On the Foundations of Computing Science

By Ulisses Ferreira

Abstract. In the present work, it is observed and demonstrated that the
foundations of computing science, and even of science and logics, include
forms of inference that are not regarded as valid, in neither logical nor
scientific way. The present paper also shows two paradoxes of logics and
scientific methods. Taking into consideration a certain rigor, the present
paper argues that computing science is not mathematical logics, and that
philosophy, psychology and other human sciences are in the foundations
of that science.

1 Introduction - The Conceptual Diagram

This section and the following ones introduce one classification that can be used
as a tool. An example of connection between this tool and the sample paradoxes
that I will present below is the following: there exist two large classes of concepts,
analytic and synthetic. Roughly, the former is the concept of smallness while the
latter is the concept of greatness. Thus, the former can be seen as smaller than
the latter and, hence, if in some observation a subject from the latter is seen as
belonging to the former, there can be some contradiction, which can lead to a
possible refutation.

As one of the possible conclusions from my PhD thesis, I identify some of
the usual concepts of computing science and place them in only four classes.
Therefore, here I attempt to justify the present classification but knowing that
it is a transcendental matter impossible to be either proven or refuted or both.

Most attempts to classify real world concepts necessarily lack precision, al-
though attempts are often helpful. Because such classifications are empirical but
takes a life time, here I present a classification from my standpoint, which il-
lustrates the orthogonality of some paradigms and issues, skills, methods and
approaches in the theoretical foundations. I illustrate how I identify the analyti-
cal and synthetic sides of computing science. Due to its empirical characteristic,
our four-kind diagrams can be seen as simply a diagrammatic form of represen-
tation by some holistic view in computing science. Although fuzzy systems have
been regarded as logics in their own right, I place these two notions as opponents
in those diagrams, and this is because logics (which one can see as an analytical
subject) is traditionally seen as the subject of the valid reasoning, hence, has
some general meaning for all individuals. In contrast, fuzziness (which I see as a
synthetic subject) typically requires individual truth threshold for each hypoth-
esis, while fuzziness suggests, for every hypothesis, different truth threshold for
different individuals. Furthermore, for I am placing logics and logic programming
in the same analytical side in the referred to diagrams, and I am stating that

any hypothesis that involves a synthetic subject cannot be generally proven, i.e.
with a universally-quantified claim, the thesis of the validity of these diagrams,
including my synthetic and empirical classification, is not provable or refutable.

2 Synthesis in Programming

Most work in computing science and Al can be very briefly represented by the
following diagram:

One of these hypotheses that I am presenting here is that the programming
paradigms which I represent here in the Greek letters that were carefully chosen,
m, w, ¢, 1, for example, (functional-logic programming, equations, constraint
programming, consistency can be placed in 7), (imperative features including
side-effects, states, communication between machines, interaction, small mobil-
ity can be placed in w), (internet programming, strong mobility can be placed
in ¢), and (uncertainty, fuzzy systems, inconstancy can be placed in), are
orthogonal ways of seeing the world from the programming standpoint. Given
this, PLAIN[11] programming language takes into consideration this orthogonal-
ity, that is, different points of view. Moreover, PLAIN provides uu (in the center
of the diagram, above), which is a constant for representing the non-information.
The original idea of uu in logics is back dated to Lukasiewicz, but I extended
the same idea to the context of programming languages[12].

Programming is a relatively complex task and, because of this, every pro-
gramming language has features relating to all kinds. However, one can analyze
and perceive predominance to one specific kind in most programming languages.
The language Smalltalk, for example, can be associated to the w kind; while
Haskell could be the best example of the 7 kind. Concerning the ¢ kind, the
mobile-code languages for global computers nowadays are still very emphatic on
code mobility. More specifically, they have not solved all practical problems with
respect to security, which itself is only one problem. There are other issues, e.g.
regarding differences of cultures, that have not been investigated. In fact, the ¢
kind is too recent from the programming perspective and one misses compar-
isons on scientific basis. PLAIN tries to achieve a suitable balance between these
four kinds. So, in the next subsections, I shall discuss the four kinds and make
comparisons between them.

2.1 Constructs and concepts of kind =

This kind of constructs is not easy to describe because it seems that all pro-
gramming languages are in here. Formalism, discipline, precision and details
are extremely important, and they are key motivations here. Most logic pro-
gramming languages and functional programming languages are typically in this
kind, and because strong typing goes together with discipline and methodology,
these languages are not of the same point of view as untyped programming lan-
guages, which are in w, for instance. Objects are concrete and well formed here.
Although most of object-oriented programming languages are imperative, inher-
itance is another example of constructs of kind 7. There are exceptions such as
C++, which in turn has a strong influence from C. Here, sub-classing can be
sub-typing in terms of OOP. The senses of order and pureness are important
here. And because of the importance of order and clarity in programming, I
regard the kind 7 as compulsory.

For this synthesis, because there has been much work on logic programming
and functional programming, I have preferred not to concentrate on languages of
this kind. Instead, in the following subsections, I use them only for comparison.

2.2 Constructs and concepts of kind w

Here flexibility and expressiveness are keywords. Others are interaction, commu-
nication, states, imperative features, and efficiency of time, for instance.

It is interesting to note that, although C programs do not tend to be ro-
bust, C is among the most successful programming languages and its historical
importance is undeniable. Java is one of its successors.

The most traditional languages used in knowledge-based systems are Lisp and
Prolog, which are untyped programming languages, although based on functions
and logics, respectively, which are in kind 7. In both languages, list is a basic
data structure that provides flexibility.

Although PLAIN is a strongly typed language, because its designer and other
users require flexibility, PLAIN also permits heterogeneous lists in programs. The
head of a list is accessed by using the name of the type as the head function call. It
has been a nice experience to program with heterogeneous lists, and programmers
should be pleasant to program. The following is an example interpreting [| as
an empty list:

public list reverse([]) = [],
reverse(li) = reverse(tail(li)) + head(li);

In the above example, the public keyword states that the function reverse
can be used by another agent. The + operator here concatenates two lists. The
head function gives a list with only the first element of its argument. Therefore,
the above function reverses the order of the elements of a list regardless of its

type.

