plain programming language takes into consideration

this orthogonality, that is, different points of view.

Programming is a relatively complex task and, because of this, every pro-

gramming language has features relating to all kinds. However, one can an-

alyze and perceive predominance to one specific kind in most programming

languages. The language Smalltalk, for example, can be associated to the ω

kind; while Haskell could be the best example of the π kind. Concerning the φ

kind, the mobile-code languages for global computers nowadays are still very

emphatic on code mobility. More specifically, they have not solved all practical

problems with respect to security, solved in chapter 5. There are other issues,

e.g. regarding differences of cultures, that have not been deeply investigated.

306



In fact, the φ kind is too recent from the programming perspective and one

misses comparisons on scientific basis. Plain tries to achieve a suitable bal-

ance between these four kinds. So, in the next subsections, I shall discuss the

four kinds and make comparisons between them.

10.7.1 Concepts and Constructs of Kind π

This kind of constructs is not easy to describe because it seems that all pro-

gramming languages are in here. Formalism, discipline, precision and details

are extremely important, and they are key motivations here. Most logic pro-

gramming languages and functional programming languages are typically in

this kind, and because strong typing goes together with discipline and method-

ology, these languages are not of the same point of view as untyped program-

ming languages, which are in ω, for instance. Objects are concrete and well

formed here. Although most of object-oriented programming languages are

imperative, inheritance is another example of constructs of kind π. There are

exceptions such as C++, which in turn has a strong influence from C. Here,

sub-classing can be sub-typing in terms of OOP. The senses of order and pure-

ness are important here. And because of the importance of order and clarity

in programming, I regard the kind π as compulsory.

For this synthesis, because there has been much work on logic program-

ming and functional programming, I have preferred not to concentrate on

languages of this kind. Instead, in the following subsections, I use them only

for comparison.

10.7.2 Concepts and Constructs of Kind ω

Here flexibility and expressiveness are keywords. Others are interaction, com-

munication, states, imperative features, and efficiency of time, for instance.

It is interesting to note that, although C programs do not tend to be ro-

bust, C is among the most successful programming languages and its historical

importance is undeniable. Java is one of its successors.

307



The most traditional languages used in knowledge-based systems are Lisp

and Prolog, which are untyped programming languages, although based on

functions and logics, respectively, which are in kind π. In both languages, list

is a basic data structure that provides flexibility.

Although Plain is a strongly typed language, because its designer and

other users require flexibility, Plain also permits heterogeneous lists in pro-

grams. The head of a list is accessed by using the name of the type as the head

function call. It has been a nice experience to program with heterogeneous

lists, and programmers should be pleasant to program. The following is an

example interpreting [ ] as an empty list:

public list reverse([ ]) = [ ],

reverse(li) = reverse(tail(li)) + head(li);

In the above example, the public keyword states that the function reverse

can be used by another agent. The + operator here concatenates two lists. The

head function gives a list with only the first element of its argument. Therefore,

the above function reverses the order of the elements of a list regardless of its

type.

For this kind of list, the programmer can infer types[151] or, alternatively,

instead of the word head, use the type identifier to get its first element. In this

way, at the point one writes the type identifier in the code, the type checking

is made at runtime. In this way, that typical function definition becomes here

as follows:

public int add([ ]) = 0,

add(li) = add(tail(li)) + int(li);

Thus, the above function computes the total value of the elements of a list.

Such function definitions, together, illustrate that untyped lists and strong

typing can coexist at the language level. A question is how to reconcile the

flexibility of programming with the methodologies of pure languages, of kind π.

308



Another question is whether type inference[219, 267] is better or worse than

otherwise with respect to programming methodology. For instance, we can

see that type inference makes programmers infer types. Programmers write

a piece of code only once and, later, will look at it many times. Therefore,

programmers normally infer types in languages like ML. This can be seen as

a contrast between kinds ω and π, for the former is predominantly based on

assertions and facts (type declarations) whereas the latter is predominantly

based on deduction (type inference). Therefore, this pair of different points of

view, ω and π, often indicates the issue of facts (e.g. predicate declaration)

and deduction under either open- or closed-world assumption.

10.7.3 Concepts and Constructs of Kind ψ

Here, uncertainty, inconsistency and relativity are some of the keywords for

this kind of constructs, ψ. We can include here any constructs for knowledge

representation that have vagueness. One approach is to avoid being imper-

sonal and exact, in the programming paradigm, because of the consistency

of this perspective. If so, surprisingly, probability theories may not enter this

class, in spite of their undeniable importance in science, in general. In terms of

programming and knowledge representation, exact probabilities are not easy

to be found in the real world, let alone being represented using some formal

language. We know that probabilities are based on assumptions concerning

whether events are related to each other. But one underlying subjective issue

is “when can we consider that two events are independent from each other?”.

There seems to be no objective or precise answer for this question. In fact, de-

pending on the philosophical point of view, we have totally different answers.

For programming with probabilities, there is one problem of computational

complexity[63] and another of representing the web of events, which is a dif-

ficult one. A similar web is represented using ad-hoc models, where the basic

difference is that probability is traditionally mathematics while ad-hoc models

are not so recognized. This means that probabilities require too precise values

309



for representing imprecise knowledge about the real world.

Here, pictures, images, films, and diagrams can represent the imprecision

and subjectivity of the real world in a more suitable way. Some proposed

programming models for uncertainty extends MYCIN to predict the evaluation

of hypotheses by introducing two variables, the least and the most .

If one user wants an agent to represent him or her, he or she wants to

personalize the behavior of his or her agent if the task is not simple. Due to

the huge number of different certainty factors, the community needs suitable

languages to program agents.

10.7.4 Concepts and Constructs of Kind φ

In φ, among other notions, as humans, we learn by induction and analogy,

and also use metaphors to communicate. We need to make comparisons and

need broad and abstract views. And since we have had a broad or general

perspective, we are able to start solving hard problems in an easy way, and

then to investigate them deeply, top down. Aims are necessary, but they

should be set only after having such a view and before solving the problem in

question.

We humans cannot investigate some complex subject deeply without an

initial broad view. Goal-driven programming, i.e. where programmers set

goals and the underlying system does the job, is motivated by φ. In this sense,

Prolog and relational languages have this feature in φ. As another example,

inductive logic programming is a combination between π and φ because, while

logical and formal propositions are there, induction and learning by experience

are in this class.

Because of its synthetic nature, this class of notions is difficult to imple-

ment on a computer, but I am advancing in this direction. Mobile agents,

for instance, are applications whose motivations fit in this kind φ since mo-

bile agents are flexible and free enough to gain experience abroad. In chapter

5, I informally proposed a kind of framework for mobile agent technologies

310



discussing problems and their solutions, some of them open problems.

As regards “mobility”, the difference between constructs of kind ω and φ is

that, in the latter, differences of cultural and religious backgrounds are prob-

ably involved, while in the former, mobility essentially is related to changes

of states, concurrence, unexpected effects on Turing machines computations

and hardware circuits: everything happens in the same machine in ω. While

ω is driven by issues such as flexibility, communication and curiosity, here

truth is a key motivation. In comparison to π, φ is not mainly concerned with

syntax and details but instead broader concepts, such as paradigms, and also

semantics.

In comparison to functional languages in π that adopt type inference, for

instance, from the φ standpoint, I observe that type inference makes program-

mers infer types. To solve this kind of question we would need experimental

and empirical research, not proofs. Plain is experimental since it was not

conceived for commercial purposes. This is validated by twenty years of ex-

perience in programming and compilers. The Unix system and C are two

successful examples of what one or two professionals can do, in contrast with

PL/I, which in turn was designed by some greater number of people. In this

way, it can be better to rely upon one’s own experience than to make experi-

mental research among non-experienced programmers, while the result of one’s

work may happen months or years later.

The fewer the number of programmers the more independence a designer

has for trying different constructs. The right moment to release a language to

others is relevant, and I am nearly at this point. Yet, by using Plain, the au-

thor has experienced important insights concerning languages and paradigms.

One of the key ideas in Plain is its hybrid and well-balanced paradigm, i.e.,

it tries to combine well-balanced features from different points of view, while

accepting that divergences among people and, hence, researchers are natural.

Although Plain is a large language in comparison to functional languages, it is

meant to be concise and relatively smaller, as it provides common constructs.

Here rests the difference between a multiple and a hybrid paradigm, at least in

311



comparison to a näıve approach. I have programmed and experimented with

different kinds of constructs. The implementation should be sophisticated

enough to hide complexity. On the other hand, a good hybrid paradigm is

not hard to learn, since learning can be incremental, and makes programming

much easier, since I have taken into consideration different kinds of motiva-

tions. Thus, if a person likes functional programming, it is easy to program in

Plain, and if a person likes object-oriented programming, it should be equally

easy to program in the same language. However, although the Plain philos-

ophy is to be a hybrid language, the concept of “pure function”, for instance,

(or simply function. It is the opposite to imperative function) is present in

the language, they are declarative, never making use of global objects, and

this is guaranteed at compilation time. However, functions can be applied

from any code of any paradigm. In this sense, Plain is different from PL/I

where the key motivation was to bring together features for both engineering

applications and commercial applications in the same paradigm. I believe[117]

that, after some time, programmers naturally find that applications suggest

the paradigm to use, and that they can benefit from a hybrid language after

some time using a particular paradigm. However, at the present point it is an

open issue that deserves future validation and perhaps even further work.

At the practical level, issues such as robustness and security are keywords

in the mobile agents field of research. Even in programming, in society, laws

have to be established, which stresses the relevance of philosophical issues in

programming. There are other keywords, such as dynamic linking (which I

did not adopt but may be necessary for efficiency), naming, and global-scope

identifiers, i.e. “global” not in the old sense of global variables. The subjective

aspects of such issues suggest new or open problems.

312



10.8 Synthesis in Knowledge Representation

and Reasoning

For AI researchers, although the present classification is not complete (for

instance, vision is important for AI and is a synthetic notion related to ψ up

to some extent), the four-kind diagram can be seen from the knowledge/belief

representation and reasoning/inference standpoint as follows:

• π: perception, precision, specialization, functional programming (tradi-

tionally LISP programs), logic programming (traditionally Prolog) and

inheritance in class- or frame-based systems. Deductive rules, consis-

tency, deductive reasoning and search. Analysis, complexity and effi-

ciency. Closed-world assumption and negation as failure. Learning by

deduction.

• ω: reasoning, in particular non-monotonic, natural negation, ambiguity

and redundancy, knowledge, interaction, diversity, curiosity and learning

by acquiring facts.

• ψ: feeling, fuzzy logics, uncertainty, partial information, incompleteness,

subjectivity, inconsistency and belief.

• φ: intuition, perspective, monotonicity, absolute truth, speculation, ax-

iomatization. Semantic web, inductive reasoning, generalization, anal-

ogy and metaphors. Objectivity as opposed to subjectivity. Open-world

assumption, neural networks, inductive logic programming, broad view,

synthesis and common sense. Learning by induction.

In terms of AI, this four classes can represent four types of intelligence.

I observe that although the above concepts are interesting for AI, the clas-

sification is still the same as for programming languages and for computing

science, which will be presented in the next section. While ω and π are analyt-

ical kinds, φ and ψ are synthetic ones. For instance, a country could well use

313



many deductive rules of logic programming to decide whether a person may be

regarded as a citizen of that country or not. However, deductive logics is not

very appropriate for, in the airport, deciding whether a person from abroad

may enter the home country or whether the person will go back to the place

from where he or she came, because the number of rules from the real world is

practically impossible to count. Therefore, as programs need synthetic think-

ing, programming languages should also provide synthetic tools, in particular

for mobile agents. Continuing, while ω and ψ are closely related to internal

judgments (by reasoning and feeling, respectively), π and φ work like input de-

vices (by five-sense perception and intuition, respectively). This classification

has strong influence from Carl Jung psychological types[176], but the obser-

vation with respect to computer science is almost entirely based on my own

experience in both areas as well as my empirical observation during my PhD

studies. Perception above, in the π kind, corresponds to a refinement of what

Jung called sensation. According to him, the four psychological functions are:

thinking, feeling, sensation and intuition. More generally, he called the first

two rational functions while he called the last two irrational functions. These

four functions are somewhat similar to what I called ω, ψ, π, φ, respectively.

Philosophically, Jung’s work itself had some influence from Immanuel Kant.

In terms of humanity, the essence of ψ is seen in the romanticism. An

atheistic view of ψ is exposed in [263].

Regarding mobility, I can classify its scopes as (individual,ω), (social,π),

(geographic,φ) and (universal,ψ). With respect to languages, natural and

artificial, I can still observe differences among the main concepts: (vocabulary,

ω), (grammar and syntax, π), (semantics, φ) and (pragmatics, ψ), for instance.

10.9 Synthesis in Foundations of CS

Regarding the two-axis diagram, there probably is the same correspondence in

computer science at a very high level. Respectively, psychology (ψ), sciences

related to the machine, engineering and physical characteristics in general (ω),

314



mathematics (π) and philosophy (φ) form a four-leg table that can support

computer science. Typical questions in science can also be placed under this

classification e.g. what, where, when (factual and flat information in general,

ω); how (π); why (φ); for what and for whom (ψ). Who can be either in ω

or φ. These four legs are not sharp, too clear, exact or mathematical classi-

fication, e.g. in philosophy, the Platonist view can be placed in φ while the

constructivist view can be placed in π. On the other hand, in logics, theories of

truth, interpretations and model theory can be placed in φ while proof theory

can be placed in π. These four kinds are somewhat fuzzy[189], relative, incom-

plete and personal. However, the hybrid semantics of that four-kind diagram

contrasts with solely fuzzy views of the universe, e.g. [189].

