
Programming Language Concepts
for Global Computing

Ferreira, Ulisses

Abstract – The present paper introduces a number of
existing concepts about the programming language Plain
that are useful for mobile agents and for the Internet
programming, among other applications. This paper
explores the ability to program with the unknown value,
by preventing samples.

Index Terms – global computer, internet, programming
language

I. INTRODUCTION

For writing the present paper, the present author observed
that, in order to provide a reasonable paradigm for general
Internet programming, some combined and non-traditional
programming language concepts need to be introduced aim-
ing at specific applications over the Internet.

Code mobility is a relatively new field of research that has
inspired intriguing ideas on programming techniques to im-
prove related software[8]. New programming languages have
been presented and discussed in workshops and conferences
aiming at providing better standards and good examples for
future language designs, commercially or otherwise.

In comparison with the state-of-the-art technology, to pro-
pose a better paradigm for mobile agent programming for the
World Wide Web, for example, the language designer should
consider that the underlying connections often fail or delay. A
neutral state, which would represent the lack of result, could
be assigned to the variable that takes part in the request
in such a way that the program carries on running safely.
Mobile agents need to be robust and make their own decisions
remotely. Two very different and alternative approaches to
agent are [26], [34].

Although the present programming language features are
not necessarily specific for mobile code languages, the un-
derlying environment can be the same. Here the present
author explains how this additional value can be useful in
programming on a global network[36] where the mobile agent
paradigm and technology have become increasingly impor-
tant. In logics, this value has been traditionally referred to as
uu for providing an alternative value to true (tt) and false (ff).
Like many imperative features, the present ones also apply to
functional languages.

Broadly, some pieces of work, such as [31], [32], have
indicated similarities between technologies of code mobility
and persistence, and some persistent languages are being ex-
plored at some universities. In the present approach, because
the present author is looking for generality and efficiency, per-
sistence is not provided directly by the language, but instead

Manuscript received July 3, 2004. This piece of work corresponds to
a chapter of the present author’s PhD Thesis (2001), at the University of
Dublin, Dublin 2, Ireland. Updated author’s e-mail: josefer@philosophers-
fcs.org.

by programmable constructs. Because of that, this approach
here is at least as applicable to mobile agents as persistent
languages. As well as persistence, communication is another
very active topic of research and much work has been done
regarding fault tolerance and communication between mobile
agents. However, relatively few satisfactory results have been
achieved in terms of language facilities and abstractions.

Here we concentrate on the use of programming features
in the context of a global environment and mobile agents
programming.

The ability to represent and reason with partial information
is well understood in the artificial intelligence and logic com-
munities. However, very little of this work has been related
to programming techniques. An exception is Extended Logic
Programming, introduced by Gelfond and Lifschitz[17], [18],
that can be used for the same purpose as that the present au-
thor is discussing here. Extended Logic Programming makes
use of two forms of negation. In [24], the author suggests
that an important practical problem in Extended Logic Pro-
gramming is how the programmer distinguishes whether a
negative condition is to be interpreted as explicit negation, or
as negation due to the absence of any clause in any closed
world as an assumption.

The unknown value, uu, extends the semantics of other
logics, such as classical and intuitionistic logic, according to
the Łukasiewicz [39], [27] 3-valued logic. Here the present
author extends this value for each data type in programming
for a global environment or for mobile agents. In arithmetic
and relational expressions, uu as a resulting operand implies
the expression to result in uu. Accordingly, statements have to
be adapted to make use of this value.

Most Expert System Shells made use of an unknown
symbol to represent lack of information in boolean variables, in
a very restrictive way however. The present author generalizes
this concept to programming languages in general, although
the present author applies it here to mobile agents program-
ming.

Agents have to be robust and, because of this, when
connections fail or delay, programs should carry on running
despite the lack of information. uu is a constant in program-
ming languages that can be assigned to any variable of
any datatype. This new constant guarantees both safety and
robustness at the same time, because variables are never
committed to any value that is not in the problem domain. An
introduction on types for functional programming languages
can be found in [35].

