
On Turing’s Proof of The Undecidability of The
Halting Problem

by Ulisses Ferreira

Abstract - Since 1936, it has been well known that, given an arbitrary Turing machine and its input
data, no Turing machine can decide in a general fashion whether the corresponding computation halts
or not. However, in this article, it is shown that the formalism in that Turing’s deduction contains some
fundamental mistake. That is, this article does not prove that the halting problem is decidable but it
may be seen as one step towards the decidability of the same problem.

1 Introduction

In the present article, it is shown that the halting problem is possibly solvable, up to that Turing’s proof
�
.

It has been well known that the halting problem is unsolvable, and that it was originally demonstrated
by Alan Turing himself, in both 1936 and 1937, in one of his remarkable articles[6]. If the problem is
unsolvable for Turing machines, the proposition is often generalized. The converse can also be used.

The notion of composition of Turing machines is necessary for the halting problem. A definition is
provided first. Since the Church-Turing thesis[2], it can be seen that Turing machines can be arranged in
compositions. There is the notion of ��� composition, and the following is provided:

Definition 1 (Turing machine Composition) Let � be a ��� (possibly the Universal Turing machine)
which interprets any ��� , and let �����
	����	�������	������ be a sequence � of occurrences of Turing machines
where the codomain of one occurrence of ��� in the sequence � is the domain of its successive occurrence
in the sequence � . Furthermore, let � be the encoding of an arbitrary natural number in the domain of the
first element of sequence � , ( ��� ), where all domains in the same sequence are subsets of � . A Compo-
sition of Turing machines over � , for which the suggested notation is ����� ��� ������� ��� � ��� �! � "�����  $# , is essen-
tially the relative positions over the tape where the encoded machines rest ( � and � indicate the context
of the composition application but they are not part of such a composition). Those places on the tape are
necessarily and previously set. Thus, � is placed on the tape forming a composition. Furthermore, � (or
one occurrence of � , in case some other occurrence is on the tape as part of ���%�&	�����	�������	������ ) is outside
the tape, in such a way that, as a parallel between any ��� composition and Turing-computable function
composition, the computation of �����'� � �������� � �(� � �! � "�����  $# corresponds to the computation of another and
single ��� , which in turn can also be referred to as Turing machine composition, ) , given � , producing the
respective result of )*�$�+# on the tape where it has been assumed that ),�$�-#/.0�����1� � ��������� � �1� � �2 � "�����  $# ,
as the encoded resulting value 3 , 3245� , in accordance with the Turing machine definition. Furthermore,
for every 6748� , as well as ���9�: in the composition and hence in the sequence � , �(: starts computing if
for every ; and �+< , =?>�;A@(6 , �5< results in a value in its codomain, necessarily in a subset of � . Finally,
B
He introduced, in a somewhat informal way for today, the claim together with his proof in 1936 and published the same

article in 1937. At least if any logician or computer scientist have a look at his original reference[6] as well as more recent ones,
he or she can see that the other authors, instead of Turing himself, have stressed the so called the halting problem in computer
science.



for every 6 42� as well as the corresponding � ���': , ��: does not produce a result without starting com-
puting. Otherwise, the composition � ��� � � ������� � � � ��� �! � "�����  $# is being assumed not to give any response
if � or some involved machine in the ��� composition application does not give a response. Finally, the
Turing machine composition gives a response if the execution of all involved Turing machines halt.

�

As notation, for the computation of some composition, it is suggested to place � as a prefix. For
instance, ���-��� � �! $# refers to the computation of �-��� � �! $# at moment. Turing and others did not use
such different notations, i.e. they did not distinguish a sequence of Turing machines and the corresponding
computation.

At this point, the present author demonstrates that the proof of the undecidability of the halting prob-
lem, which used to be thought to be an application of the Cantor diagonal process, contains a fundamental
mistake. In order to point out Turing’s mistake, his proof is in books more or less as the following:

Theorem 1 There does not exist any Turing machine � such that, for every Turing machine � and any
input data � to � , both placed on the tape in a given representation and order, � can decide whether
the computation of � given � halts or not.