For this kind of list, the programmer can infer types[20] or, alternatively,
instead of the word head, use the type identifier to get its first element. In this
way, at the point one writes the type identifier in the code, the type checking is
made at runtime. In this way, that typical function definition becomes here as
follows:

public int add([]) = 0,
add(li) = add(tail(li)) + int(li);

Thus, the above function computes the total value of the elements of a list.
Such function definitions, together, illustrate that untyped lists and strong typ-
ing can coexist at the language level. A question is how to reconcile the flexibility
of programming with the methodologies of pure languages, of kind w. Another
question is whether type inference[30,36] is better or worse than otherwise with
respect to programming methodology. For instance, it can be seen that type in-
ference makes programmers infer types. Programmers write a piece of code only
once and, later, will look at it many times. Therefore, programmers normally
infer types in languages like ML. This can be seen as a contrast between kinds
w and m, for the former is predominantly based on assertions and facts (type
declarations) whereas the latter is predominantly based on deduction (type in-
ference). Therefore, this pair of different points of view, w and 7, often indicates
the issue of facts (e.g. predicate declaration) and deduction under either open-
or closed-world assumption. The present author has proposed the former in [13].

2.3 Constructs and concepts of kind

Here, uncertainty, inconsistency and relativity are some of the keywords for this
kind of constructs, 0. We can include here any constructs for knowledge repre-
sentation that have vagueness. One approach is to avoid being impersonal and
exact, in the programming paradigm, because of the consistency of this perspec-
tive. If so, surprisingly, probability theories may not enter this class, in spite of
their undeniable importance in science, in general. In terms of programming and
knowledge representation, exact probabilities are not easy to be found in the real
world, let alone being represented using some formal language. It is known that
probabilities are based on assumptions concerning whether events are related to
each other. But one underlying subjective issue is “when can we consider that
two events are independent from each other?”. There seems to be no objective or
precise answer for this question. In fact, depending on the philosophical point of
view, I have totally different answers. For programming with probabilities, there
is one problem of computational complexity[8] and another of representing the
web of events, which is a difficult one. A similar web is represented using ad-hoc
models, where the basic difference is that probability is traditionally mathemat-
ics while ad-hoc models are not so recognized. This means that probabilities
require too precise values for representing imprecise knowledge about the real
world.

Here, pictures, images, films, and diagrams can represent the imprecision and
subjectivity of the real world in a more suitable way. My proposed programming

model for uncertainty extends MYCIN to predict the evaluation of hypotheses
by introducing two variables, the least and the greatest factors of certainty,
respectively denoted as and y in the following diagram. As a result, PLAIN
provides an intermediary state, called uu, since we have two thresholds for false
and for true as follows:

i 1 Y

-1 Fallse 0 True +|1
|

Since x never decreases and y never increases, reasoning is monotonic in this
setting. However, if T force x = g constantly in the above setting, it is as
non-monotonic as almost all expert system shells with attached certainty factors
(most of them are based on production rules). In this way I have two alternative
options for all hypotheses. Monotonic reasoning suggests that the truth is only
one. By providing two variables, computations also have the ability to predict, at
least in some sense, and that is essential: the value y — x represents the variables
in the program that have not been explored and can contribute to prove or
refute the hypothesis. The investigation of the veracity of these variables can be
very costly. The system therefore anticipates the evaluation of the hypotheses
in accordance with the representation, above. This is similar to lazy evaluation
in the sense that variables in the premise list are evaluated at most once. In this
model, inconsistency can be obtained in the form of False > TrueV x > y, if
the language and its implementation allow this situation.

If one user wants an agent to represent him or her, he or she wants to person-
alize the behavior of his or her agent if the task is not simple. Due to the huge
number of different certainty factors, the community needs suitable languages
to program agents.

2.4 Constructs and concepts of kind ¢

In ¢, among other notions, as humans, we learn by induction and analogy, and
also use metaphors to communicate. We humans need to make comparisons
and need broad and abstract views. And since we have had a broad or general
perspective, we are able to start solving hard problems in an easy way, and then
to investigate them deeply, top down. Aims are necessary, but they should be
set only after having such a view and before solving the problem in question.

We humans cannot investigate some complex subject deeply without an ini-
tial broad view. Goal-driven programming, i.e. where programmers set goals and
the underlying system does the job, is motivated by ¢. In this sense, Prolog and
relational languages have this feature in ¢. As another example, inductive logic
programming is a combination between 7 and ¢ because, while logical and formal
propositions are there, induction and learning by experience are in this class.

Because of its synthetic nature, this class of notions is difficult to implement
on a computer, but I am advancing in this direction. Mobile agents, for instance,
are applications whose motivations fit in this kind ¢ since mobile agents are
flexible and free enough to gain experience abroad.

As regards “mobility”, the difference between constructs of kind w and ¢ is
that, in the latter, differences of cultural and religious backgrounds are probably
involved, while in the former, mobility essentially is related to changes of states,
concurrence, unexpected effects, higher-order functions and hardware circuits:
everything happens in the same machine in w. While w is driven by issues such
as flexibility, communication and curiosity, here truth is a key motivation. In
comparison to 7, ¢ is not mainly concerned with syntax and details but instead
broader concepts, such as paradigms, and also semantics.

In comparison to functional languages in 7 that adopt type inference, for in-
stance, from the ¢ standpoint, I observe that type inference makes programmers
infer types. To answer this kind of question there ought to be experimental and
empirical research, not proofs. PLAIN is experimental since it was not conceived
for commercial purposes. This is validated by twenty years of experience in pro-
gramming and compilers. The Unix system and C are two successful examples
of what one or two professionals can do, in contrast with PL/I, which in turn
was designed by some greater number of people. In this way, it can be better to
rely upon one’s own experience than to make experimental research among non-
experienced programmers, while the result of one’s work may happen months or
years later.