In section II the present author reviews some recent pro-
gramming languages for such an environment, while sec-
tion III is dedicated to an illustrative programming language.
Section IV introduces the concept of unknown together with
other related concepts, and explains how they can be used
to achieve the proposed goals. As a consequence, section
V complements those concepts by stressing the importance

of any form of lazy evaluation in programming, as well as
timeouts, no matter the adopted paradigm. Section VI con-
tains other relevant features that are relevant enough to be
mentioned. Section VII contains the conclusion.

The examples in this paper are written in a programming
language. In section III, the present author discusses the
syntax of the relevant subset of this language.

II. SOME CURRENT MOBILE CODE LANGUAGES

In the past few years researchers have seen the Internet as
a popular environment for systems. Some of us would like to
program and compute using this structure, i.e. to view parts
of an Internet-like network as global computers[16]. Many
companies, for example, are starting to have their own internal
global computers for their specific purposes.

One of the most interesting ideas is not only to move code,
as Tcl[33] and Java[3] do, but also computation (code along
with context) over the network, that is, a computation which
starts at some location may continue to execute at some
other location. Synchronous connections to the original site
may be set while a program is running remotely in such a
way that any change in some variables transparently causes
the value to be stored in the original site. Alternatively, new
values of variables can be sent to the original site with no
need for synchronous connections. Other paradigms of mobile
computation already exist and they depend on the kind of
entities that are transfered over the network, with respect to
what is moved (code, data, connections, etc).

When the code is moved, what happens if the names it con-
tains are bound to resources in the source virtual machine?
This issue defines two classes of strategy, replication and
sharing. The first strategy may be either static or dynamic.
Concerning static replication strategy, constants, system vari-
ables and libraries, for example, are regarded as ubiquitous
resources[28] and they can adopt such strategy, where bind-
ings are deleted and set after arrival. As for dynamic repli-
cation strategy, the code migrates to another virtual machine
along with bound resources and the original bindings are
deleted. The original resource in the source virtual machine
may be either deleted (replication by move) or kept (replication
by copy). In the sharing strategy, the original resource is
kept and remotely accessed through network references and
connections.

In both strong and weak mobility[10], security[40], [41] is a
very important matter. Locations must check for authorization
and capabilities in order to prevent malicious software run-
ning. However, as long as that is ensured by the system, a
global network can be a very interesting and natural platform
for computation. Thus, a new challenge emerges: how to
provide these facilities and prevent the related problems?

Mobility should also be considered not only during the exe-
cution of programs but also during the elaboration of software.
The emphasis in performance is no longer in the run-time
code generated by compilers, but in the (dynamic) compilation
process itself (when applicable), transmission and additional
overheads to guarantee security and other requirements.

Acharya, Ranganathan and Saltz[1], [2] during the design
of Sumatra, an extension of Java, consider three requirements
for individuals: awareness, which is the need to monitor the
level and quality of resources in their operating environment;
agility, which is the ability to react to changes in resource
availability, and authority, which is the ability to control the

way that resources are used. Although they are important con-
cerns, the present author thinks that these concerns should be
treated at the application level, not at the language level.

Some programming languages for mobile computation are
described and analyzed in [10] and other articles, and briefly
described here:

• Java[3] is a strongly-typed object-oriented language. Java
deals with security[13] and permits transmitting pro-
gram byte-code to be interpreted by the Java Virtual
Machine[29], but does not migrate computation. It sup-
ports weak mobility with dynamic linking. Security level is
increased by the byte-code verifier at loading-time. Some
security problems have been found[12]. It was shown that
the ability to break Java type system leads to an attacker
being able to run arbitrary machine code[11]. Static and
dynamic type checking.

• Telescript[42] is an agent-based and object-oriented lan-
guage that explicitly deals with locality, strong mobility,
and finiteness of resources. There are two kinds of Exe-
cution Units: agents and places. Typically, when an agent
is running on an interpreter, the instruction go causes the
agent execution to be suspended, its code and current
state are transmitted to a remote virtual machine and,
there, the computation is resumed. However, agents do
not maintain connections to remote agents. The Tele-
script run-time code is interpreted without security check-
ing since security is ensured at the language level. The
replication strategy is dynamic, by move. Static scoping
and name resolution. Static and dynamic type checking.
In spite of the historical reasons for mentioning Telescript
here, that technology was replaced by Odyssey[9], which
is a Java-based version of Telescript, briefly speaking.