I have presented two different philosophical views in computer science, that

can be summarized in the following way, depending on the adopted meaning

for “executable code”.

• Traditional view: computation has purely mathematical semantics. There

are modal notions, such as mobile computation. Executable code is lo-

cal to the machine, and a machine is only a physical notion. Corre-

spondence between semantics[231]. Domain theory [3, 15, 150], denota-

tional semantics[14, 286, 287]. Curry-Howard isomorphism[143], rewrit-

ing systems[23, 187], category theory[193, 197, 312], functions, logics

in computer science and so forth. Functional programming, input and

output operations as monads.

• An alternative philosophical view: computation by machines is a unique

physical notion. Executable code is mobile, and a machine can be an

interpreter. The equivalence between operational and denotational se-

mantics does not necessarily hold from this point of view. In particular,

although denotational semantics is still useful, the operational semantics

is the most suitable semantics to capture this view of computation if the

notions of space and time are part of the semantics. In the real world,

uncertainty- or probability-based computation is performed. Computa-

315



tion can be incomplete. Space-time logical calculi. Input and output

operations as physical interaction (by side-effect) in the real world.

Notice that these views are not necessarily holistic, although I use the

second view to illustrate “computation in the real world” in this thesis.

I can refer to computation in the latter philosophical view as not only

computation carried out by machines but also computation by humans. For

example, interaction for a machine is roughly equivalent to human five-sense

perception. However, as will become clearer in this section, while there is

some (rough) equivalence between human thinking and machine computation,

whether one can reproduce or only simulate human computation in a ma-

chine is one more philosophical issue in the foundations of computing science.

Continuing the discussion with a diagram:

ψ

φ

π

ω

c.s.

While I identify deductive logics with the π kind, the present piece of work

aims at linking this kind with the others. In comparison with the ψ kind in

terms of Bayesian or uncertainty work, in [233], there is a criticism on what

psychological experiments on human inference have been achieving, where the

author aims at showing that we must regard human probability judgments

and decision making to describe human deductive ability correctly.

There is the φ kind since we all also learn by induction and analogy, as

well as we make use of metaphors to communicate, mainly when the con-

cepts are abstract, and we have only words. Possibly, that is why prophets

and visionaries often use metaphors in their speech. And because we humans

make use of induction, analogies and also use metaphors in our speech[53], a

number of good examples are both didactically relevant and essential scientific

316



method, as computer science, in the broadest sense, is not totally mathemati-

cal. While in ω I talk about knowledge representation, in ψ, one regards with

belief representation. Although the forms of representation can be the same,

these two concepts are different. In φ, broad view and intuition are key words

that normally lead to prediction[184].

In logics, while some of the main motivation in π would be proof and syn-

tax, some of the main motivation in φ would be (perhaps informal) models

and probably non-mathematical semantics. Since Gödel incompleteness theo-

rem, it is known that proof (π), truth (φ) and incompleteness or inconsistency

(ψ) are not equivalent notions in both the mathematical world and the real

world. While, in π, true and false would be mere symbols that are manipu-

lated according to some well-formed syntax, here in φ models would be closely

connected to the real world. While in π a key motivation is to find differences

between apparently similar objects, here in φ, a key motivation consists in

finding similarities between objects apparently very different from each other.

And while π can correspond to Aristotle and deductive reasoning, φ can cor-

respond to Socrates and inductive reasoning[262]. Thus, we all need a broad

view of the world to make good analogies: the broader the view, the better

the analogy. Metaphorically speaking, if I place elements of a set in order and

I want to connect elements that share a property different from the chosen

order, I have to see distant objects, perhaps at once, to make comparisons.

Following this reasoning, the notion of perspective and, therefore, distances

and mobility, can be obtained. At a somewhat refined level, induction is an

orthogonal notion in the sense that it depends on experience and, hence, time.

While in π the related quantifier is existential, here in φ the related quanti-

fier is universal. In terms of games, while π may summarize the skills played by

Eloisa (∃), φ can represent the skills played by Abelardo (∀). From the φ kind,

in the chapter 1, I showed, by presenting two paradoxes, that human sciences

and philosophy are in the foundations of computing science. In the chapter 4,

I presented a model of computation based on space, time and mobility, as well

as gave evidence as motivation and for showing that the foundations of com-

317



puter science are based on philosophical views, whether the theory is formal

or informal.

I also informally presented, in chapter 5, a framework for global computing

with strong mobility. Security has been recognized as one of the greatest

problems if not the greatest, and whose solutions are difficult. This and other

practical problems lead the interest of our community to ethics and other

branches of philosophy. As an example, I centralize security in my solution in

chapter 5 and, by hiding the implementation from users I reasonably provide

security for all of them. One can observe that, from the mobile agents points

of view, a MAS is omnipotent, omnipresent and omniscient. My proposal, at

least in its broadest sense, rests on diversity of global computers, each of which

proposing its corresponding view. As part of the approach, I followed analogy

and found the solution in chapter 5 straightforward.

Many aspects of computer science have always had interesting philosoph-

ical components. As part of future work, one may want to define those bases

explicitly, in a way that they can be identified by undergraduate students all

over the world. As well as philosophy, there are other human sciences which

are important for the foundations of computer science. In chapter 4, I also

mentioned psychology, including the unconscious, as part of the ψ kind. Arti-

ficial intelligence is already connected or regarded as part of computer science

or informatics. Much interesting work has been done in those areas and more

is needed.

With respect to the ψ kind, for being a transcendental notion, while π is

concerned with granularity and what can be perceived and countable, ψ, like a

set of water molecules, although a countable set, suggests what is uncountable

and is beyond one’s five senses. Like in modern physics, ψ suggests hypotheses

and observable models, but not what can be directly perceived. Thus, belief

is an important issue here. ψ, as I lexically suggest, is a place where psy-

chology has something to contribute to computer science. By comparing and

stating differences between humans and machines, we humans also learn the

limits of what can be computed by machines, an approach complementary to

318



complexity. As an example, if someone wants to build some application for

identifying e-mail messages that are important or interesting, he or she has to

have a very personal agent computation, probably based on some analogical

measure, not only deductive systems such as natural deduction and Prolog, in

which, for each consequent all pieces of its (conjunctive) premise must neces-

sarily be tt. Thus, the notion of “importance” is not only personal but it also

naturally requires some analogical interval. I can go further and state that it

is not enough to have intelligent machines since we want them to be useful

and relate them with human beings and match the real world. We may want

machines to behave like humans up to some extent, and being able to show

intelligence as natural as possible, but not up to the point of deceiving others.

This is one of the greatest challenges in the future.

Returning to the π-ψ axis, I can state that ψ suggests computation in

the set of complex numbers, while the π kind, although π = 3.141592... in

arithmetics, is mainly concerned with the set of integers. As a synthesis,

Gödel incompleteness theorem, at another level of abstraction, is a piece of

work which involves five different notions that I have identified in the above

conceptual diagram: (π: proofs and consistency), (φ: truth and validity), (ψ:

inconsistency), and finally (uu: incompleteness). The piece of work in chapter

3, on the other hand, leads me to place (π: proofs) and (ω: unexpected effects

on Turing machines computations) in different classes of the diagram. At a

different level of abstraction, due to the transcendental nature of ψ, uu is in

the ψ class.

I can divide the same diagram in two diagonals as follows:

@
@

@
@

@
ψφ

ωπ
�

�
�

�
�

ψω

φπ

forming two divisions, each of which one can be referred to as side. I could refer

319



to φ and ψ as “synthetic side of the foundations of computer science” while

ω and π would be “analytical side of the foundations of computer science”.

Therefore, this representation of those foundations of computer science would

include the whole picture. The φπ side can be referred to as inductive and

deductive reasonings, as well as knowledge/belief acquisition, whereas the ψω

side can be referred to as knowledge/belief representation.

With respect to synthesis and analysis, which divide the diagram in two

halves, ψφ represents the purely subjective side of the foundations of computer

science, while ωπ represents the objective side of the same foundations. I

simplify the language and refer to them as synthetic and analytical sides,

respectively, having in mind that they are not independent from each other.

The former is predominantly inductive while the latter is essentially deductive.

In computer science, the analytical and concrete side has been well developed

while the importance and even the presence of the synthetic side has been

little perceived. This contrast is probably not simply due to the fact that

deductions are very easy to implement in a machine. Indeed, while formal

proofs are appropriate as a scientific method for the analytical side, concerning

the synthetic side, formal proofs of general claims do not work. Frege[304] tried

to prove that arithmetic was analytic[153]. As an example, tableau calculi are

also called the method of analytic tableaux. From [36]: Any calculus that starts

with the formula to be proven, reducing it until some termination criterion

is satisfied, is called analytic. In contrast, a synthetic calculus derives the

formula to be proven from axioms. In contrast, I am referring to analysis and

synthesis as opposite mental processes. In fact, not only deductive logics,

in its pure sense, is normally analytical at a higher level of abstraction, for

Babbage himself called his work analytical engine, and so forth. These pieces

of evidence are too informal and synthetic to be used as a proof of the validity

of this classification. In contrast with logics, there are branches of mathematics

that seem to be synthetic.

Because of this contrast between synthesis and analysis and because logics

is closely linked to universality, for some logicians, inference based on uncer-

320



tainty might not be considered as part of logics, at least from the point of view

of deduction and the universality of the classical logic. In the present work, I

let them be opposites to form the same axis, as, in a sense, they complement

each other because their natures are essentially inductive and deductive; syn-

thetic and analytical; on open and closed word; subjective, and exact and with

valid values for all; fuzzy and precise etc, respectively. Interestingly enough,

logics may be seen as a branch of philosophy, which I classify as synthetic. It

is true that nowadays, as there are many logics, to propose a logic one has to

have a broader view than he or she would need to simply use the same logic.

I can also see the above diagram from the standpoint of the other diagonal

and refer to φπ division as perception and learning while ψω division may be

referred to as reasoning and thought. Perception here means not only by using

five senses (programmers and logicians have to pay attention to forms and

details) but also intuition (philosophers and researchers need to make use of

their own insights and see the world abstractly, from a broad perspective).

An interesting explanation, extracted from [101], as regards intuitionistic

logic: “What distinguishes the intuitionists is the degree to which they claim the

precedence of intuition over logical systems and the extent to which they feel

their notions have been misunderstood by classically trained mathematicians

and logicians”. The idea of precedence of intuition over logical systems[235]

is in accordance with the idea of trying to view the whole picture without

details before starting concentrating on the latter, in a top-down fashion, for

those who like software engineering. As known, intuitionism is a philosophical

view[92].

As well as perception and intuition[202], in the above diagram, by com-

pleting the symmetry, thoughts are not only based on reason (to deduce hy-

pothesis) but also based subjectively on feeling. Feeling is very personal. Even

if the researchers decide not to implement such subjects as part of limitations

of what computers can do, those subjects are still essential to the foundations

of computer science. Nevertheless, it is easy to understand why this ψ kind

has not been exploited in computer science, and an answer is that this is also a

321



natural consequence that computers have become increasingly complex. Deep

Blue has already beaten the Grandmaster Kasparov in chess, but computer

scientists took some time until the machine was able to beat him, a chal-

lenge which could be regarded as relatively simple, besides its computational

complexity.

So far, there has not been any implementation running in the computer

that could be regarded as representing feeling, at least in a universal way.

Nonetheless, the notion of agent was introduced to represent people in their

transactions in the daily life. The diagonals of the diagram also represent the

idea that, among many other skills, human beings learn by communication

and facts, perception and deduction, intuition and induction, feeling and be-

lief. The diagram is not complete with respect to this either, for instance,

motivation and pain are outside the present classification.

The computer science and AI communities have been discussing the dif-

ferences between humans and machines in terms of the meaning of thoughts.

For instance, in [36], the same applies to discovering proofs and deduction.

Even with a set of wffs, deduction might be difficult for a machine due to the

possibility of combinatorial explosion. Here one has two philosophical views

supporting the answers for the question about whether we humans are ma-

chines, or whether we humans are much more than this. In the present PhD

thesis, I presented, as examples, some skills that form the synthetic side in the

diagram. Although specific answers for such questions are outside the scope of

the present PhD thesis, one of the main results from my observations is that,

if one wants to adopt the view which equates any person with any machine,

first it is a good idea to study intuition, feeling, analogy, induction, belief and

other subjects which are parts of the human beings, and thus, philosophy and

other human sciences.

Finally, technology introduces useful insights into theoretical computer

science. The introduction of mobile agent technologies has led the community

to want agents to be autonomous and flexible to represent users. For simple

tasks, there is relatively little to add to what we humans already know. But

322



users want to use complex application programs.

To truly represent people in our complex society, agents have to simulate

subjective thought too, we humans want them to behave based on our personal

tastes and personal opinions, for instance. Therefore, knowledge or belief

representation can also be seen as a programming paradigm, not only as a

subject in AI. The aim of introducing subjectivity in programming languages

is difficult and ambitious. The author used to work on an expert system for

diagnosis of heart diseases and was intrigued when observing that the users,

experts, did not want to attach real numbers (in fact, floating-point numbers)

to our rules as part of the certainty measure. Instead, I made use of words,

carefully chosen to represent those real numbers. From that experience, the

rôle of subjectivity in programming could be felt: “What do such subjective

words mean?”. There seems to be some common agreement which, in those

cases, is more important and easier to understand in our every-day life than

numbers. More recently, intelligent agents have been conceived to represent

users and, for some reason, some of us also want them to be mobile. This

scenario leads the present thesis to conclude that other more subjective, less

exact sciences are also essential in the foundations of computer science.

In the following sections, a couple of examples of paradoxes in science and

logics are presented. Each of them proves that philosophy and psychology are

in the foundations of computing science.