The fewer the number of programmers the more independence a designer
has for trying different constructs. The right moment to release a language to
others is relevant, and I am nearly at this point. Yet, by using PLAIN, the author
has experienced important insights concerning languages and paradigms. One of
the key ideas in PLAIN is its hybrid and well-balanced paradigm, i.e., it tries
to combine well-balanced features from different points of view, while accepting
that divergences among people and, hence, researchers are natural. Although
PLAIN is a large language in comparison to functional languages, it is meant to
be concise and relatively smaller, as it provides common constructs. Here rests
the difference between a multiple and a hybrid paradigm, at least in comparison
to a naive approach. I have programmed and experimented with different kinds
of constructs. The implementation should be sophisticated enough to hide com-
plexity. On the other hand, a good hybrid paradigm is not hard to learn, since
learning can be incremental, and makes programming much easier, since I have
taken into consideration different kinds of motivations. Thus, if a person likes
functional programming, it is easy to program in PLAIN, and if a person likes
object-oriented programming, it should be equally easy to program in the same
language. However, although the PLAIN philosophy is to be a hybrid language,
the concept of “pure function”, for instance, (or simply function. It is the op-
posite to imperative function) is present in the language, they are declarative,
never making use of global objects, and this is guaranteed at compilation time.
However, functions can be applied from any code of any paradigm. In this sense,
PrAIN is different from PL/lI where the key motivation was to bring together
features for both engineering applications and commercial applications in the
same paradigm. I believe[15] that, after some time, programmers naturally find
that applications suggest the paradigm to use, and that they can benefit from a

hybrid language after some time using a particular paradigm. However, at the
present point it is an open issue that deserves future validation and perhaps even
further work.

At the practical level, issues such as robustness and security are keywords in
the mobile agents field of research. Even in programming, in society, laws have to
be established, which stresses the relevance of philosophical issues in program-
ming. There are other keywords, such as dynamic linking (which I did not adopt
but may be necessary for efficiency), naming, and global-scope identifiers, i.e.
“global” not in the old sense of global variables. The subjective aspects of such
issues suggest new or open problems.

3 Synthesis in Knowledge Representation and Reasoning

For AI researchers, although the present classification is not complete (for in-
stance, vision is important for AI and is a synthetic notion related to ¥ up
to some extent), the four-kind diagram can be seen from the knowledge/belief
representation and reasoning/inference standpoint as follows:

— m: perception, precision, specialization, functional programming (tradition-
ally LISP programs), logic programming (traditionally Prolog) and inheri-
tance in class- or frame-based systems. Deductive rules, consistency, deduc-
tive reasoning and search. Analysis, complexity and efficiency. Closed-world
assumption and negation as failure. Learning by deduction.

— w: reasoning, in particular non-monotonic, natural negation, ambiguity and
redundancy, knowledge, interaction, diversity, curiosity and learning by ac-
quiring facts.

— 1 feeling, fuzzy logics, uncertainty, partial information, incompleteness, sub-
jectivity, inconsistency and belief.

— ¢: intuition, perspective, monotonicity, absolute truth, speculation, axiom-
atization. Semantic web, inductive reasoning, generalization, analogy and
metaphors. Objectivity as opposed to subjectivity. Open-world assumption,
neural networks, inductive logic programming, broad view, synthesis and
common sense. Learning by induction.

In terms of AL this four classes can represent four types of intelligence. I
observe that although the above concepts are interesting for A, the classification
is still the same as for programming languages and for computing science, which
will be presented in the next section. While w and 7 are analytical kinds, ¢
and 9 are synthetic ones. For instance, a country could well use many deductive
rules of logic programming to decide whether a person may be regarded as a
citizen of that country or not. However, deductive logics is not very appropriate
for, in the airport, deciding whether a person from abroad may enter the home
country or whether the person will go back to the place from where he or she
came, because the number of rules from the real world is practically impossible to
count. Therefore, as programs need synthetic thinking, programming languages
should also provide synthetic tools, in particular for mobile agents. In [14], I

presented constructs with uncertainty for filling in this gap. Continuing, while
w and 9 are closely related to internal judgments (by reasoning and feeling,
respectively), # and ¢ work like input devices (by five-sense perception and
intuition, respectively). This classification has strong influence from Carl Jung
psychological types[22], but the observation with respect to computing science
is almost entirely based on my own experience in both areas as well as my
empirical observation during my PhD studies. Perception above, in the 7 kind,
corresponds to a refinement of what Jung called sensation. According to him, the
four psychological functions are: thinking, feeling, sensation and intuition. More
generally, he called the first two rational functions while he called the last two
irrational functions. These four functions are somewhat similar to what I called
w, ¥, m, ¢, respectively. Philosophically, Jung’s work itself had some influence
from Immanuel Kant.

In terms of humanity, the essence of 1) is seen in the romanticism. An atheistic
view of 9 is exposed in [34].

Regarding mobility, I can classify its scopes as (individualw), (social,),
(geographic,¢) and (universal,i)). With respect to languages, natural and ar-
tificial, I can still observe differences among the main concepts: (vocabulary, w),
(grammar and syntax, 7), (semantics, ¢) and (pragmatics, 1), for instance.

4 Synthesis in Foundations

Mobile agents and the Internet have brought new ideas to theoretical computing
science in the last few years.

4

As an example, I recently had a conceptual insight over computation: “...at
the moment that I conceive the idea of moving computation from one place to
another, I also observe that a general notion of computation transcends pure
mathematics and meets the physical world“. This itself requires new, informal
and philosophical discussions.