• Tycoon[30] provides thread migration like Telescript. It
is a polymorphic, higher-order functional language with
imperative features, which may support other paradigms
indirectly, including object orientation. Tycoon provides
strong mobility and support for persistent programming.
All objects in this language have first-class status. Static
and dynamic type checking, dynamic replication with
strategy by copy, besides static replication strategy.

• Agent Tcl[19] provides strong mobility where the whole
image of the interpreter can be transfered to a different
site by executing a jump instruction. Agent Tcl also
provides weak mobility by executing a submit instruction
which permits transmission of procedures along with
part of their global environment, to a remote interpreter.
Typeless language therefore no type checking. Dynamic
replication strategy, both by copy and by move. Agent Tcl
is a PhD thesis[20].

• Safe-Tcl[5] supports active e-mail, where messages may
include code to be executed when an interpreter reads
the message after receiving it. However, Safe-Tcl does
not support active e-mail code mobility at the language
level but, instead, code mobility is achieved through a
dynamic code loading mechanism. Typeless language
therefore no type checking.

• Obliq[4] is an object-based language that encourages
distribution and mobility. While a mobile object is migrat-
ing from one place to another, new connections are au-
tomatically open between source and destination places
in order to guarantee that any change in the variables will
update the state in the source place. Therefore, object

references are transformed into network references. Al-
though a simple language, there is some loss of efficiency
and robustness due to some possibly very large number
of connections in an unreliable environment. Dynamic
type checking, sharing strategy.

• Facile[37] is a functional language, a superset of ML
with primitives for distribution, concurrency and commu-
nication. Mobile code programming was later added to
this extension[28]. Static and dynamic type checking.
Dynamic replication strategy by copy, besides static repli-
cation strategy.

• TACOMA[21], [22], the Tcl language plus primitives to
permit a running Tcl script to send another script and
initialization data to another host in order to execute
the script remotely. Typeless language therefore no type
checking. Dynamic replication by copy.

• M0[10], [38] is a stack-based interpreted language which
provides weak mobility and run-time type checking. Dy-
namic type checking, dynamic scoping rules, dynamic
replication by copy.

Aglets Workbench, developed by IBM, is a mobile agent
system based on Java. Like others, such as ObjectSpace
Voyager, the system security and other issues depend on the
Java system[25].

As mentioned before, in the present paper, the present
author discusses some of the features of the programming
language.

III. THE PRESENT PROGRAMMING LANGUAGE

The present sample programming language is a language
that supports mobile agents, syntactically somewhat similar
to Java. It supports strong mobility, as well as some forms of
knowledge and belief representation, reasoning, and uncer-
tainty treatment. As an on-going experimental project, security
has not been a concern1. The virtual machine interprets byte-
code and the language provides both replication strategies
by programmable handlers. BNF legend: boldface letters are
keywords; italic words with initial capital letter are other ter-
minal symbols; words in lower-case letters are non-terminal
symbols; meta-symbols: | indicates alternative, ε is the empty
symbol of the grammar. Other terminal symbols: { (, ;) }
are used in the grammar. The following BNF definition is of a
very simple subset of the programming language in question,
and where the first symbol denotes the starting symbol of the
syntax:

aprog 7−→ classlist commandlist

classlist 7−→ ε | classdef classlist

type 7−→ int | list

modifier 7−→ private | public | ε

onevardef 7−→ Id | assignment

idlist 7−→ onevardef | onevardef ’,’ idlist

1However, the first mobile agent in this language, referred to as Se-
Picou, had perfectly run over the Internet: briefly, as a prototype, Se-Picou
started running in the city of Edinburgh; went to a site in Brazil; made some
calculation; sent partial results by e-mail; moved back to Edinburgh and
finally resumed.

vardef 7−→ modifier type idlist ’;’

handler 7−→ evaluator | reactor

evaluator 7−→ when Id ’,’ do command

reactor 7−→ when Id ’:=’ do command

classdef 7−→ class Id ’{’ defs ’}’

defs 7−→ ε | vardef defs | function defs | handler defs

command 7−→ assignment | ’{’ commandlist ’}’
| functioncall | ifcommand | return |
return expression

assignment 7−→ Id ’:=’ expression

ifcommand 7−→ if expression then command |
if expression ’,’ command |
if expression ’,’ command ifnot command |
if expression ’,’ command else command |
if expression ’,’ command otherwise command |
if expression ’,’ command

ifnot command
otherwise command

commandlist 7−→ ε | command ’;’ commandlist

where non-terminal symbols, namely function, functioncall
and expression are as usual. In Plain, they are somewhat
syntactically similar to C++ or Java. The main difference is
that the symbol $ can be placed where a variable identifier is
expected, as it will be explained below. There are other details
that will be explained together with the examples. Both [14]
and [15] formalize the semantics that will be explained.