10.9.1 A Paradox Example - Analogy

This section proves by contradiction that mathematical logics is not the only

foundation of computing science.

An example of this is in the content of deductive proofs. Regardless of

how mathematical and formal the problem be, what makes some given proof

support some problem X and not some different problem Y, is the analogy

which is made between a given problem and the representation of its rele-

vant context, whether this representation is formal or not. Applied proofs are

323



regarded as correct only if

1. The deduction is logically valid, i.e. in accordance with the deductive

rules of the used logic.

2. The representation of the problem is correct and, in particular, complete

where the variable is universally quantified.

The second item describes a basic analogy, which in its turn is essentially

an informal concept, somewhat personal. On the other hand, this concept is

fundamental in the context of applied logics and, hence, of the computability

theory, and so on. As a metaphor (analogy), this resembles the incomplete-

ness theorem, because the fact that analogy is not part of the mathematical

methods implies that those methods are not sufficient in computing science.

That is, analogy supports mathematics while the former is not supported by

the latter. Therefore, mathematics is not sufficient in this rigorous sense, while

rigor is a kind of ideal in mathematics. As a consequence of this, philosophy,

psychology and other human studies which deal with analogy[53], are new

components in the foundations of computing science, whereas philosophy and

psychology support mathematics and computing science. In this way, math-

ematics in computing science is a fundamental tool for letting the involved

concepts be precise and clear.

10.9.2 Another Paradox Example - Induction

The previous example applies to the content of proofs. In contrast, the present

example applies to the human inference forming generalizations, which one

refers to as induction[139, 140]. As it is well known, both deductive logics

and sciences, in a rigorous sense, reject not only analogy but also induction.

By the way, both analogy and induction are referred to by philosophy as

irrational. The fact is that, in rigorous way, both science and deductive logics

reject the inductive method, in particular because its validity is not universally

acceptable. Nonetheless, science itself works in the presence of panels (i.e.

324



committees) in Master or PhD courses/research, in selections for professorship,

and considerations for publications. In the end, however mathematical the

particular subject is, it depends on the present induction. For the same level

of reputation, even taking it as the minimum, we humans tend to believe that

the more the number of examiners, the more accurate the result is. However,

this exemplifies that logics and science work by using some method rejected

by them, which constitutes a paradox at the practical level. Establishments

can rely upon the intellectual attributes of the examiners, but belief [282], as

a synthetic concept, cannot be supported by logics, mathematics nor sciences

in some rigorous sense.

The present author observes from both examples, above, that although the

synthetic and human aspects are not entirely supported by logics, the latter

is always supported by human beings in a synthetic way. Note that logics

is traditionally philosophy. This shows the hierarchy of the large subjects

inside the foundations of computing science, for philosophy and psychology

can support the others. From this, different theories of computing science with

synthetic notions can exist instead of a unique, mathematical and analytical

theory. The novel area is called philosophy of computing science.

As well as containing a list of the results of the previous chapters, this

chapter is a synthetic discussion, on philosophy of computing science, present-

ing some of the links between concepts, trying to describe a semantic network,

which in turn is in accordance with the presented philosophical view.

Logics, in a rigorous sense, is not the only foundation for philosophy, psy-

chology, computing science etc. More than this, it was shown that there can

exist the following hierarchy of subjects in computing science:

325



Philosophy, Physics and Psychology

Logics and Mathematics

Application Level

Computing science has the interesting characteristic of being both exact

and philosophy for being related to the reality. For these two facts, methods

rejected by science that are applied in the daily life should be considered. In

the above example of committee, in order to make the applied method be

consistently scientific, one should consider not only the object, the criteria

and grades, but also other variables of the real world, such as the names of

the examiners, which in turn ought to be public. In this case, the scientific

knowledge would necessarily be referred to as something broader.

As already stated, if one observes the somewhat empirical characteristics

in programming, the ideas contained here will become clearer. Yet, there

seems to be nothing wrong in the way that programmers still work, and will

probably continue doing. Furthermore, although one can prove that a given

program is correct, there can be proofs of proofs of program correctness etc.

Programs are either correct or not with respect to some representation of a rel-

evant model from the real world. Therefore, although there are programming

techniques including those suggested and imposed by programming languages,

programming is a complex task that requires some very basic synthetic skills.

My classification is itself synthetic and, as such, can be neither proved nor

refuted. However, exceptions exist. Other synthetic subjects can be existen-

tially proved, and some such subjects can be equally refuted. The classifi-

cation here is essentially based on intuition, analogy and induction (because

of its inductive nature, I had to present sample applications to programming

languages and knowledge representation, not only to the foundations of com-

puting science), as well as many observations on the real world. However, such

326



a classification is not scientific, only philosophic.

Finally, the two-axis diagram reflects only some particular philosophical

view. Because of this, I do not expect that it can be used as a universal tool,

nor accepted by the whole community as valid. However, sections 10.9.1 and

10.9.2, in a sense, show that the diagram somehow can be useful, by taking

two concepts classified in φ, and because, according to the corresponding clas-

sification, logics belongs to the class π. Naturally, the classification can be

used by others who like it.

327



The Appendices

328



Appendix A

The Space-Time Classical Logic

and The Corresponding System

A.1 Axioms

CA1 : ∆, {A} ` Γ, {A}

CA2 ¬@ + s ·+t[A] = @− s · −t[¬A]

CA3 ¬@ + s · −t[A] = @− s ·+t[¬A]

CA4 : ¬@− s ·+t[A] = @ + s · −t[¬A]

CA5 : ¬@− s · −t[A] = @ + s ·+t[¬A]

CA6 : @ + s ·+t[A] ∧ @ + s ·+t[B] = @ + s ·+t[A ∧B]

CA7 : @ + s · −t[A] ∨ @ + s · −t[B] = @ + s · −t[A ∨ B]

CA8 : @− s ·+t[A] ∨ @− s ·+t[B] = @− s ·+t[A ∨ B]

CA9 : @− s · −t[A] ∨@− s · −t[B] = @− s · −t[A ∨B]

CA10 : @ + s ∪ s2 ·+t ∪ t2[A] =

@ + s ·+t[A] ∧ @ + s ·+t2[A] ∧@ + s2 ·+t[A] ∧ @ + s2 ·+t2[A]

CA11 : @− s ∪ s2 · −t ∪ t2[A] =

@− s · −t[A] ∨ @− s · −t2[A] ∨@− s2 · −t[A] ∨ @− s2 · −t2[A]

329



A.2 Logical Rules

Implication:

∆, {A} ` {B},Γ

∆ ` {A⇒ B},Γ

∆ ` {A},Γ Ψ, {B} ` Ω

∆,Ψ, {A⇒ B} ` Γ,Ω

Conjunction:

∆ ` {A},Γ Ψ ` {B},Ω

∆,Ψ ` {A ∧ B},Γ,Ω

∆ ` {A ∧ B},Γ

∆ ` {A},Γ

∆ ` {A ∧ B},Γ

∆ ` {B},Γ

Disjunction:

∆ ` {A},Γ

∆ ` {A ∨B},Γ

∆ ` {B},Γ

∆ ` {A ∨B},Γ

∆ ` {A ∨ B},Γ Ψ, {A} ` Θ Φ, {B} ` Ω

∆,Ψ,Φ ` Γ,Θ,Ω

Some asymmetry for eliminating ff :

∆ ` {ff}

∆ ` {A}

Negation:

∆, {A} ` Γ

∆ ` {¬A},Γ

∆ ` {A},Γ Ψ ` {¬A},Θ

∆,Ψ ` Γ,Θ

A.2.1 Space and Time

In the following rules, s stands for either −s or +s, and t stands for either +t

or −t. For all rules with ∩ on space or time, s ∩ s2 6= ∅ and t ∩ t2 6= ∅.

Space Weakening:

∆ ` {@− s · t[A]},Γ

∆ ` {@∃ · t[A]},Γ
− sWR

∆ ` {@∀ · t[A]},Γ

∆ ` {@ + s · t[A]},Γ
+ sWR

∆ ` {@ + s · t[A]},Γ

∆ ` {@− s · t[A]},Γ
+−sR

330



Space ∪ Introduction:

∆ ` {@ + s ·+t[A]},Γ Ψ ` {@ + s2 ·+t[A]},Ω

∆,Ψ ` {@ + s ∪ s2 ·+t[A]},Γ,Ω
+ s ∪ IR

Space ∪ Elimination:

∆ ` {@− s ∪ s2 · t[A]},Γ

∆ ` {@− s · t[A] ∨@− s2 · t[A]},Γ
− s ∪ ER

Space ∩ Introduction:

∆ ` {@ + s · t[A]},Γ

∆ ` {@ + s ∩ s2 · t[A]},Γ
+ s ∩ IR

Space ∩ Elimination:

∆ ` {@− s ∩ s2 · t[A]},Γ

∆ ` {@− s · t[A]},Γ
− s ∩ ER

Space-Time ∩ Introduction:

∆ ` {@ + s ·+t[A]},Γ

∆ ` {@ + s ∩ s2 ·+t ∩ t2[A]},Γ
+ s+ t ∩ IR

Space-Time ∪ Elimination:

∆ ` {@ + s ∪ s2 · −t ∪ t2[A]},Γ

∆ ` {@ + s · −t[A] ∧@ + s2 · −t[A] ∨@ + s · −t2[A] ∧ @ + s2 · −t2[A]},Γ
+s−t∪ER

∆ ` {@− s ∪ s2 ·+t ∪ t2[A]},Γ

∆ ` {@− s ·+t[A] ∧@− s ·+t2[A] ∨@− s2 ·+t[A] ∧ @− s2 ·+t2[A]},Γ
−s+t∪ER

Time Weakening:

∆ ` {@s · −t[A]},Γ

∆ ` {@s · ∃[A]},Γ
− tWR

∆ ` {@s · ∀[A]},Γ

∆ ` {@s ·+t[A]},Γ
+ tWR

∆ ` {@s ·+t[A]},Γ

∆ ` {@s · −t[A]},Γ
+−tR

Time ∪ Introduction:

∆ ` {@ + s ·+t[A]},Γ Ψ ` {@ + s ·+t2[A]},Θ

∆,Ψ ` {@ + s ·+t ∪ t2[A]},Γ,Θ
+ t ∪ IR

Time ∪ Elimination:

∆ ` {@s · −t ∪ t2[A]},Γ

∆ ` {@s · −t[A] ∨ @s · −t2[A]},Γ
− t ∪ ER

Time ∩ Introduction:

∆ ` {@s ·+t[A]},Γ

∆ ` {@s ·+t ∩ t2[A]},Γ
+ t ∩ IR

Time ∩ Elimination:

∆ ` {@s · −t ∩ t2[A]},Γ

∆ ` {@s · −t[A]},Γ
− t ∩ ER

331





Appendix B

An Operational Semantics

An operational semantics is defined here to make the ideas presented in chap-

ters 6 and 7 more precise. I define the semantics of certain language constructs,

expression, assignment and conditional statements.

Let p be a program in the present object language U and let all of these

definitions apply to the scope p. To avoid being exhaustive, I infer the uu

type according to the operators, use = and 6= as polymorphic operators, and

consider that variables have their separate scopes in each rule, although they

have the same names in the set of rules. I apologize for this abuse of notation.

Let AI and AL be isomorphic to Z∪{uu} and {ff, uu, tt} i.e. the set of logical

values, respectively, and use these sets as carriers of the algebra that I am going

to define. Because I use  Lukasiewicz[116, 186] 3-valued logic in the rules, and

it extends the semantics of the Boolean connectives using the same symbols, I

use only the 3-valued connectives to avoid a mixture of logics, and write a dot

over the symbols to stress that it refers to his logic. Thus,
.
¬ff  tt,

.
¬ tt  

ff,
.
¬uu uu, uu

.
∧ ff  ff, uu

.
∧ tt uu, uu

.
∨ tt tt, uu

.
∨ ff  uu, etc.

Notice that although uu 6= uu is false and uu = uu is true at the rule level, both

result in uu in the object language semantics. Now I can define an algebra A
def
=

〈AI , AL, Han, V ar, Loc, V al, S, 0, ff, uu, tt, u, v, x, y, ev, re, $, def,+,−,×, /,=,

6=, <,
.
¬,

.

∧,
.

∨〉 for signature Σ in this analysis, where AI is the set of integers,

AL is the set {ff, uu, tt}, Han is the set of handlers, V ar is the set of all vari-

333



ables, Loc is the set of locations, V al
def
= AI ∪ AL, and S is the store or state.

Let u, v ∈ V al, x, y ∈ V ar. I only consider variables of p and not constants or

operands of another nature. Then, Σ
def
= 〈{AI , AL, Han, V ar, Loc, V al, S}, F 〉,

where F is consisted by +, −, ×, /, =, 6=, <,
.
¬,

.
∧,

.
∨ and the following func-

tions:

(initialize) Ω : S (B.1)

(locate) γ : V ar → Loc (B.2)

(lookup) ρ : S × Loc→ V al (B.3)

(update) ∆: S × Loc× V al → S (B.4)

(handler is defined) def : Han→ AL (B.5)

(evaluator) ev : V ar → Han (B.6)

(reactor) re : V ar → Han (B.7)

(intended value) $ : V ar → V al (B.8)

Intuitively, Ω initializes the whole memory; γ maps a variable to its loca-

tion; ρ results in the content of a location in some particular state; and ∆

updates the memory according to its parameters: location and value. As a

syntactic sugar, I write x.ev and x.re to refer respectively to the evaluator

ev(x) and reactor re(x) of some variable x, and use the following notation on

the syntax: def(x.ev) to mean that the evaluator of x exists, and def(x.re)

to mean that the reactor of x exists. Accordingly, I also write x.$ to refer

to the result from the evaluated expression that is always available during

the evaluation of the reactor x.re when it is defined and applied, that is,

x.$ is shorthand for $(x). Let s0, s, s
′, s′′ ∈ S, s0 be the initial state. Then

Ω
def
= ∀x ∈ V ar, ρ(s0, γx) = uu.