Regarding the two-axis diagram, there probably is the same correspondence
in computing science at a very high level. Respectively, psychology (¢), sciences
related to the machine, engineering and physical characteristics in general (w),
mathematics (7) and philosophy (¢) form a four-leg table that can support
computing science. Typical questions in science can also be placed under this
classification e.g. what, where, when (factual and flat information in general, w);
how (m); why (¢); for what and for whom (). Who can be either in w or ¢. These
four legs are not sharp, too clear, exact or mathematical classification, e.g. in
philosophy, the Platonist view can be placed in ¢ while the constructivistic view
can be placed in 7. On the other hand, in logics, theories of truth, interpretations
and model theory can be placed in ¢ while proof theory can be placed in 7. These
four kinds are somewhat fuzzy[26], relative, incomplete and personal. However,
the hybrid semantics of that four-kind diagram contrasts with solely fuzzy views
of the universe, e.g. [26].

I have presented two different philosophical views in computing science, that
can be summarized in the following way, depending on the adopted meaning for
“executable code”.

— Traditional view: computation has purely mathematical semantics. There
are modal notions, such as mobile computation. Executable code is local to
the machine, and a machine is only a physical notion. Correspondence be-
tween semantics[31]. Domain theory [1,3,19], denotational semantics[2, 38,
39]. Curry-Howard isomorphism[18], rewriting systems[4, 25], category the-
ory[27,28,41], functions, logics in computing science and so forth. Functional
programming, input and output operations as monads.

— An alternative philosophical view: computation by machines is a unique
physical notion. Executable code is mobile, and a machine can be an in-
terpreter. The equivalence between operational and denotational semantics
does not necessarily hold from this point of view. In particular, although
denotational semantics is still useful, the operational semantics is the most
suitable semantics to capture this view of computation if the notions of
space and time are part of the semantics. In the real world, uncertainty-
or probability-based computation is performed. Computation can be incom-
plete. Space-time logical calculi. Input and output operations as physical
interaction (by side-effect) in the real world.

Notice that these views are not necessarily holistic, although I use the second
view to illustrate “computation in the real world” in the present paper.

I can refer to computation in the latter philosophical view as not only com-
putation carried out by machines but also computation by humans. For example,
interaction for a machine is roughly equivalent to human five-sense perception.
However, as will become clearer in this section, while there is some (rough)
equivalence between human thinking and machine computation, whether one
can reproduce or only simulate human computation in a machine is one more
philosophical issue in the foundations of computing science. Continuing the dis-
cussion with a diagram:

There is the ¢ kind since we all also learn by induction and analogy, as well
as we make use of metaphors to communicate, mainly when the concepts are
abstract, and we have only words. Possibly, that is why prophets and visionar-
ies often use metaphors in their speech. And because we humans make use of
induction, analogies and also use metaphors in our speech[7], a number of good

examples are both didactically relevant and essential scientific method, as com-
puting science, in the broadest sense, is not totally mathematical. While in w I
talk about knowledge representation, in ¢, one regards with belief representa-
tion. Although the forms of representation can be the same, these two concepts
are different. In ¢, broad view and intuition are key words that normally lead
to prediction[24].

In logics, while some of the main motivation in 7 would be proof and syntax,
some of the main motivation in ¢ would be (perhaps informal) models and
probably non-mathematical semantics. Since G&del incompleteness theorem, it
is known that proof (), truth (¢) and incompleteness or inconsistency (1) are
not equivalent notions in both the mathematical world and the real world. While,
in 7, true and false would be mere symbols that are manipulated according to
some well-formed syntax, here in ¢ models would be closely connected to the
real world. While in 7 a key motivation is to find differences between apparently
similar objects, here in ¢, a key motivation consists in finding similarities between
objects apparently very different from each other. And while 7 can correspond
to Aristotle and deductive reasoning, ¢ can correspond to Socrates and inductive
reasoning[35]. Thus, we all need a sufficiently broad view of the world to make
good analogies: the broader the view, the better the analogy. Metaphorically
speaking, if T place elements of a set in order and I want to connect elements
that share a property different from the chosen order, I have to see distant
objects, perhaps at once, to make comparisons. Following this reasoning, the
notion of perspective and, therefore, distances and mobility, can be obtained. At
a somewhat refined level, induction is an orthogonal notion in the sense that it
depends on experience and, hence, time.

While in 7 the related quantifier is existential, here in ¢ the related quantifier
is universal. In terms of games, while 7 may summarize the skills played by Eloisa
(3), ¢ can represent the skills played by Abelardo (V).

Many aspects of computing science have always had interesting philosoph-
ical components. As part of future work, one may want to define those bases
explicitly, in a way that they can be identified by undergraduate students over
the world. As well as philosophy, there are other human sciences which are im-
portant for the foundations of computing science.

With respect to the 1) kind, for being a transcendental notion, while 7 is
concerned with granularity and what can be perceived and countable, 1, like a
set of water molecules, although a countable set, suggests what is uncountable
and is beyond one’s five senses. Like in modern physics, ¥ suggests hypotheses
and observable models, but not what can be directly perceived. Thus, belief is
an important issue here. v, as I lexically suggest, is a place where psychology
has something to contribute to computing science. By comparing and stating
differences between humans and machines, we humans also learn the limits of
what can be computed by machines, an approach complementary to complexity.
As an example, if someone wants to build some application for identifying e-
mail messages that are important or interesting, he or she has to have a very
personal agent computation, probably based on some analogical measure, not

only deductive systems such as natural deduction and Prolog, in which, for each
consequent all pieces of its (conjunctive) premise must necessarily be ¢t. Thus,
the notion of “importance” is not only personal but it also naturally requires
some analogical interval.