IV. uu IN GLOBAL COMPUTERS

As already stated, uu is a constant which stands for “un-
known” or “undefined” and represents unavailable information.

More precisely, uu can be used in programming languages
in accordance with the following description: For every data
type if any, the language designer can add a special value,
namely uu, to represent lack of some domain value, i.e. some
known value in the problem domain. Grammatically, uu or
unknown is a constant. Variables either have uu or some
domain value. In advance, besides other applications of uu in
some programming language, uu can support fault tolerance
over the Internet, and this will be clear while the subject is
introduced.

Some languages adopt a default value as initial variable
contents. Nonetheless, since there is now uu, any variable
(at least in the Plain programming language) contains this
value as the initial one. Programmers should certainly want
to initially assign some values to some variables.

Handlers are provided for variables. For any variable, there
can be one evaluator and/or one reactor, independently. As
well as other purposes, one handler can protect a variable.
The notion of evaluator is for permitting the programmer
to write a piece of code for producing and providing some
domain value to the corresponding variable, while the idea of

reactor is for inspecting and protecting the variable against
assignments. Thus, a reactor permits the programmer to write
a piece of code to be executed whenever a value is meant to
be stored in the corresponding variable. For instance,

int x, y;

when x, do { x := 3 ∗ y; }

when x := do { x := $/2; }

is an example where two handlers are defined for the variable
x (Remember, here a handler is a declaration when). The first
time that the value of x is being requested in an expression,
the above evaluator is triggered, which in turn computes the
triple of the value of the variable y assigning it to x. From the
second time on, the computed value 3 ∗ y is already available
in x and, because of this, the evaluator is not triggered. This
idea is not limited to exception handling, which in turn is a
mechanism supported by some other languages.

An evaluator can contain return statement (similar to C) as
an alternative to assigning a value to the requested variable.
In the case of the return statement and no prior assignment
in the evaluator, the evaluator is always triggered when the
variable in question is being used, unless some domain value
has been assigned to that variable outside the evaluator.

Whenever a value is meant to be stored in x, the control
is jumped to the corresponding reactor. Notice that the $
symbol above is used in reactors to represent the value that, in
other languages, would be stored unconditionally. In the above
example, half the value is accepted.

Predicates can be provided to check whether a variable
contains uu, for instance, known and unknown. For each
of them, the value is accessed directly from the variable in
question and, then, the corresponding binary (either true or
false) result from the predicate expression is provided by the
interpreter without evaluating the handler of this variable.

If the referring variable contains some value in the problem
domain, the semantics is exactly the same as in imperative
languages. However, if the variable contains uu instead, there
are two semantic cases: If there is an evaluator, it is executed.
Otherwise, i.e. when no evaluator exists, uu is used instead.
Moreover, the semantics of an evaluator is not very similar to
the semantics of any function call, for the latter is necessarily
executed. As an example, in the case of Remote Procedure
Call or Remote Method Evaluation, for being both remote,
unconditional calls are probably left as the last resort.

In terms of programming language design, uu and handlers
together replace exception handling used in other languages.
This replacement tends to make any language more economic
and hence much easier to use. More than this, handlers are
very useful during program testing and debugging phases, be-
cause one might inspect what is being stored and, as mobile
agents often escape from any of their users, uu together with
handlers can be used in such a program for sending results to
the person who is testing it. For example:

class mycl {
public int x;
private list queue := [];
when x := do {

x := $;
queue := queue +
[[#self + “.x := “ + $ + “ at “ + LocalT ime()]];

}
}

mycl c; c.x := 10; c.x := 20; c.x := 30;

In the above class, or its subclasses, whenever x receives
any value, this value is additionally stored in the queue
together with the name of the object in question (which is
referred to by the expression #self), the name of this field
with one dot (it is “.x” in this case), and the current local time
(accessed by LocalT ime()). The ’+’ operator the concatena-
tion of lists or strings, besides the arithmetic addition, as more
usual. The square brackets are used to construct a list of
values of any type. Here the programmer chose list of lists
for programming reasons.