The operational semantics rules are:

Introduction :
begin

Ω (B.9)

334



V1 :
ρ(s, γx) = u u 6= uu

〈x, s〉
eval
 (u, s)

(B.10)

V2 :
ρ(s, γx) = uu def(x.ev) 〈x.ev, s〉

eval
 (v, s′)

〈x, s〉
eval
 (v, s′)

(B.11)

Lazy +:
〈x, s〉

eval
 (uu, s′)

〈x+ y, s〉
eval
 (uu, s′)

(B.12)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v = uu

〈x+ y, s〉
eval
 (uu, s′′)

(B.13)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v 6= uu

〈x+ y, s〉
eval
 (u+ v, s′′)

(B.14)

(+)1 :
〈x, s〉

eval
 (uu, s′)

〈x (+) y, s〉
eval
 (uu, s′)

(B.15)

(+)2 :
〈y, s〉

eval
 (uu, s′)

〈x (+) y, s〉
eval
 (uu, s′)

(B.16)

(+)3 :
〈x, s〉

eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v 6= uu

〈x (+) y, s〉
eval
 (u+ v, s′′)

(B.17)

Lazy − :
〈x, s〉

eval
 (uu, s′)

〈x− y, s〉
eval
 (uu, s′)

(B.18)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v = uu

〈x− y, s〉
eval
 (uu, s′′)

(B.19)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v 6= uu

〈x− y, s〉
eval
 (u− v, s′′)

(B.20)

Lazy ∗ :
〈x, s〉

eval
 (uu, s′)

〈x ∗ y, s〉
eval
 (uu, s′)

(B.21)

〈x, s〉
eval
 (0, s′)

〈x ∗ y, s〉
eval
 (0, s′)

(B.22)

335



〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v = uu

〈x ∗ y, s〉
eval
 (uu, s′′)

(B.23)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v 6= uu

〈x ∗ y, s〉
eval
 (u× v, s′′)

(B.24)

Lazy / :
〈x, s〉

eval
 (uu, s′)

〈x/y, s〉
eval
 (uu, s′)

(B.25)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v = uu

〈x/y, s〉
eval
 (uu, s′′)

(B.26)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v 6= uu

〈x/y, s〉
eval
 (u/v, s′′)

(B.27)

Lazy = :
〈x, s〉

eval
 (uu, s′)

〈x = y, s〉
eval
 (uu, s′)

(B.28)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v = uu

〈x = y, s〉
eval
 (uu, s′′)

(B.29)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v 6= uu

〈x = y, s〉
eval
 (u = v, s′′)

(B.30)

Lazy != :
〈x, s〉

eval
 (uu, s′)

〈x != y, s〉
eval
 (uu, s′)

(B.31)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v = uu

〈x != y, s〉
eval
 (uu, s′′)

(B.32)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v 6= uu

〈x != y, s〉
eval
 (u 6= v, s′′)

(B.33)

Lazy < :
〈x, s〉

eval
 (uu, s′)

〈x < y, s〉
eval
 (uu, s′)

(B.34)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v = uu

〈x < y, s〉
eval
 (uu, s′′)

(B.35)

336



〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v 6= uu

〈x < y, s〉
eval
 (u < v, s′′)

(B.36)

ρ(s, γx) 6= uu

〈not x, s〉
eval
 (

.
¬ρ(s, γx), s)

(B.37)

ρ(s, γx) = uu
.
¬ def(x.ev)

〈not x, s〉
eval
 (uu, s)

(B.38)

ρ(s, γx) = uu

〈x known, s〉
eval
 (ff, s)

(B.39)

ρ(s, γx) 6= uu

〈x known, s〉
eval
 (tt, s)

(B.40)

ρ(s, γx) = uu

〈x unknown, s〉
eval
 (tt, s)

(B.41)

ρ(s, γx) 6= uu

〈x unknown, s〉
eval
 (ff, s)

(B.42)

ρ(s, γx) = uu def(x.ev) 〈x.ev, s〉
eval
 (v, s′)

〈not x, s〉
eval
 (

.
¬v, s′)

(B.43)

Lazy
.
∧:

〈x, s〉
eval
 (ff, s′)

〈x and y, s〉
eval
 (ff, s′)

(B.44)

〈x, s〉
eval
 (u, s′) u 6= ff 〈y, s′〉

eval
 (v, s′′)

〈x and y, s〉
eval
 (u

.

∧ v, s′′)
(B.45)

Lazy
.
∨:

〈x, s〉
eval
 (tt, s′)

〈x or y, s〉
eval
 (tt, s′)

(B.46)

〈x, s〉
eval
 (u, s′) u 6= tt 〈y, s′〉

eval
 (v, s′′)

〈x or y, s〉
eval
 (u

.
∨ v, s′′)

(B.47)

.
¬ def(x.re) 〈E, s〉

eval
 (v, s′)

〈x := E, s〉
exec
 s′′

∆(s′, γx, v) = s′′ (B.48)

337



def(x.re) 〈E, s〉
eval
 (u, s′) u = ρ(s′, γ(x.$)) 〈x.re, s′〉

exec
 s′′

〈x := E, s〉
exec
 s′′

(B.49)

〈ThV L, s〉
eval
 (tt, s′) 〈C1, s′〉

exec
 s′′

〈if ThV L then C1 ifnot C2 otherwise C3, s〉
exec
 s′′

(B.50)

〈ThV L, s〉
eval
 (ff, s′) 〈C2, s′〉

exec
 s′′

〈if ThV L then C1 ifnot C2 otherwise C3, s〉
exec
 s′′

(B.51)

〈ThV L, s〉
eval
 (uu, s′) 〈C3, s′〉

exec
 s′′

〈if ThV L then C1 ifnot C2 otherwise C3, s〉
exec
 s′′

(B.52)

〈ThV L, s〉
eval
 (ff, s′)

〈while ThV L do C, s〉
exec
 s′

(B.53)

〈ThV L, s〉
eval
 (uu, s′)

〈while ThV L do C, s〉
exec
 s′

(B.54)

〈ThV L, s〉
eval
 (tt, s′) 〈C, s′〉

exec
 s′′ 〈while ThV L do C, s′′〉

exec
 s′′′

〈while ThV L do C, s〉
exec
 s′′′

(B.55)

〈C1, s〉
exec
 s′ 〈C2, s′〉

exec
 s′′

〈C1;C2, s〉
exec
 s′′

(B.56)

338



Appendix C

Symbols and Conventions

In addition to standard mathematical symbols, the present thesis dissertation

contains formulas whose notations have the following meanings. The symbols

are on the left and their respective meanings on the right.

Backus-Naur Form (BNF):

L 7−→ R A rule with left hand side L and right hand side R

| Alternative right hand side

... Describes an infinite list of items, perhaps alternatives

Basics:

ϕ A formula

a, b, c, ... Variables

x, y, z, ... Variables

v In some contexts, v stands for a value

tt The “true” value

ff The “false” value

i, j, k,m, n Used as integer variables

` A sequent relation

→,⇒ Outside @-logic, classical or intuitionistic implications

⇔,≡ Classical or intuitionistic equivalence, syntax equivalence

339



N The set of natural numbers

Z The set of integers

R The set of real numbers

E3 Euclidean space

P The power set

t Time, also as time instant variable, e.g. final time tf

t can also be a Turing-computable function

s Space, also as place variable

p Often used as a place variable, or a proposition

P Often, a place or a proposition

〈 〉 Tuple for any number of elements separated by comma

〈a, b〉 An (ordered) pair of values a, b

(a, b) Another form: An (ordered) pair of values a, b

〈x, y, z〉 The coordinates of a point in E3

@-Logic:

T Time set. @-Logic time flow. I define T
def
= R in chapter 4

S Space set. @-Logic space. I define S
def
= R3 in chapter 4.

ϕ1 =t ϕ2 ϕ1 and ϕ2 happen at the same time

ϕ1 6=t ϕ2 ϕ1 and ϕ2 do not happen at the same time

ϕ1 <t ϕ2 ϕ1 happens before ϕ2

ϕ1 ≤t ϕ2 ϕ1 happens before or at the same time as ϕ2

ϕ1 >t ϕ2 ϕ1 happens after ϕ2

ϕ1 ≥t ϕ2 ϕ1 happens after or at the same time as ϕ2

ϕ1 −t ϕ2 Duration of time from ϕ2 to ϕ1

+t Sum of a duration to a moment in time

ϕ1 =s ϕ2 ϕ1 and ϕ2 happen in the same place

ϕ1 6=s ϕ2 ϕ1 and ϕ2 do not happen in the same place

340



ϕ1 <s ϕ2 ϕ1 happens before ϕ2 (in accordance with some spatial

order)

ϕ1 ≤s ϕ2 ϕ1 happens before or in the same place as ϕ2

ϕ1 >s ϕ2 ϕ1 happens after ϕ2 (in accordance with some spatial

order)

ϕ1 ≥s ϕ2 ϕ1 happens after or in the same space as ϕ2

ϕ1 −s ϕ2 Distance between ϕ2 and ϕ1

+s Sum of a distance to a point in space

(∀x) ϕ For all x, ϕ holds. The formula binds x

(∃x) ϕ There exists x such that ϕ. The formula binds x

(∃!x) ϕ Syntax sugar: there exists a unique x such that ϕ

∀ As well as the standard meaning, any time, or anywhere

(depending on the context)

∃ As well as the standard meaning, some time, or somewhere

(depending on the context)

@s · t[ϕ] ϕ at place s and time t

@s · t[[ϕ]] The meaning of ϕ (it requires that ϕ
.
= tt) at place s and

time t

Models:

∆ |= ϕ ∆ models ϕ

Other defined symbols:

def
= Definition

⊥ Falsity, and in some contexts, infinite computation

C ← A Denotes a Prolog or Globallog rule with semantics

similar to A⇒ C

341



min(a, b) Function: the least value between a and b

max(a, b) Function: the greatest value between a and b

[α, ζ] Closed interval, from α to ζ (open interval not used here)

Types and signatures:

f, g : T Function f and g of type T

f : T Function f of type T

α× β Cartesian product between α and β

A −→ B Function with domain A and codomain B

Turing Machines:

F,G,H Turing machines

f, g, h Turing-computable functions

x An integer number

X The code of x as a null machine computation or input

Q The finite set of states

q A state

q0 The initial state

F The set of final states

Σ The alphabet

s A symbol of the alphabet Σ.

s is also a state of computation in chapter 4.

◦ The blank symbol. The same as s0

T The set of input symbols

P The Turing machine program

O The set of operations {L,R, S,H}

O is also the complexity function

γ A transition function γ : Q× S −→ Q× S ×O

γ : V ar −→ Loc is used in chapter 4 as a function

342



that, given a variable, locates its storage

� The write/read head

U The Universal Turing machine

r(M) The representation of Turing machine M

r(X) The representation of input X

M(N [X]) A composition where M is outside the tape and N and

X are on the tape

↑M(N [X]) The computation of M(N [X])

Process Algebra:

A[P ] A process P running in a place A

P1.P2 Sequential composition between processes P1 and P2

P1|P2 Parallel composition between processes P1 and P2

A ‖ B Parallel composition between places A and B

flyto(B) The operation that moves the process to place B
τ
−→ An atomic operation

Space-Time Operational Semantics (Programming Languages):

σ A state represented in a semantics

σ(m/X) State σ and X = m holds in σ

c A programming language construct

〈c, σ〉 Construct c in state σ

@s · t[[c]] The meaning of construct c at space s and time t

 Evaluates to

It Proving that a predicate is true.

If Proving that a predicate is false.

Itf Trying to find the truth value for a predicate, ff , tt or

uu.

343



Computing in the Real World:

s1 � s2 Two independent states

C1 | C2 Two computations in parallel

Ψ Denotes probability. Also used as time for code mobility

µ Strong mobility

µ̈ Physical hardware mobility

π Mathematics and related concepts.

Also used as usual, i.e. radian constant

Also used to denote a program in chapter 4

φ Philosophy and related concepts

ψ Psychology and related concepts.

ω Physics and related concepts.

Also used as the speed of light:

(ω = c) where c is the speed of light

344



Bibliography

[1] Martin Abadi and Luca Cardelli, A theory of objects, Springer-Verlag,

New York, 1996.

[2] S Abramsky, Dov M Gabbay, and T S E Maibaum (eds.), Handbook of

logic in computer science, vol. 1 Background: Mathematical Structures,

Oxford University Press Inc., 1992.

[3] Samson Abramsky, Handbook of logic in computer science, vol. 3: Se-

mantic Structures, ch. Domain Theory, pp. 1–168, Oxford University

Press, 1994.

[4] Anurag Acharya, Mudumbai Ranganathan, and Joel Saltz, Dynamic

linking for mobile programs, Mobile Object Systems: Towards the Pro-

grammable Internet, Springer-Verlag, April 1997, Lecture Notes in Com-

puter Science No. 1222, pp. 245–262.

[5] , Sumatra: A language for resource-aware mobile programs, Mo-

bile Object Systems: Towards the Programmable Internet, Springer-

Verlag, April 1997, Lecture Notes in Computer Science No. 1222,

pp. 111–130.

[6] Peter Aczel, Harold Simmons, and Stanley S. Wainer (eds.), Proof the-

ory, Cambridge University Press, 1992.

[7] Alfred Vaino Aho, Ravi Sethi, and Jeffrey David Ullman, Compilers:

principles, techniques, and tools, Addison-Wesley series in computer sci-

345



ence, Addison-Wesley Publishing Company, Reading (Mass.). - London,

1986, Originally published as: Principles of compiler design.

