
Programming Languages Features
for some Global Computer

Ulisses Ferreira
Department of Computer Science

Trinity College Dublin, Dublin 2, Ireland
E-mail: ferreirj@cs.tcd.ie or ulisses@ufba.br

Abstract— This paper introduces a number of programming
languages concepts that are useful for mobile agents and for the
Internet. In particular, we explore the ability to program with
the unknown value, called uu, by giving examples of constructs
which can be combined sequentially. Although the present
characteristics are not necessarily for mobile-code languages, the
underlying and unified global environment is a single one.

I. INTRODUCTION

For writing the present paper, we observed that, in order
to provide a reasonable paradigm for general Internet pro-
gramming, some combined and non-traditional programming
language concepts need to be introduced aiming at specific
applications over the Internet.

Code mobility is a relatively new field of research that
has inspired intriguing ideas on programming techniques to
improve related software. New programming languages have
been presented and discussed in workshops and conferences
aiming at providing better standards and good examples for
future language designs, commercially or otherwise.

To propose a better model for mobile agent programming
for the World Wide Web, for example, the language designer
should consider that the underlying connections often fail or
delay. A neutral state, which would represent the lack of result,
could be assigned to the variable that takes part in the request
in such a way that the program carries on running safely.
Mobile agents need to be robust and make their own decisions
remotely.

Although the present programming language features are
not necessarily specific for mobile-code languages, the under-
lying environment can be the same. Here we explain how this
additional value can be useful in programming for a global
environment where the mobile agent paradigm and technology
have become increasingly important. In logics, this value has
been traditionally referred to as uu for providing an alternative
value to true (tt) and false (ff). Like many imperative
features, the present ones also apply to functional languages.

Broadly, some pieces of work, such as [1], [2], have indi-
cated similarities between technologies of code mobility and
persistence, and some persistent languages are being explored
at some universities. In the present approach, because we are
looking for generality and efficiency, persistence is not pro-
vided directly by the language, but instead by programmable
constructs. Because of that, this approach here is at least
as applicable to mobile agents as persistent languages. As

well as persistence, communication is another very active
topic of research and much work has been done regarding
fault tolerance and communication between mobile agents.
However, relatively few satisfactory results have been achieved
in terms of language facilities and abstractions.

Here we concentrate on the use of programming features
in the context of a global environment and mobile agents
programming.

The ability to represent and reason with partial information
is well understood in the artificial intelligence and logic
communities. However, very little of this work has been related
to programming techniques. An exception is Extended Logic
Programming, introduced by Gelfond and Lifschitz[3], [4],
that can be used for the same purpose as that we are discussing
here. Extended Logic Programming makes use of two forms
of negation. In [5], the author suggests that an important
practical problem in Extended Logic Programming is how the
programmer distinguishes whether a negative condition is to
be interpreted as explicit negation, or as negation due to the
absence of any clause in any closed world as an assumption.

The unknown value, uu, extends the semantics of other
logics, such as classical and intuitionistic logic, according
to the Łukasiewicz [6], [7] 3-valued logic. Here we extend
this value for each data type in programming for a global
environment or for mobile agents. In arithmetic and relational
expressions, uu as a resulting operand implies the expression
to result in uu. Accordingly, statements have to be adapted to
make use of this value.

Most Expert System Shells made use of an unknown
symbol to represent lack of information in boolean variables,
in a very restrictive way however. We generalize this concept
to programming languages in general, although we apply it
here to mobile agents programming.

Agents have to be robust and, because of this, when connec-
tions fail or delay, programs should carry on running despite
the lack of information. uu is a constant in programming
languages that can be assigned to any variable of any datatype.
This new constant guarantees both safety and robustness at the
same time, because variables are never committed to any value
that is not in the problem domain. An introduction on types
for functional programming languages can be found in [8].

In section II we review some recent programming languages
for such an environment, while section III is dedicated to an
illustrative programming language. Section IV introduces the

concept of unknown together with other related concepts, and
explains how they can be used to achieve the proposed goals.
As a consequence, section V complements those concepts
by stressing the importance of any form of lazy evaluation
in programming, as well as timeouts, no matter the adopted
paradigm. Section VI briefly discusses logic programming
on global computers while section VII also describes strong
mobility. Section VIII contains other relevant features that
are relevant enough to be mentioned. Section IX contains the
conclusion.

Finally, Appendix describes a secure mobile agent system.
The examples in this paper are written in a programming
language. In section III, we discuss the syntax of the relevant
subset of this language.

II. SOME CURRENT MOBILE-CODE LANGUAGES

In the past few years researchers have seen the Internet
as a popular environment for systems. Some of us would
like to program and compute using this structure, i.e. to view
parts of an Internet-like network as global computers[9]. Many
companies, for example, are starting to have their own internal
global computers for their specific purposes.

In 1995, Sun Microsystems presented Java[10] program-
ming language with the stress on the interesting idea of
permitting code mobility on the World-Wide Web. Portability
of code has become critical to software development. Some
online portable languages (i.e. taking a running program
and port it to a different architecture while it is running)
have recently been designed[11], whose characteristics will
be discussed in this section. Type systems, scoping, name
resolution and dynamic linking are some of the key concepts
in this context. According to Cardelli, “languages that are
not on-line portable will be abandoned because they do not
provide what is increasingly perceived as basic functionality:
mobility”[11].