Let this proof be referred to as Turing’s proof. Here the Church-Turing thesis is assumed for simplifying
the proof. Assume that � is a program that decides whether (or not) � halts given � as input. In this
way, given input � , it is previously arranged that � gives true if � halts, and gives false if � does not
halt. Then, Turing defines another ��� � that can be represented here in the following alternative form:

� ��� #
�	��

. if �+��� 		�,# . true then � else true 

where � here represents the absence of response from a � � as usual, that is, the absence of response
from the ��� ( � in the present case) by a programmable set of tuples that form a thread of computation
which in its turn loops forever. Then, the logician who proves can make the following question: does the
computation of � � � # halt? At this point, one obtains the following representation of � � � # :

� � � #�� if �+� ��	 �?#/. true then � else true 
and the answer of the question is the following: The application � � � # halts (executing tuples that cor-
respond to else true as above) if and only if the �+� � 	 � # call results in false, and this is contradictory.
Furthermore, � � � # does not halt (executing � ) if and only if the �-� ��	 � # call results in true, and this is
also contradictory. From these contradictions, it can be said that the assumption made is invalid, i.e. that
the � ��� does not exist.

�
While there are not many books on the theoretical computer science, [1, 4, 5, 3] are some examples.

However, there is one important mistake in the above proof. In advance, the fact that the contradiction
is found does not necessarily imply that the � algorithm does not exist. As it will be described, the
evaluations of compositions can be different.

The thing is that �-��� 		� # apparently receives instances such as �+� � 	 � # which, in a deeper sense, is
not sufficient for universally representing this problem. In advance, and in accordance with � definition,
it is well known that � is defined to be an algorithm based on � no matter how it had been implemented
(say the latter had been implemented by someone else), which has characteristics of an interpreter or so, as
the present author may well assume and, because of this, � receives a parameter (a variable representing
one piece of input data) wherever � appears in this proof to make a computation.

In other words, as it was assumed that � is a program which makes dynamic analysis of another
program, hence, by inspection, it follows that � also makes dynamic analysis of another program. And
finally, a question is: what is analyzed in �+� ��	 �?# ? In the lack of an object that is dynamically analyzed,
which, in contrast, cannot make dynamic analysis, the expression �-� ��	 � # fails to represent correctly the
application of an interpreter, and hence Alan Turing’s proof fails to represent completely the problem.



More than this, it is known that the unsolvability of the halting problem is a universal claim (an existential
claim negated). Therefore, his deduction in the original form does not prove his claim.

What halts is any program and data that, together, form computation. That is, the logician or computer
scientist would need to represent all programs and data that would form any computation, not simply
programs and data. In this way, Alan Turing would have previously established some representation of
the empty input data since some programs do not require any data. Here, � can be set for denoting empty
data, while � donotes the representation of the value � on the tape. Thus, the application �+� � 	�� # results
in the true value iff

�
without input data halts. On the other hand, for some input �14 � where ���.�� ,

the application �+� � 	 �+# results in the true value iff
�

with input data � halts. However, the known proof
of the undecidability of the halting problem does not represent both alternative possibilities. The proof of
this is that he uses a program in place of data, and the program cannot be empty as universal.

Assume that � is the program to solve the halting problem, and further assume that � is an interpreter
or so, and not a program that makes static analysis only. In this way, while a parser

�
can make syntax

analysis on its source representation only (as an example of notation,
� ��� �
	 # , where

�
denotes a pro-

gram and � �
	 denotes its representation), � can also interpret itself. However, in the most inward level
of composition, there is some non-interpretable piece of data (although data is not part of the composi-
tion, strictly speaking) or, alternatively, a program that does not require any input data. An example of
representation of the first case can be �-� �+� �-� � �$�-# # # # for some � unary, where

�
denotes a program,� �. � , and � denotes the possible input data where ���.� . An example of representation of the second

case can be �+� �-��� # # where � denotes a program
�

that, by its definition, does not require any input data.
The other example of the second case is obtainable from the first example by making � .�� . Therefore,
in the lack of representation of both cases, the original proof of the unsolvability of the halting problem
is incomplete. Therefore, what that known proof of the undecidability of the halting problem now seems
to correctly state is that the halting problem solver is in a sense an interpreter, i.e. a program that makes
analysis of computation itself, not simply a program that receives a program

�
and its input data � , and

makes static analysis on
�

. More precisely, that proof seems to state that the possible halting problem
solver has to have characteristics of an interpreter.
[Proof] Now and briefly, one referred to mistake of Turing’s is introduced, as if the present author were
playing a game together with Turing. From the following Turing’s definition