Because it is hard to implement debugging system for
mobile agents in a relatively satisfactory way, the above piece
of code can be written as long as handlers exist. More gen-
erally, when a mobile agent stops running, the local runtime
system should provide a way of returning that agent to its
home, when requested, in order to permit local debugging.
Therefore, by using a small query language, the user can
inspect the contents of the variables of his or her program.
More than this, by writing the trace declaration in such a pro-
gram, a mobile object support system can internally maintain
debugging variables.

The difference from other paradigms might become deci-
sive in language design. On the one hand, a variable in an
evaluating expression may cause its value to be read from
a data base or requested from a remote process, provided
that its current value is uu. Further, a variable may work like a
cache because in the subsequent uses, some domain value is
available locally and the handler is not triggered. On the other
hand, to assign a value to a variable may cause its value to be
stored on a data base or sent to a remote host.

The following piece of code exemplifies a persistent field p
and a remote field r that can live together in the same class:

class remoteandpersistentcl {
public int p, r;

public void ini(int i, int j) {
inttodb(“p”,i);
p := i;
inttourl(“www.aaa.bbb.ccc/cgi/server/r.txt”,j);
r := j;

}

when p := do {
p := $;
inttodb(“p”,p);

}

when p, do {
return intfromdb(“p”);

}

when r := do {
r := $;
inttourl(“www.aaa.bbb.ccc/cgi/server/r.txt”,r);

}

when r, do {
r := intfromurl(“www.aaa.bbb.ccc/cgi/server/r.txt”);

}
}

remoteandpersistentcl c;
c.p := 20; // also store the value 20 locally on data base.
sendlocally(home, c.p); // send 〈c.p〉 to the agent home.
c.r := 30; // also update remotely.
sendlocally(home, c.r); // send 〈c.r〉 to the agent home

Notice that, according to the above evaluator and program,
while the p field is retrieved from a data base (whenever its
value is requested), the r field behaves as a cache over some
global environment. The functions inttourl, intfromurl and
sendlocally tell the underlying system to generate internally
mobile agents to take part in the protocol. There has been
a general criticism concerning mobile agents because they
do not maintain connections. The present author agrees that
agents should not see connections, but the mobile agent
support system should provide remote communication in an
appropriate way. This produces positive effects and abstrac-
tions in the programming language.

Here we concentrate on features for global computing and
present some new aspects of uu.

V. LAZY EVALUATION AND TIMEOUTS

Lazy evaluation is one of the most interesting characteris-
tics of programming, in particular in applications where time
is regarded as important. In this paper, the present author is
not regarding lazy evaluation as being only call by need of
functional languages. If the language provides functions, lazy
evaluation can also be very useful in the same platform, from
the same point of view of the present section.

Programming for mobile agents on a global environment
tends to be more personal. One of the reasons is that patience
and mood vary for different people as well as for the same
person at different instants, and one of the purposes of agents
is to represent users.

As an example of a situation, a mobile agent ma can
communicate with a stationary agent s which in its turn can
send a small agent remotely to ma’s home in order to return
some piece of information to s which in turn can hand it
to the mobile agent ma. To deal with faults and delays in
communication, a timeout can be set, implicitly or explicitly,
for every input operation. After that time, the result is unknown
(uu) and the computation continues normally. Similarly, every
output operation has a timeout.

In this way, the same statement can be executed at different
locations[7], either sequentially or not. This situation happens
often. Cache-like variables might produce a similar result as
lazy evaluation. Computing with timeouts together with uu and
handlers is not lazy evaluation, but it can give a somewhat
similar impression of impatience and, because the resulting
value in this case of exception is uu, variable values in
programs are always sound and finally this scheme improves
agent robustness.

Another way of dealing with faults and delays is to provide a
standard semantics for basic operations such as arithmetic
and relational. In particular, if the first operand is uu, the
expression might result in uu without the evaluation of the
second operand. This is a form of lazy evaluation.

VI. OTHER FEATURES

Because generality is desirable, choices among various
strategies for binding resources should normally be pro-
grammed. Handlers may be used to implement different
strategies for variables that are resources, either local or
remote.