However, one of the most interesting ideas is not only to
move code, as Tcl[12] and Java[10] do, but also computation
(code along with context) over the network, that is, a compu-
tation which starts at some location may continue to execute at
some other location. Synchronous connections to the original
site may be set while a program is running remotely in such
a way that any change in some variables transparently causes
the value to be stored in the original site. Alternatively, new
values of variables can be sent to the original site with no
need for synchronous connections. Other paradigms of mobile
computation already exist and they depend on the kind of
entities that are transfered over the network, with respect to
what is moved (code, data, connections, etc).

When the code is moved, what happens if the names it
contains are bound to resources in the source virtual machine?
This issue defines two classes of strategy, replication and
sharing. The first strategy may be either static or dynamic.
Concerning static replication strategy, constants, system vari-
ables and libraries, for example, are regarded as ubiquitous
resources[13] and they can adopt such strategy, where bindings
are deleted and set after arrival. As for dynamic replication

strategy, the code migrates to another virtual machine along
with bound resources and the original bindings are deleted.
The original resource in the source virtual machine may
be either deleted (replication by move) or kept (replication
by copy). In the sharing strategy, the original resource is
kept and remotely accessed through network references and
connections.

In both strong and weak mobility[14], security[15], [16] is a
very important matter. Locations must check for authorization
and capabilities in order to prevent malicious software running.
However, as long as that is ensured by the system, a global
network can be a very interesting and natural platform for
computation. Thus, a new challenge emerges: how to provide
these facilities and prevent the related problems?

Mobility should also be considered not only during the exe-
cution of programs but also during the elaboration of software.
The emphasis in performance is no longer in the run-time
code generated by compilers, but in the (dynamic) compilation
process itself (when applicable), transmission and additional
overheads to guarantee security and other requirements.

Acharya, Ranganathan and Saltz[17], [18] during the design
of Sumatra, an extension of Java, consider three requirements
for individuals: awareness, which is the need to monitor the
level and quality of resources in their operating environment;
agility, which is the ability to react to changes in resource
availability, and authority, which is the ability to control
the way that resources are used. Although they are important
concerns, we think that these concerns should be treated at the
application level, not at the language level.

Some programming languages for mobile computation are
described and analyzed in [14] and other articles, and briefly
described here:

• Java[10] is a strongly-typed object-oriented language.
Java deals with security[19] and allows transmitting
program byte-code to be interpreted by the Java Vir-
tual Machine[20], but does not migrate computation. It
supports weak mobility with dynamic linking. Security
level is increased by the byte-code verifier at loading-
time. Some security problems have been found[21]. It
was shown that the ability to break Java type system
leads to an attacker being able to run arbitrary machine
code[22]. Static and dynamic type checking.

• Telescript[23] is an agent-based and object-oriented lan-
guage that explicitly deals with locality, strong mobility,
and finiteness of resources. There are two kinds of Exe-
cution Units: agents and places. Typically, when an agent
is running on an interpreter, the instruction go causes the
agent execution to be suspended, its code and current state
are transmitted to a remote virtual machine and, there, the
computation is resumed. However, agents do not main-
tain connections to remote agents. The Telescript run-
time code is interpreted without security checking since
security is ensured at the language level. The replication
strategy is dynamic, by move. Static scoping and name
resolution. Static and dynamic type checking. In spite
of the historical reasons for mentioning Telescript here,

that technology was replaced by Odyssey[24], which is
a Java-based version of Telescript, briefly speaking.

• Tycoon[25] provides thread migration like Telescript. It
is a polymorphic, higher-order functional language with
imperative features, which may support other paradigms
indirectly, including object orientation. Tycoon provides
strong mobility and support for persistent programming.
All objects in this language have first-class status. Static
and dynamic type checking, dynamic replication with
strategy by copy, besides static replication strategy.

• Agent Tcl[26] provides strong mobility where the whole
image of the interpreter can be transfered to a different
site by executing a jump instruction. Agent Tcl also
provides weak mobility by executing a submit instruction
which allows transmission of procedures along with part
of their global environment, to a remote interpreter.
Typeless language therefore no type checking. Dynamic
replication strategy, both by copy and by move. Agent
Tcl is a PhD thesis[27].

• Safe-Tcl[28] supports active e-mail, where messages
may include code to be executed when an interpreter
reads the message after receiving it. However, Safe-
Tcl does not support active e-mail code mobility at the
language level but, instead, code mobility is achieved
through a dynamic code loading mechanism. Typeless
language therefore no type checking.

• Obliq[29], [30] is an object-based language that encour-
ages distribution and mobility. While a mobile object is
migrating from one place to another, new connections are
automatically open between source and destination places
in order to guarantee that any change in the variables will
update the state in the source place. Therefore, object
references are transformed into network references. Al-
though a simple language, there is some loss of efficiency
and robustness due to some possibly very large number of
connections in an unreliable environment. Dynamic type
checking, sharing strategy.

• Facile[31] is a functional language, a superset of ML
with primitives for distribution, concurrency and com-
munication. Mobile code programming was later added
to this extension[13]. Static and dynamic type checking.
Dynamic replication strategy by copy, besides static repli-
cation strategy.

• TACOMA[32], [33], the Tcl language plus primitives to
allow a running Tcl script to send another script and
initialization data to another host in order to execute
the script remotely. Typeless language therefore no type
checking. Dynamic replication by copy.