[8] H. Ait-Kaci et al., The wild life handbook, Digital, Paris Research Lab-

orator, 1994, http://www.isg.sfu.ca/life/.

[9] J. J. Alferes and Lúıs Moniz Pereira, Reasoning with logic programming,

Lecture Notes in Computer Science. Lecture Notes in Artificial Intelli-

gence, no. 1111, Springer-Verlag, Berlin, London, 1996.

[10] James Allen, Towards a general theory of action and time, Artificial

Intelligence 23 (1984), 123–154.

[11] , Time and time again: The many ways to represent time, Inter-

national Journal of Intelligent Systems 6 (1991), no. 4, 341–355.

[12] James Allen and George Ferguson, Actions and events in interval tem-

poral logic, Journal of Logic and Computation 4 (1994), no. 5.

[13] James Allen and James Hendler (eds.), Readings in planning, Represen-

tation and Reasoning, Morgan Kaufmann, San Mateo, California, 1990.

[14] Lloyd Allison, A practical introduction to denotational semantics, Cam-

bridge Computer Science Texts, no. 23, Cambridge University Press,

1986, Reprinted 1995.

[15] Roberto Amadio and Pierre-Louis Curien, Domains and lambda-calculi,

Cambridge Tracts in Theoretical Computer Science, no. 46, Cambridge

University Press, 1998.

[16] Roberto M. Amadio, On modelling mobility, Theoretical Computer Sci-

ence 240 (2000), no. 1, 147–176.

[17] Alan Ross Anderson and Nuel D. Belnap Junior, Entailment: The logic

of relevance and necessity, vol. 1, Princeton University Press, 1975.

346



[18] Grigoris Antoniou, Michael Maher, and David Billington, Defeasible logic

versus logic programming without negation as failure, The Journal of

Logic Programming 42 (2000), 47–57.

[19] Krzysztof R. Apt and Roland N. Bol, Logic programming and negation:

A survey, The Journal of Logic Programming 19 & 20 (1994), 9–72.

[20] Ofer Arieli and Arnon Avron, Frontiers of paraconsistent logic, Studies

in Logic and Computation, vol. 8, ch. Bilattices and Paraconsistency,

pp. 11–27, Research Studies Press Ltd, 2000.

[21] Ken Arnold and James Goslin, The java programming language,

Addison-Wesley Publishing Company, 1996.

[22] Jean-Michel Autebert, Jean Berstel, and Luc Boasson, Hanbook of for-

mal languages, vol. 1, ch. Context-Free Languages and Pushdown Au-

tomata, pp. 111–174, Springer-Verlag, 1997.

[23] Franz Baader and Tobias Nipkow, Term rewriting and all that, Cam-

bridge University Press, 1998.

[24] Henry Balen, Distributed object architectures with corba, Cambridge Uni-

versity Press, 1999.

[25] Roberto Barbuti, Nicoletta De Francesco, Paolo Mancarella, and An-

tonella Santone, Towards a logical semantics for pure prolog, Science of

Computer Programming 32 (1998), no. 1–3, 145–176.

[26] Rosalind Barrett, Allan Ramsay, and Aaron Sloman, Pop-11: A practical

language for artificial intelligence, Ellis Horwood series in computers and

their applications, Halstead Press, Chichester New York, 1985.

[27] Diderik Batens, Chris Mortensen, Graham Priest, and Jean-Paul Van

Bendegem (eds.), Frontiers of paraconsistent logic, Studies in Logic and

Computation, vol. 8, Research Studies Press Ltd, 2000.

347



[28] Paul W. Beame and Samuel R. Buss (eds.), Proof complexity and feasible

arithmetics: Dimacs workshop 96, DIMACS series in discrete mathemat-

ics and theoretical computer science, vol. 39, American Mathematical

Society, 1996.

[29] Paolo Bellavista, Antonio Corradi, and Cesare Stefanelli, Middleware

services for interoperability in open mobile agent systems, Microproces-

sors and Microsystems 25 (2001), no. 2, 75–83.

[30] Nuel D. Belnap Junior, A useful four-valued logic, Proceedings of the

Fifth International Symposium on Multiple-Valued Logic (J Michael

Dunn and George Epstein, eds.), Modern Uses of Multiple-Valued Logic,

Indiana University, D Reidel Publishing Company, 1975, pp. 8–37.

[31] Paul Benacerraf and Hilary Putnam (eds.), Philosophy of mathematics:

selected readings, Prentice-Hall, Inc., 1964.

[32] Chantal Berline, From computation to foundations via functions and

application: The λ-calculus and its webbed models, Theoretical Computer

Science 249 (2000), no. 1, 81–161.

[33] Paul Bernays, Philosophy of mathematics, ch. On Platonism in Mathe-

matics, pp. 274–286, Prentice-Hall, Inc., 1964.

[34] Claudio Bettini, Sushil Jajodia, and Sean X. Wang, Time granularities

in databases, data mining and temporal reasoning, Springer-Verlag, 2000.

[35] Krishna Bharat and Luca Cardelli, Migratory applications, Mobile Ob-

ject Systems: Towards the Programmable Internet, Springer-Verlag,

April 1997, Lecture Notes in Computer Science No. 1222, pp. 131–149.

[36] W. Bibel and E. Eder, Handbook of logic in artificial intelligence and

logic programming, vol. 1: Logical Foundations, ch. Methods and Calculi

for Deduction, pp. 67–182, Oxford University Press, 1993.

348



[37] Lubomir F. Bic, Munehiro Fukuda, and Michael B. Dillencourt, Dis-

tributed computing using autonomous objects, IEEE Computer (1996).

[38] Richard Bird and Oege de Moor, Algebra of programming, Prentice-Hall

International Series in Computer Science, Prentice Hall Europe, 1997.

[39] Richard Bird and Philip Wadler, Introduction to functional program-

ming, Prentice-Hall International Series in Computer Science, Prentice-

Hall International Ltd, 1988.

[40] Thomas Bittner, Rough sets in spatio-temporal data mining, Temporal,

Spatial and Spatio-Temporal Data Mining, Lecture Notes in Artificial

Intelligence, vol. LNAI 2007, Springer, September 2000, pp. 89–104.

[41] Wayne D. Blizard, A formal theory of objects, space and time, The Jour-

nal of Symbolic Logic 55 (1990), no. 1, 74–89.

[42] George S. Boolos and Richard C. Jeffrey, Computability and logic, third

ed., Cambridge University Press, 1989.

[43] N. S. Borenstein, Email with a mind of its own: The safe-tcl language

for enabled mail, Tech. report, First Virtual Holdings, Inc, 1994.

[44] Gerhard Brewka, Principles of knowledge representation, Studies in

Logic, Language and Information, CSLI International: Center for the

Study of Language and Information and FoLLI: the European Associa-

tion for Logic, Language and Information, 1996.

[45] Gerhard Brewka and Jürgen Dix, Logic programming and knowledge

representation: Third international workshop / lpkr’97, Lecture Notes

in Artificial Intelligence, vol. 1471, ch. Knowledge Representation with

Logic Programs, pp. 1–51, Springer, New York, October 1998.

[46] Manfred Broy, Refinement of time, Theoretical Computer Science 253

(2001), no. 1, 3–26.

349



[47] Glenn Bruns, Distributed systems analysis with ccs, Prentice-Hall Inter-

national Series in Computer Science, Prentice-Hall Europe, 1997.

[48] Michelle Bugliesi and Giuseppe Castagna, Secure safe ambients, Pro-

ceedings of the POPL 2001, XXVIII ACM SIGPLAN - SIGACT, Sym-

posium on Principles of Programming Languages, ACM SIGPLAN,

SIGACT, 2001, Also SIGPLAN Notices 36(3):222–235, pp. 222–235.

[49] Robert Bull, Logic and reality: essays on the legacy of arthur prior,

ch. Logics without Contraction I, pp. 317–336, Oxford University Press,

1996.

[50] Martin Bunder, Logic and reality: essays on the legacy of arthur prior,

ch. Logics without Contraction II, pp. 337–349, Oxford University Press,

1996.

[51] John P. Burgess, Proof, logic and formalization, ch. Proofs About Proofs:

a Defense of Classical Logic. Part I: the aim of classical logic, pp. 8–23,

Routledge, 1992.

[52] Alan Burns and Andy Wellings, Concurrency in ada, second ed., Cam-

bridge University Press, 1998.

[53] David Burrell, Analogy and philosophical language, Yale University

Press, 1973.

[54] Stanley N. Burris, Logic for mathematics and computer science, Prentice

Hall, Inc., 1998.

[55] Luca Cardelli, A language with distributed scope, Computing Systems 8

(1995), no. 1, 27–59, Also available as Digital Systems Research Center

Research Report 122.

[56] , A language with distributed scope, Computing Systems. The

MIT Press 8 (1995), no. 1, 27–59.

350



[57] , Global computation, ACM Computing Surveys 28A (1996),

no. 4.

[58] , Mobile computation, Mobile Object Systems: Towards the Pro-

grammable Internet, Springer-Verlag, April 1997, Lecture Notes in Com-

puter Science No. 1222, pp. 3–6.

[59] , Mobile object systems, Lecture Notes in Computer Science, no.

1222, ch. Mobile Computation, Springer-Verlag, Linz, Austria, 1997.

[60] Luca Cardelli and Andrew D. Gordon, Foundations of software science

and computational structures, Lecture Notices in Computer Science, vol.

1378, ch. Mobile Ambients, pp. 140–155, Springer-Verlag, 1998, Also

Proceedings of FoSSaCS’98.

[61] , Mobile ambients, Theoretical Computer Science 240 (2000),

no. 1, 177–213.

[62] Alexander Chagrov and Michael Zakharyaschev, Modal logic, Oxford

Logic Guides, vol. 35, Oxford University Press, 1997.

[63] , Modal logic, vol. 35, ch. Complexity Problems, Oxford Univer-

sity Press, 1997.

[64] T. S. Champlin, Reflexive paradoxes, Routledge, 1988.

[65] C. C. Chang and H. J. Keisler, Model theory, Studies in Logic and the

Foundations of Mathematics, vol. 73, North-Holland Publishing Com-

pany and American Elsevier Publishing Company, Inc., 1973.

[66] David Chess, Colin Harrison, and Aaron Kershenbaum, Mobile agents:

Are they a good idea? – update, Mobile Object Systems: Towards the

Programmable Internet, Springer-Verlag, April 1997, Lecture Notes in

Computer Science No. 1222, pp. 46–48.

351



[67] Alonzo Church, Introduction to mathematical logic, Princeton Mathe-

matical series, Princeton University Press, 1956, Tenth printing (1996)

for the Princeton Landmarks in Mathematics and Physics series.

[68] Keith L. Clark, Logic and data bases, ch. Negation as Failure, pp. 293–

322, Plenum Press, New York, 1978.

[69] A. G. Cohn, J. M. Gooday, and B. Bennett, A comparison of structures

in spatial and temporal logics, Philosophy and the Cognitive Sciences

(1994), Also http://www.comp.leeds.ac.uk/spacenet/gooday.html.

[70] Richard Connor and Keith Sibson, Paradigms for global computation -

an overview of the hippo project, Proceedings of Computer Society In-

ternational Conference on Computer Languages (Chicago), IEEE, 1998.

[71] B. J. Copeland (ed.), Logic and reality: essays on the legacy of arthur

prior, Oxford University Press, 1996.

[72] General Magic Corp., Odyssey white paper, 1998.

[73] G. Crocco and Luis Farias del Cerro, Conditionals: from philosophy to

computer science, Studies in Logic and Computation, Clarendon Press,

Oxford University, 1995.

[74] Tristan Crolard, Subtractive logic, Theoretical Computer Science 254

(2001), no. 1–2, 151–185.

[75] Gianpaolo Cugola, Carlo Ghezzi, Gian Pietro Picco, and Giovanni Vigna,

Analyzing mobile code languages, Mobile Object Systems: Towards the

Programmable Internet, Springer-Verlag, April 1997, Lecture Notes in

Computer Science No. 1222, pp. 93–110.

[76] Nigel Cutland, Computability: an introduction to recursive function the-

ory, Cambridge University Press, 1980, This book was reprinted.

352



[77] Subrata Kumar Das, Deductive databases and logic programming, In-

ternational Series in Logic Programming, Addison-Wesley Publishing

Company, 1992.

[78] Joseph Warren Dauben, Georg cantor: his mathematics and philosophy,

Harvard University Press, 1979.

[79] J. H. Davenport, Computing tomorrow: future research directions in

computer science, ch. Computer Science and Mathematics, pp. 66–87,

Cambridge University Press, 1996.

[80] Antony J. T. Davie, An introduction to functional programming systems

using haskell, Cambridge Computer Science Texts, no. 27, Cambridge

University Press, 1992.

[81] Martin Davis, The universal computer: the road form leibniz to turing,

ch. 2 Boole Turns Logic into Algebra, pp. 21–40, W. W. Norton & Com-

pany, 2000.

[82] , The universal computer: the road form leibniz to turing, W. W.

Norton & Company, 2000.

[83] D.D.R. (ed.), Classics in logic: Readings in epistemology, theory of

knowledge and dialectics, Peter Owen Limited, 1962.

[84] D. Dean, The security of static typing with dynamic linking, Proceed-

ings of the Fourth ACM Conference on Computer and Communications

Security (Zurich, Switzerland), April 1997.

[85] D. Dean, E. W. Felten, and D. S. Wallach, Java security: From hotjava

to netscape and beyond, Proceedings of the Symposium on Security and

Privacity, IEEE, 1996, pp. 190–200.