Returning to the 7 axis, I can state that 1) suggests computation in the set
of complex numbers, while the 7 kind, although 7 = 3.141592... in arithmetics,
is mainly concerned with the set of integers. As a synthesis, Godel incompleteness
theorem, at another level of abstraction, is a piece of work which involves five
different notions that I have identified in the above conceptual diagram: (7
proofs and consistency), (¢: truth and validity), (¢: inconsistency), and finally
(uu: incompleteness).

I can divide the same diagram in two diagonals as follows

Pw wm

Yo om

forming two divisions, each of which one can be referred to as side. I could refer
to ¢ and ¢ as “synthetic side of the foundations of computing science” while
w and 7 would be “analytical side of the foundations of computing science”.
Therefore, this representation of those foundations of computing science would
include the whole picture. The ¢ side can be referred to as inductive and
deductive reasonings, as well as knowledge/belief acquisition, whereas the yw
side can be referred to as knowledge/belief representation.

With respect to synthesis and analysis, which divide the diagram in two
halves, ¢ represents the purely subjective side of the foundations of comput-
ing science, while wm represents the objective side of the same foundations. I
simplify the language and refer to them as synthetic and analytical sides, re-
spectively, having in mind that they are not independent from each other. The
former is predominantly inductive while the latter is essentially deductive. In
computing science, the analytical and concrete side has been well developed
while the importance and even the presence of the synthetic side has been little
perceived. This contrast is probably not simply due to the fact that deductions
are very easy to implement in a machine. Indeed, while formal proofs are ap-
propriate as a scientific method for the analytical side, concerning the synthetic
side, formal proofs of general claims do not work. Frege[40] tried to prove that
arithmetic was analytic[21]. As an example, tableau calculi are also called the
method of analytic tableaux. From [5]: Any calculus that starts with the formula
to be proven, reducing it until some termination criterion is satisfied, is called
analytic. In contrast, a synthetic calculus derives the formula to be proven from
azioms. In contrast, I am referring to analysis and synthesis as opposite men-
tal processes. In fact, not only deductive logics, in its pure sense, is normally

analytical at a higher level of abstraction, for Babbage himself called his work
analytical engine, and so forth. These pieces of evidence are too informal and
synthetic for being used as proof of the validity of this classification. In contrast
with logics, there are branches of mathematics that seem to be synthetic.

Because of this contrast between synthesis and analysis, for some logicians,
inference based on uncertainty might not be considered as part of logics, at least
from the point of view of deduction and the universality of the classical logic. In
the present work, I let them be opposites to form the same axis, as, in a sense,
they complement each other because their natures are essentially inductive and
deductive; synthetic and analytical; on open and closed word; subjective, and
exact and with valid values for all; fuzzy and precise etc, respectively. Interest-
ingly enough, logics may be seen as a branch of philosophy, which I classify as
synthetic. It is true that nowadays, as there are many logics, to propose a logic
one has to have a broader view than he or she would need to simply use the
same logic.

I can also see the above diagram from the standpoint of the other diagonal
and refer to ¢m division as perception and learning while ¥w division may be
referred to as reasoning and thought. Perception here means not only by using five
senses (programmers and logicians have to pay attention to forms and details)
but also intuition (philosophers and researchers need to make use of their own
insights and see the world abstractly, from a broad perspective).

An interesting explanation, extracted from [10], as regards intuitionistic logic:
“What distinguishes the intuitionists is the degree to which they claim the prece-
dence of intuition over logical systems and the extent to which they feel their
notions have been misunderstood by classically trained mathematicians and logi-
cians”. The idea of precedence of intuition over logical systems[32] is in accor-
dance with the idea of trying to view the whole picture without details before
starting concentrating on the latter, in a top-down fashion, for those who like
software engineering. As known, intuitionism is a philosophical view[9].

As well as perception and intuition[29], in the above diagram, by completing
the symmetry, thoughts are not only based on reason (to deduce hypothesis) but
also based subjectively on feeling. Feeling is very personal. Even if the researchers
decide not to implement such subjects as part of limitations of what computers
can do, those subjects are still essential to the foundations of computing science.
Nevertheless, it is easy to understand why this ¢ kind has not been exploited in
computing science, and an answer is that this is also a natural consequence that
computers have become increasingly complex. Deep Blue has already beaten
the Grandmaster Kasparov in chess, but computing scientists took some time
until the machine was able to beat him, a challenge which could be regarded as
relatively simple, besides its computational complexity.

So far, there has not been any implementation running in the computer that
could be regarded as representing feeling, at least in a universal way. Nonetheless,
the notion of agent was introduced to represent people in their transactions in
the daily life. The diagonals of the diagram also represent the idea that, among
many other skills, human beings learn by communication and facts, perception

and deduction, intuition and induction, feeling and belief. The diagram is not
complete with respect to this either, for instance, motivation and pain are outside
the present classification.

The computing science and AI communities have been discussing the differ-
ences between humans and machines in terms of the meaning of thoughts. For
instance, in [5], the same applies to discovering proofs and deduction. Even with
a set of wifs, deduction might be difficult for a machine due to the possibility
of combinatorial explosion. Here one has two philosophical views supporting the
answers for the question about whether we humans are machines, or whether
we humans are much more than this. Not only here but also as part of my
PhD thesis dissertation, I have presented, as examples, some skills that form the
synthetic side in the diagram. Although specific answers for such questions are
outside the scope of the present piece of work, one of the main results from my
observations is that, if one wants to adopt the view which equates any person
with any machine, first it is a good idea to study intuition, feeling, analogy, in-
duction, belief and other subjects which are parts of the human beings, and thus,
philosophy and other human sciences.

Finally, technology introduces useful insights into theoretical computing sci-
ence. The introduction of mobile agent technologies has led the community to
want agents to be autonomous and flexible to represent users. For simple tasks,
there is relatively little to add to what we humans already know. But users want
to use complex application programs.