• M0[14], [34] is a stack-based interpreted language which
provides weak mobility and run-time type checking.
Dynamic type checking, dynamic scoping rules, dynamic
replication by copy.

Aglets Workbench, developed by IBM, is a mobile agent
system based on Java. Like others, such as ObjectSpace
Voyager, the system security and other issues depend on the

Java system[35].
As mentioned before, in the present paper, we discuss some

of the features of the programming language.

III. THE PRESENT PROGRAMMING LANGUAGE

The present sample programming language is a language
that supports mobile agents, syntactically somewhat similar
to Java. It supports strong mobility, as well as some forms
of knowledge and belief representation, reasoning, and un-
certainty treatment. As an on-going experimental project, the
language has not been scaled up and security has not been a
concern. Communication between agents has not been imple-
mented either. The virtual machine interprets byte-code and the
language provides both replication strategies by programmable
handlers. BNF legend: boldface letters are keywords; italic
words with initial capital letter are other terminal symbols;
words in lower-case letters are non-terminal symbols; meta-
symbols: | indicates alternative, ε is the empty symbol of the
grammar. Other terminal symbols: { (, ;) } are used in the
grammar. The following BNF definition is of a very simple
subset of the programming language in question, and where
the first symbol denotes the starting symbol of the syntax:

aprog 7−→ classlist commandlist

classlist 7−→ ε | classdef classlist

type 7−→ int | list

modifier 7−→ private | public | ε

onevardef 7−→ Id | assignment

idlist 7−→ onevardef | onevardef ’,’ idlist

vardef 7−→ modifier type idlist ’;’

handler 7−→ evaluator | reactor

evaluator 7−→ when Id ’,’ do command

reactor 7−→ when Id ’:=’ do command

classdef 7−→ class Id ’{’ defs ’}’

defs 7−→ ε | vardef defs | function defs | handler defs

command 7−→ assignment | ’{’ commandlist ’}’
| functioncall | ifcommand | return |
return expression

assignment 7−→ Id ’:=’ expression

ifcommand 7−→ if expression then command |
if expression ’,’ command |

if expression ’,’ command ifnot command |
if expression ’,’ command else command |
if expression ’,’ command otherwise command |
if expression ’,’ command

ifnot command
otherwise command

commandlist 7−→ ε | command ’;’ commandlist

where non-terminal symbols, namely function, functioncall
and expression are as usual. In the programming language
which is being presented, they are somewhat syntactically
similar to C++ or Java. The main difference is that the symbol
$ can be placed where a variable identifier is expected, as it
will be explained below. There are other details that will be
explained together with the examples. As stated, the Appendix
formalizes the semantics that will be explained.

IV. uu IN GLOBAL COMPUTERS

For every data type, the language designer can add a special
value, namely uu, to represent lack of some domain value, i.e.
some known value in the problem domain. For integers, there
is uui; for real numbers, there is uur and so on. We simply
write uu to mean that the type is irrelevant in such context.
Accordingly, we write value in the singular form to mean that
its type is not important in the sentence. Grammatically, uu or
unknown is a constant. Variables either contain uu or some
domain value. In advance, besides other applications of uu in
some programming language, uu can support fault tolerance
over the Internet, and this will be clear while the subject is
introduced.

Some languages adopt a default value as initial variable
contents. But since one now has uu, we ought to adopt this
value as the initial one for every variable. The programmer
should certainly want to initialize some variables with different
values.

For any variable in the program, handlers can be attached.
They can be one evaluator and/or one reactor, independently.
As well as other purposes, one handler can protect a variable.
The idea of evaluator is to allow the programmer to write
a piece of code to produce and provide some domain value
for the corresponding variable, while the idea of reactor is
to inspect and protect the variable against assignments. Thus,
a reactor allows the programmer to write a piece of code to
react instead of letting values be stored unconditionally in the
corresponding variable.

int x, y;

when x, do { x := 3 ∗ y; }

when x := do { x := $; }

In the above example, two handlers are defined for the
variable x. The first time that the value of x is being requested
in an expression, the above evaluator is triggered, which in turn

computes the triple of the value of the variable y assigning it
to x. From the second time on, the computed value 3 ∗ y
is already available in x and, because of this, the evaluator is
not triggered. This idea is not limited to exception handling, a
mechanism supported by some other languages, and this will
become clearer soon.

An evaluator can contain return statement (similar to C) as
an alternative to assigning a value to the requested variable.
In the case of the return statement and no prior assignment
in the evaluator, the evaluator is always triggered when that
variable is being used, unless some domain value has been
assigned to that variable outside the evaluator.

Whenever a value is to be stored in x, the control is jumped
to the corresponding reactor. Notice that the $ symbol above is
used in reactors to represent the value that, in other languages,
would be stored unconditionally. In the above example, the
value is accepted.

Built-in predicates can be provided to check whether a
variable contains uu, for example, known and unknown. In
these cases, the value is accessed directly and the boolean
result from the condition is provided by the interpreter without
evaluating the handler of that variable.

The use of variables in expressions can have innovative
semantics:

If the variable contains some value in the problem domain,
the semantics is exactly the same as in imperative languages.
However, if the variable contains uu, the semantics is divided
by two separate subcases: if there is an evaluator, it is executed.
Otherwise, i.e. when there is no evaluator, uu is used instead.
However, the semantics of the execution of evaluators is not
similar to the semantics of function calls, because the latter
are always executed. In the case of Remote Procedure Call or
Remote Method Evaluation, this unconditional call is probably
inconvenient or inefficient in programming.