[86] Drew Dean, Ed Felten, and Dan Wallach, Java security: From HotJava

to Netscape and beyond, Proceedings of the 1996 IEEE Symposium on

Security and Privacy (Oakland, Cal.), May 1996.

353



[87] Giorgio Delzanno and Maurizio Martelli, Proofs as computations in lin-

ear logic, Theoretical Computer Science 258 (2001), no. 1–2, 269–297.

[88] René Descartes, Meditations and other metaphysical writings, Penguin

Classics, Penguin Group, 1998.

[89] Kees Doets, Basic model theory, CSLI International: Center for the

Study of Language and Information and FoLLI: the European Associa-

tion for Logic, Language and Information, 1996.

[90] Jana Dospisil and E. Kendall, Automated negotiation with agents, Ad-

vances in Mobile Agents Systems Research. Proceedings of the 12th In-

ternational Conference on System Research, Informatics & Cybernet-

ics (George E. Lasker, Jana Dospisil, and Elisabeth Kendall, eds.), vol.

1: Theory and Applications, The International Institute for Advanced

Studies in Systems Research and Cybernetics, August 2000, pp. 1–11.

[91] David Duffy, Principles of automated theorem proving, John Wiley &

Sons, 1991.

[92] Michael Dummett, The philosophy of mathematics, Oxford Readings in

Philosophy, ch. The Philosophical Basis of Intuitionistic Logic, Oxford

University Press, 1996.

[93] P. M. Dung, Negation as hypothesis: an abductive foundation for

logic programming, 8th International Conference on Logic Programming

(Cambridge, MA), The MIT Press, 1991, pp. 3–17.

[94] P. M. Dung and P. Mancarella, Production systems need negation as

failure, Proceedings of the XIII National Conference on Artificial Intel-

ligence, vol. 2, AAAI Press and the MIT Press, 1996, pp. 1242–1247.

[95] J. Michael Dunn, Handbook of philosophical logic, Synthese library; v.

166, vol. III: Alternatives to Classical Logic, ch. Relevance Logic and

Entailment, pp. 117–224, Kluwer Academic Publisher, 1986.

354



[96] John R. Durbin, Modern algebra: an introduction, fourth ed., John Wiley

& Sons, Inc., 2000.

[97] Thomas Eiter, Wolfgang Faber, and M. Truszczyński (eds.), Logic pro-

gramming and nonmonotonic reasoning, Lecture Notes in Artificial In-

telligence, vol. LNAI 2173, Springer, 2001.

[98] E. Allen Emerson, Handbook of theoretical computer science, vol. B For-

mal Models and Semantics, ch. 16 Temporal and Modal Logic, pp. 995–

1072, The MIT Press/Elsevier, 1990.

[99] Richard L. Epstein, Predicate logic, Oxford University Press, 1994.

[100] , The semantics foundations of logic, second ed., Oxford Univer-

sity Press, 1995.

[101] , The semantics foundations of logic, ch. Intuitionism, p. 277,

Oxford University Press, 1995.

[102] William M. Farmer, Joshua D. Guttman, and Vipin Swarup, Security

for mobile agents: Issues and requirements, Proceedings of the 19th Na-

tional Information Systems Security Conference (Baltimore, Md.), Oc-

tober 1996, pp. 591–597.

[103] Ulisses Ferreira, The plain www page, URL http://www.ufba.br/˜plain

(1996–2002).

[104] , Intelligent agents for the internet, Proceedings of XIX Congress

of SBC, ENIA’99-SBC, Sociedade Brasileira de Computação, July 1999.

[105] , Chiron: a framework for mobile agent systems, Advances in

Mobile Agents Systems Research. Proceedings of the 12th International

Conference on System Research, Informatics & Cybernetics (George E.

Lasker, Jana Dospisil, and Elisabeth Kendall, eds.), vol. 1: Theory and

Applications, The International Institute for Advanced Studies in Sys-

tems Research and Cybernetics, August 2000, pp. 12–22.

355



[106] , uu for programming languages, ACM SIGPLAN Notices 35

(2000), no. 8, 20–30.

[107] Ulisses Ferreira, Pedro S. Nicolletti, and Hélio M. Silva, Lidia: Uma

linguagem para sistemas especialistas bayesianos, Proceedings of the V

SBIA-SBC, Sociedade Brasileira de Computação, 1988, Published in

Portuguese.

[108] , Tratamento de incerteza na linguagem lidia, Proceedings of the

VI SBIA-SBC, 1989, Published in Portuguese.

[109] José Ulisses Ferreira Junior, Pedro S. Nicolletti, and Hélio M. Silva,

Tratamento de incerteza na linguagem lidia, Proceedings of the VI SBIA-

SBC, 1989, Published in Portuguese.

[110] Chris Fields, Machines and thought: The legacy of alan turing, Mind

Association ocasional series, vol. 1, ch. Mensurement and Computational

Description, pp. 165–177, Oxford University Press, 1996.

[111] Melvin Fitting, A kripke/kleene semantics for logic programs, Journal of

Logic Programming 2 (1985), no. 4, 295–312.

[112] , Kleene’s logic, generalized, Tech. report, City University of New

York, Lehman College, Department of Mathematics and Computer Sci-

ence, New York, 1990.

[113] , Well-founded semantics, generalized, Tech. report, City Uni-

versity of New York, Lehman College, Department of Mathematics and

Computer Science, New York, 1991.

[114] Margaret M. Fleck, The topology of boundaries, Artificial Intelligence 80

(1996), no. 1, 1–27.

[115] Wan Fokkink, Introduction to process algebra, Texts in theoretical com-

puter science, Springer-Verlag, 2000.

356



[116] Jan  Lukasiewicz, Jan  lukasiewicz selected works, Series on Studies in

Logic and Foundations of Mathematics, North-Holland Publishing Com-

pany and PWN - Polish Scientific Publishers, 1970.

[117] Peter Forrest, The dynamics of belief: A normative logic, Philosophical

Theory, Basil Blackwell, 1996.

[118] Cédric Fournet and Georges Gonthier, The reflexive chemical abstract

machine and the join-calculus, Proceedings of 23rd ACM Symposium on

Principles of Programming Languages, January 1996.

[119] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget,

and Didier Rémy, A calculus of mobile agents, 7th International Con-

ference on Concurrency Theory (CONCUR’96) (Pisa, Italy), Springer-

Verlag, August 1996, LNCS 1119, pp. 406–421.

[120] Eric Freeman, Supercomputer earth: Massively parallel internet, Tech.

report, Yale University, December 1993, Supplement to the Yale Weekly

Bulletin.

[121] Gottlob Frege, The basic laws of arithmetic: exposition of the system,

University of California Press, 1964.

[122] Christian Freksa, Wilfried Brauer, Christopher Habel, and Karl F. Wen-

der (eds.), Spatial cognition II: Integrating abstract theories, empirical

studies, formal methods and practical applications, Lecture Notes in Ar-

tificial Intelligence, vol. 1849, Springer, 2000.

[123] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna, Understand-

ing code mobility, IEEE Transactions on Software Engineering 24 (1998),

no. 5.

[124] André Fuhrmann, An essay on contraction, Studies in Logic, Language

and Information, CSLI Publications and FoLLI, 1997.

357



[125] Dov M. Gabbay, Labelled deductive systems, Oxford Logic Guides 33,

vol. 1, Oxford University Press, 1996.

[126] , Elementary logics: A procedural perspective, Prentice Hall Series

in Computer Science, Prentice Hall Europe, 1998.

[127] Dov M. Gabbay and Ian Hodkinson, Logic and reality: essays on the

legacy of arthur prior, ch. Temporal Logic in the Context of Databases,

pp. 69–87, Oxford University Press, 1996.

[128] Dov M. Gabbay, Ian Hodkinson, and Mark Reynolds (eds.), Temporal

logic: mathematical foundations and computational aspects, vol. 1, Ox-

ford University Press Inc., New York, 1994.

[129] Denis Gagné, Wanlin Pang, and André Trudel, Spatio-temporal logic for

2d multi-agent problem domains, Expert Systems with Applications 12

(1997), no. 1, 141–145.

[130] Antony Galton, Machines and thought: The legacy of alan turing, Mind

Association ocasional series, vol. 1, ch. The Church-Turing Thesis: Its

Nature and Status, pp. 137–164, Oxford University Press, 1996.

[131] L. T. F. Gamut, Logic, language and meaning, vol. 2 Intensional Logic

and Logical Grammar, The University of Chicago Press, 1991.

[132] A. V. Gelder, K. A. Ross, and J. S. Schlipf, Well-founded semantics for

general logic programs, Journal of the ACM 38 (1991), no. 3, 619–649.

[133] Michael Gelfond and Vladimir Lifschitz, Logic programs with classical

negation, Proceedings of 7th International Conference on Logic Program-

ming (Cambridge MA), The MIT Press, 1990, pp. 579–597.

[134] , Classical negation in logic programs and disjunctive databases,

New Generation Computing. Ohmsha Ltd and Spring-Verlag (1991),

365–385.

358



[135] Michael Gelfond, Halina Przymusinska, and Teodor C Przymusinski,

The extended closed world assumpution and its relationship to paral-

lel circumscription, Proceedings of the Fifth ACM SIGACT-SIGMOD

Symposium on Principles of Database Systems, March 24-26, 1986, Cam-

bridge, Massachusetts, ACM, 1986, pp. 133–139.

[136] Dedre Gentner, Keith J. Holyoak, and Boicho N. Kokinov (eds.), The

analogical mind: perspectives from cognitive science, The MIT Press,

2001.

[137] Carlo Ghezzi and Mehdi Jazayeri, Programming language concepts, third

ed., John Wiley & Sons, 1998.

[138] Donald Gillies, Artificial intelligence and scientific method, ch. 4 A new

framework for logic, pp. 72–97, Oxford University Press, 1996.

[139] , Artificial intelligence and scientific method, ch. 1 The Induc-

tivist Controversy, or Bacon versus Popper, pp. 1–16, Oxford University

Press, 1996.

[140] , Artificial intelligence and scientific method, ch. 5 Can there be

an inductive logic?, pp. 98–112, Oxford University Press, 1996.

[141] M. Ginsberg, Essentials of artificial intelligence, Morgan Kaufmann

Publishers, San Mateo, USA, 1993.

[142] Jean-Yves Girard, Linear logic, Theoretical Computer Science 50 (1987),

1–102.

[143] Jean-Yves Girard, Paul Taylor, and Yves Lafont, Proofs and types, Cam-

bridge University Press, 1993.

[144] Kurt Gödel, The undecidable - basic papers on undecidable propositions,

unsolvable problems and computable functions, ch. On Formally Unde-

cidable Propositions of Principia Mathematica and Related Systems I,

pp. 4–38, Raven Press, Hewlett, New York, 1965.

359



[145] Andrew D. Gordon, Functional programming and input/output, Distin-

guished Dissertations in Computer Science, Cambridge University Press,

1994.

[146] , Bisimilarity as a theory of functional programming, Theoretical

Computer Science 228 (1999), no. 1–2, 5–47.

[147] James Gosling, Bill Joy, and Guy Steele, The java language specification,

Addison Wesley Publishing Company, 1996.

[148] R. S. Gray, Agent tcl: A transportable agent system, Proceedings of the

CIKM’95 Workshop on Intelligent Information Agent, 1995.

[149] Robert S. Gray, Agent tcl: A flexible and secure mobile-agent system,

Tech. Report PCS-TR98-327, Dartmouth College, Computer Science,

Hanover, NH, January 1998, Ph.D. Thesis, June 1997.

[150] C.A. Gunter and D.S. Scott, Handbook of theoretical computer science,

vol. B Formal Models and Semantics, ch. 12 Semantic Domains, pp. 633–

674, The MIT Press/Elsevier, 1990.

[151] Carl A. Gunter, Semantics of programming languages: structures and

techniques, Foundations of Computing Series, The MIT Press, 1992.

[152] Anil Gupta and Nuel Belnap Junior, The revision theory of truth, ch. 2

Fixed Points: Some Basic Facts, p. 43, The MIT Press, 1993.

[153] Ian Hacking, What is a logical system?, Studies in Logic and Compu-

tation, no. 4, ch. What Is Logic?, pp. 1–33, Claredon Press, Oxford

University, 1994.

[154] Matthew Hennesy and James Riely, Type–safe execution of mobile agents

in anonymous networks, Secure Internet Programming: Security Issues

for Mobile and Distributed Objects, and also Proceedings of the Work-

shop on Internet Programming Languages (WIPL 1998), Lecture Notes

in Computer Science, no. 1603, Springer-Verlag, Berlin Germany, 1999.

360



[155] Rolf Herken (ed.), The universal turing machine: A half-century survey,

Oxford University Press, 1988.

[156] Arend Heyting, Intuitionism: An introduction, second revised ed., Stud-

ies in Logic and the Foundations of Mathematics, North-Holland Pub-

lishing Company, Amsterdam, 1966.

[157] Juha Honkala, On parikh slender context-free languages, Theoretical

Computer Science 255 (2001), no. 1–2, 667–677.

[158] John F. Horty, Agency and deontic logic, Oxford University Press, 2001.

[159] Paul Hudak, The haskell school of expression: Learning functional pro-

gramming through multimedia, Cambridge University Press, 2000.

[160] Michael N. Huhns and Munindar P. Singh (eds.), Readings in agents,

Morgan Kaufmann, San Francisco, California, 1997.

[161] Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics,

vol. 73, Springer-Verlag, 1974, Corrected eighth printing, 1996.

[162] Leon Hurst, Pádraig Cunningham, and Fergal Sommers, Mobile agents

— smart messages, Proceedings of the 1st International Workshop on

Mobile Agents (Berlin, Germany), April 1997.