To truly represent people in our complex society, agents have to simulate
subjective thought too, we humans want them to behave based on our personal
tastes and personal opinions, for instance. Therefore, knowledge or belief repre-
sentation can also be seen as a programming paradigm, not only as a subject
in AT The aim of introducing subjectivity in programming languages is difficult
and ambitious. The author used to work on an expert system for diagnosis of
heart diseases and was intrigued when observing that the users, experts, did not
want to attach real numbers (in fact, floating-point numbers) to our rules as
part of the certainty measure. Instead, I made use of words, carefully chosen
to represent those real numbers. From that experience, the role of subjectivity
in programming could be felt: “What do such subjective words mean?”. There
seems to be some common agreement which, in those cases, is more important
and easier to understand in our every-day life than numbers. More recently, in-
telligent agents have been conceived to represent users and, for some reason,
some of us also want them to be mobile. This scenario leads the present paper
to conclude that other more subjective, less exact sciences are also essential in
the foundations of computing science.

The intuitive part of this work is also based on a symmetry in pairs of four
key concepts, namely, knowledge(w)-intuition(¢), deduction(r)-belief(+)). A dif-
ference between knowledge and belief is that belief is a kind of weak knowledge.
In this sense, there exists some threshold between the two, and which deter-
mines what is knowledge and what is belief. Furthermore, this threshold is itself
of course synthetic, and somewhat subjective. In short, a matter of belief. As

an example, although it may be safe to state that most men acknowledge that
Marilyn Monroe was beautiful, it is reasonable to think that beauty is subjective.

5 Sciences and Deductive Logics

Based on observation, we can classify concepts related to computing science,
such as methods, forms of inference, mental abilities and subjects of research,
dividing them in two classes, i.e. synthetic and analytical. This classification, for
being original, differs, for example, from the classification of Immanuel Kant[23].
Here, there is no formal nor precise definition of synthetic and analytical. Roughly
speaking, some analytical idea is motivated by exactness, whereas some synthetic
thing is motivated by generality. In this way, this classification itself is synthetic.
The analytical class is divided in two subclasses, namely, w and 7, whilst the
synthetic class is divided in two other subclasses, namely, ¢ and 1. Deductive
logics is a key concept that belongs to the analytical class, whereas induction
and analogy are two of the key concepts that belong to the synthetic class.

Logics and exact sciences, in turn, as it is known, are partially based on
deductions as well as observable and deduced facts, while such facts can be used
as examples, which in turn can be used as proofs for existential propositions. On
the other hand, propositions based on a finite number of cases are traditionally
regarded as less relevant. As an example, it is known that belief, induction and
analogy have not been accepted as valid methods of sciences[33], in particular,
mathematics and exact sciences.

Nonetheless, synthetic concepts are significant in computing science and,
among them, there are those empirical concepts, together with belief, induc-
tion, analogy and so on. A few forms of inference, such as the ability to weigh
up possibilities, can be deeply studied in computing science, while the ability to
weigh up possibilities is not traditionally regarded as a mathematical method.

Here it can be observed that computing science not only profits directly from
logics and mathematics but that that science has a direct connection with the real
world, while it belongs to the same world. Furthermore, the typical place where
computing science has many notions of the synthetic side is in the interaction
with the real world, including the interaction with our senses at work, and in the
applications of the analytical notions. An example of this is in section 5.1. T see
computing science as the organized knowledge about the world. In fact, while
the logical, scientific and mathematical kind 7 in the foundations of computing
science has been well studied since Babbage, no significant contribution was done
in philosophy of computing science. Today, this is a new side of the foundations
of computing science.

In general, these synthetic aspects are subjects inside philosophy and human
studies. Citing Immanuel Kant[23], “it is absolutely necessary that humanity
believe in God”. Science and religion have been traditionally very separate from
each other. Nonetheless, like religion, science seeks the truth, although its meth-
ods are constrained.

In this Kantunian sense, what is most useful to science is not only to acquire
knowledge on whether Jesus of Nazareth really existed, or what he did, in small
details etc. The concept of one or more entities morally superior to humans,
and who have the properties of omnipotence, omnipresence and omniscience,
certainly has relevant impact on sciences. As a clear example, if an individual
is atheist and their proposal is very ambitious (for example, Sigmund Freud,
for there is some evidence[6]), selfish or urges for power at any cost, he or she
may manipulate results or forge input data in the absence of other scientists,
or may steal someone else’s ideas or the credits of someone else’s work, as what
he or she knows is that they are not going to be punished, whereas, typically,
religious scientists do not normally do those for they know that, later, they
would be somehow punished for the fault in question. Therefore, whether we
humans believe or not, God’s eyes play some relevant réle in science.

In the short history of computing science, there has already been the public
case of the suicide of Alan Turing, with the additional observation here that,
as it is known, such an action can be seen as very anti-ethical, and the reason
may be as follows: Given that all deaths, in particular suicides, should be known
to the scientific community, if the whole humanity had been influenced by him
and had done the same sort of thing, science would be extinct together with the
humanity. Therefore, any suicide is an action against science, at least it should be
seen as such, and this makes verifications of all the individual’s work appropriate,
if he or she had had international or historic reputation but made such a moral
mistake, while scientists personal lives should almost never be of great interest
for the public. As well as his or her work, the scientist’s ethic-religious system
is what is important for others. In the case of Dr. Turing, he may be a hero for
his work during the IT world war, but his suicide was a public action somehow
against the reputation of his own computing science.

Likewise, striking from behind by gossips, slanders and non-authorized (per-
sonal or professional) references are also very anti-ethical as, like a chemical or
biological weapon, they irradiate in the academic and scientific community with-
out giving any opportunity to the victim to defend himself or herself, at least
in time to avoid losses, if the victim is not intelligent and wise enough, which is
not the general situation. And because sciences seek the truth, other researchers
are also victims of those lies in question. Therefore, given that the material of
computing science is information, ethics is essential indeed, and should be taught
as part of the formal course.

In the following sections, a couple of examples of paradoxes in science and
logics are presented. Each of them proves that philosophy and psychology are in
the foundations of computing science.