In terms of design, uu and handlers replace exception
handling in other languages. This might relatively simplify
the language. Handlers are very useful during program testing
and debugging phases, by inspecting what is being stored and,
since mobile agents might escape from the user, uu together
with handlers can be used in mobile agent programming. For
example:

class mycl {
public int x;
private list queue := [];
when x := do {

x := $;
queue := queue +
[[#self + “.x := “ + $ + “ at “ + LocalT ime()]];

}
}

mycl c; c.x := 10; c.x := 20; c.x := 30;

In the above class or its subclasses, whenever x receives a
value, it is also stored in the queue together with the name of
the object (#self), the name of the field (x) and the current

local time (LocalT ime()). The ’+’ operator concatenates lists
or strings, besides the arithmetic addition, as usual. The square
brackets are used to construct a list of values of any type. Here
the programmer chose list of lists for programming reasons.

Because we know that it is very difficult to implement the
mobile agents debugging system in a satisfactory way, the
above simple code can be written since we have handlers.
To generalize, when a mobile agent dies, the local runtime
system ought to provide a way of returning the agent to its
home. By some local query, the programmer can inspect the
contents of such queues, including a general queue for all
classes. By writing some declaration (trace) in the language,
a mobile object support system can internally maintain these
queues.

If we think of mobile agents that can deal with resources
that cannot move, the difference from other paradigms might
become decisive in language design. On the one hand, a
variable in an evaluating expression may cause its value to
be read from a data base or requested from a remote process,
provided that its current value is uu. Thus, a variable may
have a cache because in the subsequent uses, some domain
value is available locally and the handler is not triggered. On
the other hand, to assign a value to a variable may cause its
value to be stored on a data base or sent to a remote host.

The following piece of code exemplifies a persistent field p
and a remote field r that can live together in the same class:

class remoteandpersistentcl {
public int p, r;

public void ini(int i, int j) {
inttodb(“p”,i);
p := i;
inttourl(“www.aaa.bbb.ccc/cgi/server/r.txt”,j);
r := j;

}

when p := do {
p := $;
inttodb(“p”,p);

}

when p, do {
return intfromdb(“p”);

}

when r := do {
r := $;
inttourl(“www.aaa.bbb.ccc/cgi/server/r.txt”,r);

}

when r, do {
r := intfromurl(“www.aaa.bbb.ccc/cgi/server/r.txt”);

}
}

remoteandpersistentcl c;
c.p := 20; // also store the value 20 locally on data base.
sendlocally(home, c.p); // send 〈c.p〉 to the agent home.
c.r := 30; // also update remotely.
sendlocally(home, c.r); // send 〈c.r〉 to the agent home

Notice that, according to the evaluator definitions, while
the p field is retrieved from a data base whenever its value is
requested, the r field is programmed to behave as cache over
the global environment. We could write a method reassigning
uu to r to cause the r integer value to be retrieved from
network at the next time that it is requested in some eval-
uating expression. The functions inttourl, intfromurl and
sendlocally tell the underlying system to generate internally
mobile agents to take part in the protocol. There has been
a general criticism concerning mobile agents because they
do not maintain connections. We agree that a programming
language should hide connections from the agent, but the
mobile agent support system should provide remote commu-
nication in an appropriate way. This produces positive effects
and abstractions in the programming language.

Here we concentrate on features for global computing and
present some new aspects of uu.

V. LAZY EVALUATION AND TIMEOUTS

Lazy evaluation is one of the most interesting characteristics
of programming, in particular in applications where time is
regarded as important. In this paper, we are not regarding lazy
evaluation as being only call by need of functional languages.
If the language provides functions, lazy evaluation can also be
very useful in the same platform, from the same point of view
of the present section.

Programming for mobile agents on a global environment
tends to be more personal. One of the reasons is that patience
and mood vary for different people as well as for the same
person at different instants, and one of the purposes of agents
is to represent users.

As an example of a situation, a mobile agent ma can
communicate with a stationary agent s which in its turn can
send a small agent remotely to ma’s home in order to return
some piece of information to s which in turn can hand it
to the mobile agent ma. To deal with faults and delays in
communication, a timeout can be set, implicitly or explicitly,
for every input operation. After that time, the result is unknown
(uu) and the computation continues normally. Similarly, every
output operation has a timeout.

In this way, the same statement can be executed at different
locations[36], either sequentially or not. This situation happens
often. Cache-like variables might produce a similar result as
lazy evaluation. Computing with timeouts together with uu
and handlers is not lazy evaluation, but it can give a somewhat
similar impression of impatience and, because the resulting
value in this case of exception is uu, variable values in
programs are always sound and finally this scheme improves
agent robustness.

Another way of dealing with faults and delays is to provide
a standard semantics for basic operations such as arithmetic

and relational. In particular, if the first operand is uu, the
expression might result in uu without the evaluation of the
second operand. This is a form of lazy evaluation.