� ��� #
�	��

. if �+��� 		�,# . true then � else true 

and � � � # , in the proof of the undecidability of the halting problem, as above stated, one obtains the
following entailment for every program � :

� � � #�� if �+� ��	 �?#/. true then � else true 
and now, as � is universally quantified, in a game against Alan Turing, the present author can state that

� is an interpreter (or a kind of simulator of computation), together with its characteristics. Furthermore,
regarding the call �-� ��	 � # written by Turing, there are some general forms of evaluation, from which can
be chosen to be part of � :

� Strict evaluation: The machine evaluates the parameter first. Then it executes the sub-program
or function. For instance, ������� ����� =
# where ����= is evaluated first and then the square root
is calculated. With one or two exceptions, functional programming languages are divided in two
classes, strict and lazy, and so all functions of the same programming language is either strict or
lazy. However, this classification is conceptual and can be applied at the level of parameter.

B
Notice that the first mathematician who used both notations, i.e. unary and binary, was Turing, and that, as a consequence,

this article has to accordingly use both notations in such places, for permitting that proof of his.



� Lazy evaluation: The machine evaluates the parameter at most once. In the present Turing’s proof
above, the evaluation of one parameter of �-� ��	 � # is strict as stated. Further, since the other pa-
rameter might not be used, the evaluation of the latter parameter can be lazy. The following item is
more specific and suitable for what is needed.

� Interpreter mode: Since � can be assumed as having been specified and implemented by someone
else, it is set that the first parameter is evaluated unconditionally, and because, in the proof, it is
simply � , there is nothing interesting to do there other than resulting in � . That is, it is known that
the parameter � in Turing’s expression � � � # does not need to be evaluated because � is a simple
expression. Then, given �-� ��	 � # , the machine evaluates � first, which in its turn executes each step
of the first parameter � , and this is what really happens as the present author assumed that � was
an interpreter or so. In this way, depending on the first parameter of � , i.e. the program interpreted
by � , the second parameter of � is either evaluated or not.

Therefore, whenever � is applied, � can be executed unconditionally, according to Turing’s settings
and these definitions over � . In particular, whenever � � � # is applied, since this parameter � is an expres-
sion that results in itself, wherever � � � # occurs, � in �-� ��	 � # is executed first.

Further, as � is assumed to be an interpreter or so, it has some property � of programs that have
characteristics of interpreters or so, namely to make dynamic analysis of programs, among other char-
acteristics. Since Turing plays with the universal quantifier, a person who specifies � can set that every
program with property � requires a program (typically, the program that is interpreted) as a parameter.

By � definition, � not only has property � but also either � or � is executed unconditionally first.
Thus, by � definition, it follows that � also has the property � . So � can be executed first and all
programs in �-� ��	 � # now have property � and, on the other hand, the computation of �-� ��	 � # is in
accordance with the following: � interprets the steps of the first occurrence of � ; Since � has property

� , the first occurrence of � interprets the steps of the second occurrence of � ; The second occurrence of
� does not have a program to interpret.

Therefore, in the lack of an occurrence of program to be interpreted (in accordance with the present
author’s settings, in his own right), Alan Turing’s correct deduction cannot prove the unsolvability of the
halting problem in a universal way. Notice that, although � is a Turing’s definition, � is assumed to
belong to others and, in this way, it can be unconditionally executed as soon as � is applied.

Finally, Turing’s deduction was correct, only failed in the representation.
�

References

[1] John E. Hopcroft, Jeffrey D. Ullman, and Rajeev Motwani. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, second edition, 2001.

[2] Stephen C. Kleene. Introduction of Metamathematics. D. Van Nostrand, Princeton, 1952.

[3] Harry Lewis and Christos H. Papadimitriou. Elements of the theory of computation. Prentice-Hall,
Inc., second edition, September 1997.

[4] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company, 1995.
Reprinted with corrections.

[5] Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Company, 1997.

[6] Alan M. Turing. On computable numbers, with an application to the entscheidungsproblem. In
Proceedings of London Mathematical Society, volume 42 of 2, pages 230–265, 1936. (also in volume
43 (1937) pp. 544-546 with corrections).