[163] O. Ibidapo-Obe, O. S. Asaolu, and A. B. Badiru, Generalized solutions of

the pursuit problem in three-dimensional euclidean space, Applied Math-

ematics and Computation 119 (2001), no. 1, 35–45.

[164] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Ce-

les, Lua - an extensible extension language, Software: Practice and Ex-

perience 26 (1996), no. 6.

[165] Roberto Incitti, The growth function of context-free languages, Theoret-

ical Computer Science 255 (2001), no. 1–2, 601–605.

361



[166] Katsumi Inoue and Chiaki Sakama, Negation as failure in the head, The

Journal of Logic Programming 35 (1998), 39–78, North-Holland.

[167] Institute of Electrical and Electronics Engineers, Ieee standard for binary

floating-point arithmetic, ansi/ieee standard 754-1985, 1985.

[168] Christian S. Jensen, Markus Schneider, Bernhard Seeger, and Vassilis J.

Tsotras (eds.), Advances in spatial and temporal databases, Lecture

Notes in Computer Science, vol. 2121, Springer, July 2001.

[169] Dag Johansen, Mobile agent applicability, Mobile Agents: Second In-

ternational Workshop, MA’98, Lecture Notes in Computer Science, vol.

1477, Springer, 1998, pp. 80–98.

[170] Dag Johansen, Robbert van Renesse, and Fred B. Schneider, An intro-

duction to the TACOMA distributed system, Tech. Report 95-23, De-

partment of Computer Science, University of Tromsø, Tromsø, Norway,

June 1995.

[171] Neil D. Jones, Computability theory: An introduction, ACM Monograph

Series, Academic Press, New York and London, 1973.

[172] , Computability and complexity: from a programming perspective,

Foundations of Computing, The MIT Press, 1997.

[173] Simon Peyton Jones, The implementation of functional programming

languages, Prentice-Hall International Series in Computer Science,

Prentice-Hall, Inc., 1987.

[174] M. P. Jordan, The power of negation in english: Text, context and rele-

vance, Journal of Pragmatics 29 (1998).

[175] Carl Jung et al., Man and his symbols, Adus Books Ltda, Pan MacMillan,

20 New Wharf Road, London N1 9RR, 1964, Conceived and Edited by

Carl Jung. Newer edition published by Picador, in 1978.

362



[176] Carl Gustav Jung and Anthony Storr, Jung: Selected writings, sec-

ond ed., Fontana Pocket Readers, ch. Psychological Typology (1936),

pp. 133–146, Fontana Paperbacks, 1986, Selected and Introduced by

Anthony Storr.

[177] A. C. Kakas, R. A. Kowalski, and F. Toni, The role of abduction in logic

programming, in handbook of logic in artificial intelligence and logic pro-

gramming, vol. 5. Logic Programming, pp. 235–324, Oxford University

Press, 1998.

[178] Immanuel Kant, Cŕıtica da razão pura, Ouro, Martin Claret, 1781 and

2002, Translation into Portuguese from the original ”Kritik der Reinen

Vernunft”.

[179] , Logic, Bobbs-Merrill, Indianapolis, 1974, Original in German

Logik. Translation with an introduction by Robert S Hartman and Wolf-

gang Schwarz.

[180] Immanuel Kant and translation by Norman K. Smith, Immanuel kant’s

critique of pure reason, Macmillan Press Ltd, 1787, 1929.

[181] Gnter Karjoth, Danny B. Lange, and Mitsuru Oshima, A security model

for agents, IEEE Internet Computing 1 (1997), no. 4.

[182] Michael J. Kearns and Umesh V. Vazirani, An introduction to computa-

tional learning theory, The MIT Press, 1994.

[183] Anthony John Patrick Kenny, A brief history of western philosophy,

Blackwell Publishers, 1998.

[184] Fred N. Kerlinger and Howard B. Lee, Foundations of behavioral re-

search, fourth ed., Harcourt College Publishers, 2000.

[185] B. Kirkerud, Programming language semantics, International Thomson

Computer Press, 1997.

363



[186] Stephen C. Kleene, Introduction of metamathematics, D. Van Nostrand,

Princeton, 1952.

[187] J. W. Klop, Handbook of logic in computer science, vol. 2 Background:

Computational Structures, ch. Term Rewriting Systems, pp. 1–116, Ox-

ford University Press, 1992.

[188] Frederick C. Knabe, Language support for mobile agents, Ph.D. the-

sis, Carnegie Mellon University, Paittsburgh, Pa., December 1995, Also

available as Carngie Mellon School of Computer Science Technical Re-

port CMU-CS-95-223 and European Computer Industry Centre Techni-

cal Report ECRC-95-36.

[189] Bart Kosko, Fuzzy thinking: The new science of fuzzy logic, Harper-

CollinsPublishers, Flamingo, 1994.

[190] Konrad B Krauskopt and Arthur Beiser, The physical universe, eighth

ed., McGraw-Hill Companies, Inc, 1997.

[191] Henry Kyburgh Junior, Handbook of logic in artificial intelligence and

logic programming, vol. 3: Nonmonotonic Reasoning and uncertain rea-

soning, ch. Uncertainty Logics, pp. 397–438, Oxford University Press,

1994.

[192] Leslie Lamport and Nancy Lynch, Handbook of theoretical computer sci-

ence, vol. B Formal Models and Semantics, ch. 18 Distributed Com-

puting: Models and Methods, pp. 1157–1199, The MIT Press/Elsevier,

1990.

[193] Saunders Mac Lane, Categories for the working mathematician, second

ed., Graduate texts in mathematics, Springer, 1998, Previous edition:

1971.

[194] Danny B. Lange and Mitsuru Ishima, Program and deploying java mobile

agents with aglets, Addison-Wesley, 1998.

364



[195] Ducan Langford (ed.), Internet ethics, MacMillan Press Ltd, Printed and

Bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire,

2000.

[196] Jonathan Laventhol, Programming in pop-11, Artificial Intelligence

Texts, Blackwell Scientific Publications Ltd, 1987.

[197] F. William Lawvere and Stephen Hoel Schanuel, Conceptual mathemat-

ics: a first introduction to categories, Cambridge University Press, 1997.

[198] Harry Lewis and Christos H. Papadimitriou, Elements of the theory of

computation, second ed., Prentice-Hall, Inc., September 1997.

[199] Tim Lindholm and Frank Yellin, The java virtual machine specification,

Addison-Wesley Publishing Company, Reading, Massachussetts, 1997.

[200] Zhaohui Luo, Computation and reasoning: a type theory for computer

science, International Series of Monographs on Computer Science, edited

by Gabbay, Hopcroft, Plotkin, Schwartz, Scott, Vuillemin and Galil,

vol. 11, Oxford Science Publications, 1994.

[201] William G. Lycan, Real conditionals, Oxford University Press, 2001.

[202] Penelope Maddy, The philosophy of mathematics, Oxford Readings in

Philosophy, ch. Perception and Mathematical Intuition, Oxford Univer-

sity Press, 1996.

[203] Grzegorz Malinowski, Many-valued logics, Oxford Logic Guides, no. 25,

Claredon Press, Oxford University, 1993.

[204] Maurice Margenstern, On quasi-unilateral universal turing machines,

Theoretical Computer Science 257 (2001), no. 1–2, 153–166.

[205] Kim Marriott and Peter J. Stuckey, Programming with constraints: An

introduction, The MIT Press, 1998.

365



[206] Gerald Masini, Amedeo Napoli, Dominique Colnet, Daniel Leonard,

and Karl Tombre, Object-oriented languages, A.P.I.C., no. 34, Academic

Press, 1991, original in French: Les languages à objects by InterEditions

1989.

[207] Alexandru Mateescu and Arto Salomaa, Hanbook of formal languages,

vol. 1, ch. Aspects of Classical Language Theory, pp. 175–251, Springer-

Verlag, 1997.

[208] B. Mathiske, F. Matthes, and J. W. Schmidt, On migrating threads,

Tech. report, Fachbereich Informatik Universitat Hamburg, 1994.

[209] John McCarthy, Defending ai research: a collection of essays and re-

views, CSLI Lecture Notes, no. 49, CSLI Publications: Center for the

Study of Language and Information, 1996.

[210] K. Meinke and J. V. Tucker, Handbook of logic in computer science, vol.

1: Mathematical Structures, ch. Universal Algebra, pp. 189–411, Oxford

University Press, 1992.

[211] Robin Milner, Computing tomorrow: future research directions in com-

puter science, ch. Semantic Ideas in Computing, pp. 246–283, Cambridge

University Press, 1996.

[212] Robin Milner, Joachim Parrow, and David Walker, A calculus of mobile

processes. part I and II, Information and Computation 1 (1992), no. 100.

[213] Dejan S. Milóičić, Fred Douglis, Yves Paindaveine, Richard Wheeler,

and Songnian Zhou, Process migration, ACM Computing Surveys 32

(2000), no. 3, 241–299.

[214] Marvin Minsky, Computation: Finite and infinite machines, Prentice-

Hall Series in Automatic Computation, Prentice-Hall International, Inc.

London, 1972, Original American publication by Prentice-Hall Inc. 1967.

366



[215] , A framework for representing knowledge, Tech. report, Mas-

sachusetts Institute of Technology, Artificial Intelligence Laborator,

1974.

[216] Miguel Mira da Silva, Mobility and persistence, Mobile Object Systems:

Towards the Programmable Internet, Springer-Verlag, April 1997, Lec-

ture Notes in Computer Science No. 1222, pp. 157–176.

[217] Miguel Mira da Silva and Malcolm Atkinson, Combining mobile agents

with persistent systems: Opportunities and challenges, 2nd ECOOP

Workshop on Mobile Object Systems (Linz, Austria), July 1996, pp. 36–

40.

[218] John C. Mitchell, Foundations for programming languages, Foundations

of Computing, ch. The Language PCF, pp. 45–144, The MIT Press,

1996.

[219] , Foundations for programming languages, Foundations of Com-

puting, The MIT Press, 1996.

[220] , Programming language methods in computer security, Proceed-

ings of the POPL 2001, XXVIII ACM SIGPLAN - SIGACT, Symposium

on Principles of Programming Languages, ACM SIGPLAN, SIGACT,

2001, Also SIGPLAN Notices 36(3):1–3, pp. 1–3.

[221] François Monin and Marianne Simonot, An ordinal measure based pro-

cedure for termination of functions, Theoretical Computer Science 254

(2001), no. 1–2, 63–94.

[222] Rebecca Montanari, Cesare Stefanelli, and Naranker Dulay, Flexible se-

curity policies for mobile agent systems, Microprocessors and Microsys-

tems 25 (2001), no. 2, 85–92.

[223] C. Moss, Prolog++ the power of object-oriented and logic programming,

Addison-Wesley Publishing Company, 1994.

367



[224] A. Mycroft, On integration of programming paradigms, Computing Sur-

vey 28 (1996), no. 2, http://www.cl.cam.ac.uk/users/am/papers/.

[225] G. Nadathur and D. Miller, An overview of λprolog, Proceedings of the

5th International Conference on Logic Programming (Cambridge, MA),

The MIT Press, 1989.

[226] Sara Negri and Jan Von Plato, Structural proof theory, Cambridge Uni-

versity Press, 2001.

[227] Anil Nerode and Richard A. Shore, Logic for applications, second ed.,

Graduate Texts in Computer Science, Springer-Verlag New York Inc.,

1997.

[228] Hanne Riis Nielson and Flemming Nielson, Semantics with applications:

a formal introduction, John Wiley & Sons, 1993.

[229] ObjectSpace Corp., Voyager white paper, 1998.

[230] Zoran Ognjanovic and Miodrag Raškovic, Some first-order probability

logics, Theoretical Computer Science 247 (2000), no. 1–2, 191–212.

[231] C.-H. L. Ong, Handbook of logic in computer science, vol. 4: Seman-

tic Modelling, ch. Correspondence Beteen Operational and Denotational

Semantics: the full abstraction problem for PCF, pp. 269–356, Oxford

University Press, 1995.

[232] J. K. Ousterhout, Tcl and the tk toolkit, Adison-Wesley, 1994.

[233] David E. Over, Models and computability, London Mathematical Society

Lecture Notes, vol. 259, ch. Logic and Decision Making, pp. 313–338,

Cambridge University Press, 1999.

[234] Christos H. Papadimitriou, Computational complexity, Addison-Wesley

Publishing Company, 1995, Reprinted with corrections.

368



[235] Charles Parsons, The philosophy of mathematics, Oxford Readings in

Philosophy, ch. Mathematical Intuition, Oxford University Press, 1996.

[236] Lawrence C. Paulson, Ml for the working programmer, second ed., Cam-

bridge University Press, 1996.

[237] Z. Pawlak, Rough sets, International Journal Comput. Inform 11 (1982),

341–356.

[238] Lúıs Moniz Pereira, Non-monotonic extensions of logic programming,

Proceedings of the Second International Workshop on Non-monotonic

Extensions of Logic (Bad Honnef, Germany), 1996.

[239] I. C. C. Phillips, Handbook of logic in computer science, vol. 1: Mathe-

matical Structures, ch. Recursion Theory, pp. 79–187, Oxford University

Press, 1992.

[240] Gian Pietro Picco, Mobile agents: an introduction, Microprocessors and

Microsystems 25 (2001), no. 2, 65–74.

[241] Benjamin C. Pierce, Basic category theory for computer scientists, Foun-

dations of Computing Series, The MIT Press, 1993, Second print.

[242] Axel Poigné, Handbook of logic in computer science, vol. 1: Mathemati-

cal Structures, ch. Basic Category Theory, pp. 413–640, Oxford Univer-

sity Press, 1992.