VI. LOGIC PROGRAMMING

In comparison to imperative programming languages, logic
programming is easy because the former requires a more
difficult form of reasoning, for instance, sequences of state-
ments. Here a program is ideally a set of facts and rules, and
these are notions with which all of us are used to dealing
in our daily lives. In agent-based languages and systems, the
programmer typically needs to state permissions of access for
users to resources and this can be done in logic programming
quickly, perhaps automatically. On the other hand, logic-based
languages that are boolean, such as the famous Prolog, are
not very compatible with global computing because there are
delays and failures in connections in the real world. Perhaps
because of this, logic programming has not been interesting
for code mobility or global computers. Prolog negation as
failure is dependent on the closed-world assumption while,
in contrast, global computers contain those mentioned char-
acteristics. This presents an important problem if one wants
to use Prolog in applications other than with non-monotonic
reasoning, similar to locally answering whether there exists a
flight leaving London for New York on Wednesday afternoon,
as illustrated in [37].

VII. STRONG MOBILITY

Global computers almost imply code mobility, whose most
general form is strong mobility, which in turn can be im-
plemented by mobile agents. To date, for all mobile agent
languages and systems, an instruction that causes mobility is
required, although strong mobility can be easily conceived
declaratively, instead of in the form of an imperative state-
ment. In Telescript, for instance, this statement is called go
while in Agent Tcl the equivalent statement is called jump.
In the programming language which is being presented for
illustrative purpose, the instruction is the flyto statement.

The statement for strong mobility makes the agent execution
freeze and the thread continues at the destination address,
which is its operand. There may be some password and other
details, depending on the technology.

VIII. OTHER FEATURES

Because generality is desirable, choices among various
strategies for binding resources should normally be pro-
grammed. Handlers may be used to implement different strate-
gies for variables that are resources, either local or remote.

During the compilation, in order to support higher-level
communication between agents, names of objects in the source
program can be written in the object code, which increases the
agent size but it is still a good idea. A possibility is to generate
only names defined in the dynamic part of the interface. If the
language supports artificial intelligence techniques, perhaps it
is even interesting to consider the idea of generating all names.
Communication between agents can be set from a prefix in

function calls containing the name of the destination agent. For
example, in x := prov:func(params), the string variable
prov is a name that indicates the agent which in turn might
contain the func function definition. The prov value is an
absolute (global) or relative (to the local host) address. If such
a matching name of func(params) is undefined in that agent
when the call is executed, x receives uu. In every function call
(or method invocation) between two agents, a timeout can be
attached. For example, in x := prov:func(params) timeout
3, if the operation is not completed before 3 seconds, at that
time it is interrupted and x receives uu.

The concepts of home and Id of agents ought to be key
words in the programming language, in a similar way as
exemplified above, outside the class remoteandpersistentcl.

Surprisingly, although concurrent programming[38] is an
important technique that can help in certain applications, it is
not a specific feature for mobile agent programming languages,
as concurrency can be achieved at the operating system level.

However, uu permits a large number of parallel operations,
not only parallel and and parallel or. For example, to evaluate
op1 (+) op2, the operands are evaluated first, possibly in
parallel, and if both result in a known value the sum is finally
performed, otherwise the result is uu. See semantic rules for
(+) in the Appendix. There are no side effects in the operation,
as the language can guarantee syntactically the presence of
only pure function applications and pure expression evalua-
tions. Although we do not list all parallel operations, which
lexically we would similarly surround all those sequential
operators with parentheses, very similar semantic rules would
apply for the other operators. In other words, in the Appendix,
we only present rules for (+) and not for (−), (∗), (/)
etc. The systematic use of these parallel operators radically
improves programming, as well as improving efficiency of
agents running globally.

IX. CONCLUSION

Local inefficiency is an issue of the features discussed in
this paper. Assuming that, in practice, mobile agent support
systems entail code interpretation, the interpreter has to check
the presence of uu whenever a variable is being requested
in an evaluating expression. However, as hardware is getting
faster and larger, this is not considered a significant problem.
Moreover, this problem can be compensated for the fact that
mobility and remote accesses are the bottleneck in applica-
tions, and that variables can behave as cache and operations
can be lazy. This combination is encouraged by the language.

ACKNOWLEDGEMENT

We would like to thank Christina for the nice and useful
discussion on some parts of this paper.

APPENDIX

AN OPERATIONAL SEMANTICS

An operational semantics is defined here to make the ideas
presented in this paper more precise. We define the semantics
of certain language constructs, expression, assignment and
conditional statements.

Let p be a program in the present object language U and let
all of these definitions apply to the scope p. To avoid being
exhaustive, we infer the uu type according to the operators,
use = and 6= as polymorphic operators, and consider that
variables have their separate scopes in each rule, although
they have the same names in the set of rules. We apologize
for this abuse of notation. Let AI and AL be isomorphic
to Z ∪ {uu} and {ff,uu, tt} i.e. the set of logical values,
respectively, and use these sets as carriers of the algebra
that we are going to define. Because we use Łukasiewicz[6],
[7] 3-valued logic in the rules, and it extends the semantics
of the boolean connectives using the same symbols, we
use only the 3-valued connectives to avoid a mixture of
logics. Thus, ¬ff tt, ¬tt ff, ¬uu uu, uu ∧ ff
ff, uu ∧ tt uu, uu ∨ tt tt, uu ∨ ff uu, etc.
Notice that although uu 6= uu is false and uu = uu
is true at the rule level, both result in uu in the object
language semantics. Now we can define an algebra A

def
=

〈AI , AL, Han, V ar, Loc, V al, S, 0, ff,uu, tt, u, v, x, y, ev, re,
$, def, +,−,×, /, =, 6=, <,¬,∧,∨〉 for signature Σ in
this analysis, where AI is the set of integers, AL is
the set {ff,uu, tt}, Han is the set of handlers, V ar
is the set of all variables, Loc is the set of locations,
V al

def
= AI ∪ AL, and S is the store or state. Let

u, v ∈ V al, x, y ∈ V ar. We only consider variables of
p and not constants or operands of another nature. Then,
Σ

def
= 〈{AI , AL, Han, V ar, Loc, V al, S}, F 〉, where F is

consisted by +, −, ×, /, =, 6=, <, ¬, ∧, ∨ and the following
functions:

(initialize) Ω : S

(locate) γ : V ar → Loc

(lookup) ρ : S × Loc → V al

(update) ∆: S × Loc × V al → S

(handler is defined) def : Han → AL

(evaluator) ev : V ar → Han

(reactor) re : V ar → Han

(intended value) $: V ar → V al

Intuitively, Ω initializes the whole memory; γ maps a variable
to its location; ρ results in the content of a location in some
particular state; and ∆ updates the memory according to its
parameters: location and value. As a syntactic sugar, we write
x.ev and x.re to refer respectively to the evaluator ev(x)
and reactor re(x) of some variable x, and use the following
notation on the syntax: def(x.ev) to mean that the evaluator

of x exists, and def(x.re) to mean that the reactor of x exists.
Accordingly, we also write x.$ to refer to the result from
the evaluated expression that is always available during the
evaluation of the reactor x.re when it is defined and applied,
that is, x.$ is shorthand for $(x). Let s0, s, s

′, s′′ ∈ S, s0 be

the initial state. Then Ω
def
= ∀x ∈ V ar, ρ(s0, γx) = uu.

The operational semantics rules are:

Introduction :
begin

Ω

V1 :
ρ(s, γx) = u u 6= uu

〈x, s〉
eval
 (u, s)

V2 :
ρ(s, γx) = uu def(x.ev) 〈x.ev, s〉

eval
 (v, s′)

〈x, s〉
eval
 (v, s′)

Lazy +:
〈x, s〉

eval
 (uu, s′)

〈x + y, s〉
eval
 (uu, s′)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v = uu

〈x + y, s〉
eval
 (uu, s′′)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v 6= uu

〈x + y, s〉
eval
 (u + v, s′′)

(+)1 :
〈x, s〉

eval
 (uu, s′)

〈x (+) y, s〉
eval
 (uu, s′)

(+)2 :
〈y, s〉

eval
 (uu, s′)

〈x (+) y, s〉
eval
 (uu, s′)

(+)3 :

〈x, s〉
eval
 (u, s′) u 6= uu

〈y, s′〉
eval
 (v, s′′) v 6= uu

〈x (+) y, s〉
eval
 (u + v, s′′)

Lazy − :
〈x, s〉

eval
 (uu, s′)

〈x − y, s〉
eval
 (uu, s′)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v = uu

〈x − y, s〉
eval
 (uu, s′′)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v 6= uu

〈x − y, s〉
eval
 (u − v, s′′)

Lazy ∗ :
〈x, s〉

eval
 (uu, s′)

〈x ∗ y, s〉
eval
 (uu, s′)

〈x, s〉
eval
 (0, s′)

〈x ∗ y, s〉
eval
 (0, s′)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v = uu

〈x ∗ y, s〉
eval
 (uu, s′′)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v 6= uu

〈x ∗ y, s〉
eval
 (u × v, s′′)

Lazy / :
〈x, s〉

eval
 (uu, s′)

〈x/y, s〉
eval
 (uu, s′)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v = uu

〈x/y, s〉
eval
 (uu, s′′)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v 6= uu

〈x/y, s〉
eval
 (u/v, s′′)

Lazy = :
〈x, s〉

eval
 (uu, s′)

〈x = y, s〉
eval
 (uu, s′)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v = uu

〈x = y, s〉
eval
 (uu, s′′)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v 6= uu

〈x = y, s〉
eval
 (u = v, s′′)

Lazy != :
〈x, s〉

eval
 (uu, s′)

〈x != y, s〉
eval
 (uu, s′)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v = uu

〈x != y, s〉
eval
 (uu, s′′)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v 6= uu

〈x != y, s〉
eval
 (u 6= v, s′′)

Lazy < :
〈x, s〉

eval
 (uu, s′)

〈x < y, s〉
eval
 (uu, s′)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v = uu

〈x < y, s〉
eval
 (uu, s′′)

〈x, s〉
eval
 (u, s′) u 6= uu 〈y, s′〉

eval
 (v, s′′) v 6= uu

〈x < y, s〉
eval
 (u < v, s′′)

ρ(s, γx) 6= uu

〈not x, s〉
eval
 (¬ρ(s, γx), s)

ρ(s, γx) = uu ¬def(x.ev)

〈not x, s〉
eval
 (uu, s)

ρ(s, γx) = uu

〈x known, s〉
eval
 (ff, s)

ρ(s, γx) 6= uu

〈x known, s〉
eval
 (tt, s)

ρ(s, γx) = uu

〈x unknown, s〉
eval
 (tt, s)

ρ(s, γx) 6= uu

〈x unknown, s〉
eval
 (ff, s)