5.1 A Paradox Example - Analogy

This section proves by contradiction that mathematical logics is not the only
foundation of computing science.

An example of this is in the content of deductive proofs. Regardless of how
mathematical and formal the problem be, what makes some given proof support

some problem X and not some different problem Y, is the analogy which is made
between a given problem and the representation of its relevant context, whether
this representation is formal or not. Applied proofs are regarded as correct only
if
1. The deduction is logically valid, i.e. in accordance with the deductive rules
of the used logic.
2. The representation of the problem is correct and, in particular, complete
where the variable is universally quantified.

The second item describes a basic analogy, which in its turn is essentially
an informal concept, somewhat personal. On the other hand, this concept is
fundamental in the context of applied logics and, hence, of the computability
theory, and so on. As a metaphor (analogy), this resembles the incompleteness
theorem, because the fact that analogy is not part of the mathematical methods
implies that those methods are not sufficient in computing science. That is,
analogy supports mathematics while the former is not supported by the latter.
Therefore, mathematics is not sufficient in this rigorous sense, while rigor is a
kind of ideal in mathematics. As a consequence of this, philosophy, psychology
and other human studies which deal with analogy[7], are new components in the
foundations of computing science, whereas philosophy and psychology support
mathematics and computing science. In this way, mathematics in computing
science is a fundamental tool for letting the involved concepts be precise and
clear.

5.2 Another Paradox Example - Induction

The previous example applies to the content of proofs. In contrast, the present
example applies to the human inference forming generalizations, which one refers
to as induction[16,17]. As it is well known, both deductive logics and sciences,
in a rigorous sense, reject not only analogy but also induction. By the way,
both analogy and induction are referred to by philosophy as irrational. The fact
is that, in rigorous way, both science and deductive logics reject the inductive
method, in particular because its validity is not universally acceptable. Nonethe-
less, science itself works in the presence of panels (i.e. committees) in Master or
PhD courses/research, in selections for professorship, and considerations for pub-
lications. In the end, however mathematical the particular subject is, it depends
on the present induction. For the same level of reputation, even taking it as the
minimum, we humans tend to believe that the more the number of examiners,
the more accurate the result is. However, this exemplifies that logics and science
work by using some method rejected by them, which constitutes a paradox at
the practical level. Establishments can rely upon the intellectual attributes of
the examiners, but belief[37], as a synthetic concept, cannot be supported by
logics, mathematics nor sciences in some rigorous sense.

Moreover, between us, the above proof (as well as the previous one) not
only applies to computing science... It shows how logics itself is still part of
philosophy!

This is the most general meaning of the above deduction, whereas one of the
consequences is that philosophy is in computer science, in the foundations.

The present author observes from both examples, above, that although the
synthetic and human aspects are not entirely supported by logics, the latter
is always supported by human beings in a synthetic way. Note that logics is
traditionally philosophy. This shows the hierarchy of the large subjects inside the
foundations of computing science, for philosophy and psychology can support the
others. From this, different theories of computing science with synthetic notions
can exist instead of a unique, mathematical and analytical theory. The novel
area is called philosophy of computing science.

6 Conclusions

This paper is a synthetic discussion, on philosophy of computing science, present-
ing some of the links between concepts, trying to describe a semantic network.
Because of this, given its purpose, it was not meant to be like almost all scientific
papers in computing science, where there exists a precise focus on a particular
and analytical subject.

Logics, in a rigorous sense, is not the only foundation for philosophy, psychol-
ogy, computing science etc. More than this, it was shown that there can exist
the following hierarchy of subjects in computing science:

Application Level

Logics and Mathematics

Philosophy, Physics and Psychology

Computing science has the bizarre characteristic of being both exact and
philosophy for being related to the reality. For these two facts, methods rejected
by science that are applied in the daily life should be considered. In the above
example of committee, in order to make the applied method be consistently
scientific, one should consider not only the object, the criteria and grades, but
also other variables of the real world, such as the names of the examiners, which
in turn ought to be public. In this case, the scientific knowledge would necessarily
be referred to as something broader.

It is known that programming is one of the key subjects in computing science.
However, if one observes the somewhat empirical characteristics in programming,
the ideas contained here will become clearer. Yet, there seems to be nothing
wrong in the way that programmers still work, and will probably continue doing.

Furthermore, although one can prove that a given program is correct, there can
be proofs of proofs of program correctness etc. Programs are either correct or
not with respect to some representation of a relevant model from the real world.
Therefore, although there are programming techniques including those suggested
and imposed by programming languages, programming is a complex task that
requires some very basic synthetic skills.

My classification is itself synthetic and, as such, can be neither proved nor
refuted. However, exceptions exist. Other synthetic subjects can be existentially
proved, and some such subjects can be equally refuted. The classification here
is essentially based on intuition, analogy and induction (not only because of
any possible contribution to three different areas of research, but also because
of its inductive nature, I had to present sample applications to programming
languages, knowledge representation, and foundations of computing science),
as well as many observations on the real world. On the other hand, such a
classification is not scientific by its nature, only philosophic, but philosophy and
science go together. The term science has a sense weaker than computer science
has had since Godel and Turing.

Finally, the two-axis diagram reflects only some particular philosophical view.
Because of this, I do not expect that it can be used as a universal tool, nor
accepted by the whole community as valid. However, sections 5.1 and 5.2, in a
sense, show that the diagram somehow can be useful, by taking two concepts
classified in ¢, and because, according to the corresponding classification, logics
belongs to the class 7. Naturally, the classification can be used by others who
like it.

Acknowledgement

I want to thank the people from The Trinity College, University of Dublin, for
having approved my research towards the Doctor in Philosophy.

References

1. S. Abramsky. Handbook of Logic in Computer Science, volume 3: Semantic Struc-
tures, chapter Domain Theory, pages 1-168. Oxford University Press, 1994.