[243] Lech Polkowski and Andrzej Skowron (eds.), Rough sets and current

trends in computing: first international conference / rsctc’98, Lec-

ture Notes in Artificial Intelligence, vol. LNAI 1424, Springer, Warsaw,

Poland, June 1998, Proceedings.

[244] David Poole, Abducing through negation as failure: Stable models within

the independent choice logic, Journal of Logic Programming 44 (1999),

5–35.

369



[245] Karl Popper, The logic of scientific discovery, Karl Popper, 1972.

[246] Arthur Prior, Formal logic, Oxford University Press, 1955.

[247] , Past, present and future, Oxford University Press, 1967.

[248] , Logic and reality: essays on the legacy of arthur prior, ch. Two

Essays on Temporal Realism, pp. 43–51, Oxford University Press, 1996.

[249] Sanguthevar Rajasekaran and Panos Pardalos (eds.), Mobile networks

and computing: Dimacs workshop 99, DIMACS series in discrete math-

ematics and theoretical computer science, vol. 52, American Mathemat-

ical Society, March 2000.

[250] David Randell, Zhan Cui, and Tony Cohn, A spatial logic based on

regions and connection, Proceedings 3rd International Conference on

Knowledge Representation and Reasoning (San Mateo), Morgan Kauf-

mann, 1992, pp. 165–176.

[251] Daniel W. Rasmus, Rethinking smart objects: Building artificial intelli-

gence with objects, Advances in Object Technology Series, vol. 18, Cam-

bridge University Press and SIGS Books, 1999.

[252] Stephen Read, Relevant logic: a philosophical examination of inference,

Basil Blackwell, 1988.

[253] R. Reiter, Logic and data bases, ch. On Close World Data Bases, pp. 55–

76, Plenum Press, New York, 1978.

[254] Greg Restall, An introduction to substructural logics, Routledge, 2000.

[255] Elaine Rich and Kevin Knight, Artificial intelligence, second ed.,

McGraw-Hill, Inc., 1991.

[256] John F. Roddick, Kathleen Hornsby, and Myra Spiliopoulou, An up-

dated bibliography of temporal, spatial, and spatio-temporal data mining

research, Temporal, Spatial and Spatio-Temporal Data Mining, Lecture

370



Notes in Artificial Intelligence, vol. LNAI 2007, Springer, September

2000, pp. 147–163.

[257] Rita Rodriguez and Frank Anger, Logic and reality: essays on the

legacy of arthur prior, ch. Prior’s Temporal Legacy in Computer Sci-

ence, pp. 89–105, Oxford University Press, 1996.

[258] Kurt Rothermel and Fritz Hohl (eds.), Mobile agents: Second interna-

tional workshop / ma’98, Lecture Notes in Computer Science, vol. 1477,

Springer, Stuttgart, September 1998, Proceedings.

[259] Grzegorz Rozenberg and Arto Salomaa (eds.), Handbook of formal lan-

guages, vol. 1, Springer-Verlag, 1997.

[260] Paul Ruet and François Fages, Combining explicit negation and negation

by failure via belnap’s logic, Theoretical Computer Science 171 (1997),

61–75.

[261] Bertrand Russell, Introduction to mathamatical philosophy, Routledge,

1919.

[262] , History of western philosophy, vol. I, part 2, pp. 101–226, Rout-

ledge, 1946, Edition published in 2000.

[263] , History of western philosophy, vol. III, part 2, ch. 18, The Ro-

mantic Movement, pp. 651–659, Routledge, 1946, Edition published in

2000.

[264] Mark Ryan and Martin Sadler, Handbook of logic in computer science,

vol. 1: Mathematical Structures, ch. Valuation Systems and Conse-

quence Relations, pp. 1–78, Oxford University Press, 1992.

[265] Yu V Sachkov, International congress of logic, methodology, and philos-

ophy of science (6th : 1979: Hannover): Logic, methodology, and philos-

ophy of science, Studies in Logic and the Foundations of Mathematics,

371



vol. 104, ch. Foundations and Philosophy of the Physical Sciences, Prob-

ability in Classical and Quantum Physics, pp. 441–447, PWN-Polish

Scientific Publishers-Warszawa and North Holland Publishing Company,

1982.

[266] Vijay Saraswat and Pascal Van Hentenryck (eds.), Principles and prac-

tices of constraint programmming, The MIT Press, 1995.

[267] David A. Schmidt, The structure of typed programming languages, Foun-

dations of Computing Series, The MIT Press, 1994.

[268] Dietmar Seipel, Logic programming and knowledge representation: Third

international workshop / lpkr’97, Lecture Notes in Artificial Intelligence,

vol. 1471, ch. Partial Evidential Stable Models for Disjunctive Deductive

Databases, pp. 66–83, Springer, New York, October 1998.

[269] Ravi Sethi, Programming languages: concepts & constructs, second ed.,

Addison-Wesley Publishing Company, 1996.

[270] Peter Sewell, Pawe l T. Wojciechowski, and Benjamin C. Pierce,

Location-independent communication for mobile agents: a two-level ar-

chitecture, Internet Programming Languages, Lecture Notes in Com-

puter Science, no. 1686, Springer-Verlag, 1998, pp. 1–31.

[271] Rajjan Shinghal, Formal concepts in artificial intelligence: fundamen-

tals, Chapman & Hall Computing Series, ch. 10 Plausible Reasoning in

Expert Systems, pp. 390–452, Chapman & Hall Computing, 1992.

[272] E. H. Shortlife, Computer-based medical consultations: Mycin, New

York, 1976, Elsevier.

[273] Hebert Simon, Machines and thought: The legacy of alan turing, Mind

Association ocasional series, vol. 1, ch. Machine as Mind, pp. 81–102,

Oxford University Press, 1996.

372



[274] Michael Sipser, Introduction to the theory of computation, PWS Pub-

lishing Company, 1997.

[275] Kenneth Slonneger and Barry L. Kurtz, Formal syntax and semantics

of programming languages: a laboratory based approach, Addison-Wesley

Publishing Company, 1995.

[276] Raymond M. Smullyan, Gödel incompleteness theorems, Oxford Logic

Guides, no. 19, Oxford University Press, 1992.

[277] Ernest Sosa and Jaegwon Kim (eds.), Epistemology: An anthology,

Blackwell Philosophy Anthologies, vol. 11, Blackwell Publishers, 2000,

With assistance of Matthew McGrath.

[278] John F. Sowa, Knowledge representation: logical, philosophical, and

computational foundations, Brooks/Cole, 511 Forest Lodge Road, Pa-

cific Grove,CA, 2000.

[279] Benedict de Spinoza, Ethics, Penguin Classics, Penguin Group, this edi-

tion 1996.

[280] Leon Sterling and Ehud Shapiro, The art of prolog: advanced program-

ming techniques, second ed., MIT Press series in logic programming, The

MIT Press, 1994.

[281] N. I. Styazhkin, History of mathematical logic from leibniz to peano, The

M.I.T. Press, 1969.

[282] Marshall Swain (ed.), Induction, acceptance, and rational belief, D. Rei-

del Publishing Company, 1970.

[283] Alfred Tarski, Logic, semantics, metamathematics, Oxford University

Press, 1956.

[284] Beverley Tasker, The logic of space-time: (zero infinity becoming), The

Loebertas Series of Philosophical Monographs, vol. 22, Loebertas, 1998.

373



[285] R Gregory Taylor, Models of computation and formal languages, Oxford

University Press, 1998.

[286] R. D. Tennent, Semantics of programming languages, PHI series in com-

puter science, Prentice Hall, Inc., 1991.

[287] , Handbook of logic in computer science, vol. 3: Semantic Struc-

tures, ch. Denotational Semantics, pp. 170–322, Oxford University Press,

1994.

[288] Do Van Thanh, Sverre Steensen, and Jan A. Audestad, Mobility man-

agement and roaming with mobile agents, Mobile and Wireless Com-

munications Networks, Lecture Notes in Computer Science, no. 1818,

Springer-Verlag Berlin Heidelberg, 2000, pp. 123–137.

[289] Pete Thomas and Ray Weedon, Object-oriented programming in eiffel,

Addison-Wesley Publishing Company, 1995.

[290] Simon Thompson, Laws in miranda, ACM Communications 2 (1986),

no. 3.

[291] , Haskell: The craft of functional programming, second ed.,

Addison-Wesley Publishing Company, 1999, Paperback.

[292] Bent Thomsen, Lone Leth, Sanjiva Prasad, Tsung-Min Kuo, Andre

Kramer, Fritz C. Knabe, , and Alessandro Giacalone, Facile antigua

release programming guide, Tech. Report ECRC-93-20, European Com-

puter Industry Research Centre, Munich, Germany, December 1993.

[293] Chris Thornton and Benedict du Boulay, Artificial intelligence through

search, Kluwer Academic Publishers and Intellect Books, 1992.

[294] Anne Sjerp Troelstra, Lectures on linear logic, CSLI lecture notes, no. 29,

Center for the Study of Language and Information, CSLI/SRI Interna-

tional, 1992.

374



[295] Anne Sjerp Troelstra and H. Schwichtenberg, Basic proof theory, Cam-

bridge Tracts in Theoretical Computer Science, vol. 43 Basic Proof The-

ory, Cambridge University Press, 1996.

[296] J. K. Truss, Discrete mathematics for computer science, International

Computer Science Series, Addison-Wesley Publishing Company, 1991.

[297] Christian Tschudin, The messenger environment M0 – a condensed de-

scription, Mobile Object Systems: Towards the Programmable Internet,

Springer-Verlag, April 1997, Lecture Notes in Computer Science No.

1222, pp. 149–156.

[298] J. V. Tucker and J. I. Zucker, Handbook of logic in computer science,

vol. 5: Logic and Algebraic Methods, ch. Computable Functions and

Semicomputable Sets on Many-Sorted Algebras, pp. 317–523, Oxford

University Press, 2000.

[299] Alan M. Turing, Computability and λ-definability, Journal of Symbolic

Logic 2 (1936), 153–163.

[300] , The undecidable - basic papers on undecidable propositions, un-

solvable problems and computable functions, ch. On Computable Num-

bers, With an Application to the Entscheidungsproblem, pp. 115–151,

Raven Press, Hewlett, New York, 1965, A correction, pages 152–154.

[301] Asis Unyapoth and Peter Sewell, Nomadic pict: Correct communication

infrastructure for mobile computation, Proceedings of the POPL 2001,

XXVIII ACM SIGPLAN - SIGACT, Symposium on Principles of Pro-

gramming Languages, ACM SIGPLAN, SIGACT, 2001, Also SIGPLAN

Notices 36(3):116–127, pp. 116–127.

[302] Alasdair Urquhart, Handbook of philosophical logic, Synthese library;

v. 166, vol. 3: Alternatives to Classical Logic, ch. Many-Valued Logic,

pp. 71–116, Kluwer Academic Publishers, 1986.

375



[303] Franck van Breugel, An introduction to metric semantics: operational

and denotational models for programming and specification languages,

Theoretical Computer Science 258 (2001), no. 1–2, 1–98.

[304] Jean van Heijenoort, From frege to gödel, Harvard University Press,

1967.

[305] Michalis Vazirginiannis and Ouri Wolfson, A spatiotemporal model and

language for moving objects on road networks, 7th International Sympo-

sium, SSTD 2001, Springer, July 2001, LNCS, 2121, pp. 20–35.

[306] Daniel J. Velleman, How to prove it, Cambridge University Press, 1994.

[307] Jan Vitek and Giuseppe Castagna, Seal: A framework for secure mo-

bile computation, Internet Programming Languages, Lecture Notes in

Computer Science, no. 1686, Springer-Verlag, 1998, pp. 47–77.

[308] Jan Vitek, Manuel Serrano, and Dimitri Thanos, Security and commu-

nication in mobile object systems, Mobile Object Systems: Towards the

Programmable Internet, Springer-Verlag, April 1997, Lecture Notes in

Computer Science No. 1222, pp. 177–200.

[309] Dennis Volpano, Provably-secure programming languages for remote

evaluation, ACM Computing Surveys 28A (1996), Participation state-

ment for ACM Workshop on Strategic Directions in Computing Re-

search.

[310] Philip Wadler, How to declare an imperative, ACM Computing Surveys

29 (1997), no. 3, 240–263.

[311] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall, A note

on distributed computing, Mobile Object Systems: Towards the Pro-

grammable Internet, Springer-Verlag, April 1997, Lecture Notes in Com-

puter Science No. 1222. Also published as Sun Microsystems Laborators

Technical Report TR-94-29., pp. 49–64.

376



[312] R. F. C. Walters, Categories and computer science, Cambridge Com-

puter Science Texts, Cambridge University Press, 1991.

[313] Ian Wand and Robin Milner (eds.), Computing tomorrow: future re-

search directions in computer science, Cambridge University Press, 1996.

[314] D. S. Warren, Web page, http://www.cs.sunysb.edu/˜warren/ (1998).

[315] David A. Watt, Programming language concepts and paradigms, Series

in Computer Science, Prentice-Hall, Inc., 1990.

[316] J. White, Telescript technology: the foundation for the electronic mar-

ketplace, General Magic, Inc., 1994.

[317] James E. White, Telescript technology: Mobile agents, 1996, Also avail-

able as General Magic White Paper.

[318] Glynn Winskel, The formal semantics of programming languages: an

introduction, fourth ed., The MIT Press, 1997.

[319] , The formal semantics of programming languages: An introduc-

tion, Foundations of Computing, The MIT Press, 1997.

[320] Ann Yasuhara, Recursive function and logic, Academic Press, Inc, 1971.

[321] Justin Zobel, Writing for computer science: the art of effective commu-

nication, ch. 5 Mathematics, Springer-Verlag Singapore Pte. Ltd., 1997.