ρ(s, γx) = uu def(x.ev) 〈x.ev, s〉
eval
 (v, s′)

〈not x, s〉
eval
 (¬v, s′)

Lazy ∧ :
〈x, s〉

eval
 (ff, s′)

〈x and y, s〉
eval
 (ff, s′)

〈x, s〉
eval
 (u, s′) u 6= ff 〈y, s′〉

eval
 (v, s′′)

〈x and y, s〉
eval
 (u ∧ v, s′′)

Lazy ∨ :
〈x, s〉

eval
 (tt, s′)

〈x or y, s〉
eval
 (tt, s′)

〈x, s〉
eval
 (u, s′) u 6= tt 〈y, s′〉

eval
 (v, s′′)

〈x or y, s〉
eval
 (u ∨ v, s′′)

¬def(x.re) 〈E, s〉
eval
 (v, s′)

〈x := E, s〉
exec
 s′′

∆(s′, γx, v) = s′′

def(x.re) 〈E, s〉
eval
 (u, s′)

u = ρ(s′, γ(x.$)) 〈x.re, s′〉
exec
 s′′

〈x := E, s〉
exec
 s′′

〈ThV L, s〉
eval
 (tt, s′) 〈C1, s′〉

exec
 s′′

〈if ThV L then C1 ifnot C2 otherwise C3, s〉
exec
 s′′

〈ThV L, s〉
eval
 (ff, s′) 〈C2, s′〉

exec
 s′′

〈if ThV L then C1 ifnot C2 otherwise C3, s〉
exec
 s′′

〈ThV L, s〉
eval
 (uu, s′) 〈C3, s′〉

exec
 s′′

〈if ThV L then C1 ifnot C2 otherwise C3, s〉
exec
 s′′

〈ThV L, s〉
eval
 (ff, s′)

〈while ThV L do C, s〉
exec
 s′

〈ThV L, s〉
eval
 (uu, s′)

〈while ThV L do C, s〉
exec
 s′

〈ThV L, s〉
eval
 (tt, s′) 〈C, s′〉

exec
 s′′

〈while ThV L do C, s′′〉
exec
 s′′′

〈while ThV L do C, s〉
exec
 s′′′

〈C1, s〉
exec
 s′ 〈C2, s′〉

exec
 s′′

〈C1; C2, s〉
exec
 s′′

REFERENCES

[1] M. Mira da Silva, “Mobility and persistence,” in Mobile Object Systems:
Towards the Programmable Internet. Springer-Verlag, Apr. 1997, pp.
157–176, lecture Notes in Computer Science No. 1222.

[2] M. Mira da Silva and M. Atkinson, “Combining mobile agents with per-
sistent systems: Opportunities and challenges,” in 2nd ECOOP Workshop
on Mobile Object Systems, Linz, Austria, July 1996, pp. 36–40.

[3] M. Gelfond and V. Lifschitz, “Logic programs with classical negation,”
in Proceedings of 7th International Conference on Logic Programming.
Cambridge MA: The MIT Press, 1990, pp. 579–597.

[4] ——, “Classical negation in logic programs and disjunctive databases,”
New Generation Computing. Ohmsha Ltd and Spring-Verlag, pp. 365–
385, 1991.

[5] A. C. Kakas, R. A. Kowalski, and F. Toni, The Role of Abduction in
Logic Programming, in Handbook of Logic in Artificial Intelligence and
Logic Programming. Oxford University Press, 1998, vol. 5. Logic
Programming, pp. 235–324.

[6] J. Łukasiewicz, Jan Łukasiewicz Selected Works, ser. Series on Studies
in Logic and Foundations of Mathematics. North-Holland Publishing
Company and PWN - Polish Scientific Publishers, 1970.

[7] S. C. Kleene, Introduction of Metamathematics. D. Van Nostrand,
Princeton, 1952.

[8] D. A. Schmidt, The Structure of Typed Programming Languages, ser.
Foundations of Computing Series. The MIT Press, 1994.

[9] E. Freeman, “Supercomputer earth: Massively parallel internet,” Yale
University, Tech. Rep., December 1993, supplement to the Yale Weekly
Bulletin.

[10] K. Arnold and J. Goslin, The Java Programming Language. Addison-
Wesley Publishing Company, 1996.

[11] L. Cardelli, Mobile Object Systems, ser. Lecture Notes in Computer
Science. Linz, Austria: Springer-Verlag, 1997, no. 1222, ch. Mobile
Computation.

[12] J. K. Ousterhout, Tcl and the Tk Toolkit. Adison-Wesley, 1994.
[13] F. C. Knabe, “Language support for mobile agents,” Ph.D.

dissertation, Carnegie Mellon University, Paittsburgh, Pa., Dec.
1995, also available as Carngie Mellon School of Computer
Science Technical Report CMU-CS-95-223 and European Computer
Industry Centre Technical Report ECRC–95–36. [Online]. Available:
ftp://reports.adm.cs.cmu.edu/usr0/anon/1995/CMU-CS-95-223.ps.Z

[14] G. Cugola, C. Ghezzi, G. P. Picco, and G. Vigna, “Analyzing
mobile code languages,” in Mobile Object Systems: Towards the
Programmable Internet. Springer-Verlag, Apr. 1997, pp. 93–110,
lecture Notes in Computer Science No. 1222. [Online]. Available:
http://www.polito.it/˜picco/papers/ecoop96.ps.gz

[15] J. Vitek, M. Serrano, and D. Thanos, “Security and communication
in mobile object systems,” in Mobile Object Systems: Towards the
Programmable Internet. Springer-Verlag, Apr. 1997, pp. 177–200,
lecture Notes in Computer Science No. 1222.