2. L. Allison. A Practical Introduction to Denotational Semantics. Number 23 in
Cambridge Computer Science Texts. Cambridge University Press, 1986. Reprinted
1995.

3. R. Amadio and P.-L. Curien. Domains and Lambda-Calculi. Number 46 in Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press, 1998.

4. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

5. W. Bibel and E. Eder. Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 1: Logical Foundations, chapter Methods and Calculi for
Deduction, pages 67-182. Oxford University Press, 1993.

6. S. Blackburn. The Ozford Dictionary of Philosophy. Oxford University Press,
1994.

0 ~I

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

D. Burrell. Analogy and Philosophical Language. Yale University Press, 1973.

A. Chagrov and M. Zakharyaschev. Modal Logic, volume 35, chapter Complexity
Problems. Oxford University Press, 1997.

M. Dummett. The Philosophy of Mathematics, chapter The Philosophical Basis
of Intuitionistic Logic. Oxford Readings in Philosophy. Oxford University Press,
1996.

R. L. Epstein. The Semantics Foundations of Logic, chapter Intuitionism, page
277. Oxford University Press, 1995.

J. U. Ferreira. The plain www page. URLs http://www.ufba.br/ plain or
http://www.cs.ted.ie/ ferreirj, 1996—.

J. U. Ferreira. uu for programming languages. ACM SIGPLAN Notices, 35(8):20—
30, August 2000.

J. U. Ferreira. Computation in the Real World: foundations and programming
languages concepts, chapter 9 wu in Globallog. PhD thesis, The Trinity College,
University of Dublin, 2001.

J. U. Ferreira. Computation in the Real World: foundations and programming
languages concepts. PhD thesis, The Trinity College, University of Dublin, 2001.
P. Forrest. The Dynamics of Belief: A Normative Logic. Philosophical Theory.
Basil Blackwell, 1996.

D. Gillies. Artificial Intelligence and Scientific Method, chapter 1 The Inductivist
Controversy, or Bacon versus Popper, pages 1-16. Oxford University Press, 1996.
D. Gillies. Artificial Intelligence and Scientific Method, chapter 5 Can there be an
inductive logic?, pages 98-112. Oxford University Press, 1996.

J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge University
Press, 1993.

C. Gunter and D. Scott. Handbook of Theoretical Computer Science, volume B
Formal Models and Semantics, chapter 12 Semantic Domains, pages 633-674. The
MIT Press/Elsevier, 1990.

C. A. Gunter. Semantics of Programming Languages: structures and techniques.
Foundations of Computing Series. The MIT Press, 1992.

I. Hacking. What Is a Logical System?, chapter What Is Logic?, pages 1-33. Num-
ber 4 in Studies in Logic and Computation. Claredon Press, Oxford University,
1994.

C. G. Jung and A. Storr. Jung: Selected Writings, chapter Psychological Typol-
ogy (1936), pages 133-146. Fontana Pocket Readers. Fontana Paperbacks, second
edition, 1986. Selected and Introduced by Anthony Storr.

I. Kant and translation by Norman K. Smith. Immanuel Kant’s Critique of Pure
Reason. Macmillan Press Ltd, 1787, 1929.

F. N. Kerlinger and H. B. Lee. Foundations of Behavioral Research. Harcourt
College Publishers, fourth edition, 2000.

J. W. Klop. Handbook of Logic in Computer Science, volume 2 Background: Com-
putational Structures, chapter Term Rewriting Systems, pages 1-116. Oxford Uni-
versity Press, 1992.

B. Kosko. Fuzzy Thinking: The New Science of Fuzzy Logic. HarperCollinsPub-
lishers, Flamingo, 1994.

S. M. Lane. Categories for the Working Mathematician. Graduate texts in math-
ematics. Springer, second edition, 1998. Previous edition: 1971.

F. W. Lawvere and S. H. Schanuel. Conceptual Mathematics: a first introduction
to categories. Cambridge University Press, 1997.

P. Maddy. The Philosophy of Mathematics, chapter Perception and Mathematical
Intuition. Oxford Readings in Philosophy. Oxford University Press, 1996.

30

31.

32.

33.
34.

35.

36.

37.

38.

39.

40.
41.

J. C. Mitchell. Foundations for Programming Languages. Foundations of Comput-
ing. The MIT Press, 1996.

C.-H. L. Ong. Handbook of Logic in Computer Science, volume 4: Semantic Mod-
elling, chapter Correspondence Beteen Operational and Denotational Semantics:
the full abstraction problem for PCF, pages 269-356. Oxford University Press,
1995.

C. Parsons. The Philosophy of Mathematics, chapter Mathematical Intuition. Ox-
ford Readings in Philosophy. Oxford University Press, 1996.

K. Popper. The Logic of Scientific Discovery. Karl Popper, 1972.

B. Russell. History of Western Philosophy, volume III, part 2, chapter 18, The
Romantic Movement, pages 651-659. Routledge, 1946. Edition published in 2000.
B. Russell. History of Western Philosophy, volume I, part 2, pages 101-226. Rout-
ledge, 1946. Edition published in 2000.

D. A. Schmidt. The Structure of Typed Programming Languages. Foundations of
Computing Series. The MIT Press, 1994.

M. Swain, editor. Induction, Acceptance, and Rational Belief. D. Reidel Publishing
Company, 1970.

R. D. Tennent. Semantics of Programming Languages. PHI series in computer
science. Prentice Hall, Inc., 1991.

R. D. Tennent. Handbook of Logic in Computer Science, volume 3: Semantic Struc-
tures, chapter Denotational Semantics, pages 170-322. Oxford University Press,
1994.

J. van Heijenoort. From Frege to Godel. Harvard University Press, 1967.

R. F. C. Walters. Categories and Computer Science. Cambridge Computer Science
Texts. Cambridge University Press, 1991.