[16] D. Volpano, “Provably-secure programming languages for
remote evaluation,” ACM Computing Surveys, vol. 28A,
Dec. 1996, participation statement for ACM Workshop on
Strategic Directions in Computing Research. [Online]. Available:
http://www.cs.nps.navy.mil/research/languages/papers/atsc/sdcr.ps

[17] A. Acharya, M. Ranganathan, and J. Saltz, “Dynamic linking
for mobile programs,” in Mobile Object Systems: Towards the
Programmable Internet. Springer-Verlag, Apr. 1997, pp. 245–262,
lecture Notes in Computer Science No. 1222. [Online]. Available:
http://www.cs.umd.edu/˜acha/papers/lncs97-2.html

[18] ——, “Sumatra: A language for resource-aware mobile programs,” in
Mobile Object Systems: Towards the Programmable Internet. Springer-
Verlag, Apr. 1997, pp. 111–130, lecture Notes in Computer Science No.
1222. [Online]. Available: http://www.cs.umd.edu/˜acha/papers/lncs97-
1.html

[19] D. Dean, E. Felten, and D. Wallach, “Java security: From HotJava to
Netscape and beyond,” in Proceedings of the 1996 IEEE Symposium on
Security and Privacy, Oakland, Cal., May 1996. [Online]. Available:
http://www.cs.princeton.edu/sip/pub/secure96.html

[20] T. Lindholm and F. Yellin, The Java Virtual Machine Specification.
Reading, Massachussetts: Addison-Wesley Publishing Company, 1997.

[21] D. Dean, E. W. Felten, and D. S. Wallach, “Java security: From hotjava
to netscape and beyond,” in Proceedings of the Symposium on Security
and Privacity. IEEE, 1996, pp. 190–200.

[22] D. Dean, “The security of static typing with dynamic linking,” in
Proceedings of the Fourth ACM Conference on Computer and Com-
munications Security, Zurich, Switzerland, April 1997.

[23] J. White, Telescript Technology: the Foundation for the Electronic
Marketplace, General Magic, Inc., 1994.

[24] G. M. Corp., Odyssey White Paper, 1998.
[25] B. Mathiske, F. Matthes, and J. W. Schmidt, “On migrating threads,”

Fachbereich Informatik Universitat Hamburg, Tech. Rep., 1994.
[26] R. S. Gray, “Agent tcl: A transportable agent system,” in Proceedings

of the CIKM’95 Workshop on Intelligent Information Agent, 1995.
[27] ——, “Agent tcl: A flexible and secure mobile-agent system,”

Dartmouth College, Computer Science, Hanover, NH, Tech. Rep. PCS-
TR98-327, Jan. 1998, ph.D. Thesis, June 1997. [Online]. Available:
ftp://ftp.cs.dartmouth.edu/TR/TR98-327.ps.Z

[28] N. S. Borenstein, “Email with a mind of its own: The safe-tcl language
for enabled mail,” First Virtual Holdings, Inc, Tech. Rep., 1994.

[29] K. Bharat and L. Cardelli, “Migratory applications,” in Mobile Object
Systems: Towards the Programmable Internet. Springer-Verlag, Apr.
1997, pp. 131–149, lecture Notes in Computer Science No. 1222.

[30] L. Cardelli, “A language with distributed scope,” Computing Systems.
The MIT Press, vol. 8, no. 1, pp. 27–59, 1995.

[31] B. Thomsen, L. Leth, S. Prasad, T.-M. Kuo, A. Kramer, F. C. Knabe,
, and A. Giacalone, “Facile antigua release programming guide,” Euro-
pean Computer Industry Research Centre, Munich, Germany, Tech. Rep.
ECRC–93–20, Dec. 1993.

[32] D. Johansen, “Mobile agent applicability,” in Mobile Agents: Second
International Workshop, MA’98, ser. Lecture Notes in Computer Science,
vol. 1477. Springer, 1998, pp. 80–98.

[33] D. Johansen, R. van Renesse, and F. B. Schneider, “An introduction to
the TACOMA distributed system,” Department of Computer Science,
University of Tromsø, Tromsø, Norway, Tech. Rep. 95-23, June 1995.

[34] C. Tschudin, “The messenger environment M0 – a condensed descrip-
tion,” in Mobile Object Systems: Towards the Programmable Internet.
Springer-Verlag, Apr. 1997, pp. 149–156, lecture Notes in Computer
Science No. 1222.

[35] G. Karjoth, D. B. Lange, and M. Oshima, “A security model for agents,”
IEEE Internet Computing, vol. 1, no. 4, July/August 1997.

[36] L. Cardelli, “Global computation,” ACM Computing Surveys, vol. 28A,
no. 4, 1996.

[37] D. Gillies, Artificial Intelligence and Scientific Method. Oxford
University Press, 1996, ch. 4 A new framework for logic, pp. 72–97.

[38] A. Burns and A. Wellings, Concurrency in Ada, 2nd ed. Cambridge
University Press, 1998.