During the compilation, in order to support higher-level com-
munication between agents, names of objects in the source
program can be written in the object code, which increases the
agent size but it is still a good idea. A possibility is to generate
only names defined in the dynamic part of the interface. If the
language supports artificial intelligence techniques, perhaps
it is even interesting to consider the idea of generating all
names. Communication between agents can be set from a
prefix in function calls containing the name of the destination
agent. For example, in x := prov:func(params), the string
variable prov is a name that indicates the agent which in turn
might contain the func function definition. The prov value is
an absolute (global) or relative (to the local host) address.
If such a matching name of func(params) is undefined in
that agent when the call is executed, x receives uu. In every
function call (or method invocation) between two agents, a
timeout can be attached. For example, in x := prov :
func(params) timeout 3, if the operation is not completed
before 3 seconds, at that time it is interrupted and x receives
uu.

The concepts of home and Id of agents ought to be key
words in the programming language, in a similar way as
exemplified above, outside the class remoteandpersistentcl.

Surprisingly, although concurrent programming[6] is an im-
portant technique that can help in certain applications, it is not
a specific feature for mobile agent programming languages, as
concurrency can be achieved at the operating system level.

However, uu permits a large number of parallel operations,
not only parallel and and parallel or[15].

VII. CONCLUSION

The presented concepts are harmonious with many ap-
proaches in software engineering such as in [23].

Local inefficiency is an issue of the features discussed in
this paper. Assuming that, in practice, mobile agent support
systems entail code interpretation, the interpreter has to check
the presence of uu whenever a variable is being requested
in an evaluating expression. However, as hardware is getting
faster and larger, this is not considered a significant problem.
Moreover, this problem can be compensated for the fact that
mobility and remote accesses are the bottleneck in applica-
tions, and that variables can behave as cache and operations
can be lazy. This combination is encouraged by the language.

ACKNOWLEDGEMENT

My honest thanks to the reviewers who kindly collaborated
with suggestions here.

REFERENCES

[1] Anurag Acharya, Mudumbai Ranganathan, and Joel Saltz. Dy-
namic linking for mobile programs. In Mobile Object Systems:
Towards the Programmable Internet, pages 245–262. Springer-
Verlag, April 1997. Lecture Notes in Computer Science No.
1222.

[2] Anurag Acharya, Mudumbai Ranganathan, and Joel Saltz.
Sumatra: A language for resource-aware mobile programs. In
Mobile Object Systems: Towards the Programmable Internet,
pages 111–130. Springer-Verlag, April 1997. Lecture Notes in
Computer Science No. 1222.

[3] Ken Arnold and James Goslin. The Java Programming Lan-
guage. Addison-Wesley Publishing Company, 1996.

[4] Krishna Bharat and Luca Cardelli. Migratory applications. In
Mobile Object Systems: Towards the Programmable Internet,
pages 131–149. Springer-Verlag, April 1997. Lecture Notes in
Computer Science No. 1222.

[5] N. S. Borenstein. Email with a mind of its own: The safe-
tcl language for enabled mail. Technical report, First Virtual
Holdings, Inc, 1994.

[6] Alan Burns and Andy Wellings. Concurrency in Ada. Cambridge
University Press, second edition, 1998.

[7] Luca Cardelli. Global computation. ACM Computing Surveys,
28A(4), 1996.

[8] Luca Cardelli and R. Davies. Service combinators for web
computing. http://www.luca.demon.co.uk/, 1997.

[9] General Magic Corp. Odyssey White Paper, 1998.
[10] Gianpaolo Cugola, Carlo Ghezzi, Gian Pietro Picco, and Gio-

vanni Vigna. Analyzing mobile code languages. In Mobile Object
Systems: Towards the Programmable Internet, pages 93–110.
Springer-Verlag, April 1997. Lecture Notes in Computer Science
No. 1222.

[11] D. Dean. The security of static typing with dynamic linking. In
Proceedings of the Fourth ACM Conference on Computer and
Communications Security, Zurich, Switzerland, April 1997.

[12] D. Dean, E. W. Felten, and D. S. Wallach. Java security:
From hotjava to netscape and beyond. In Proceedings of the
Symposium on Security and Privacity, pages 190–200. IEEE,
1996.

[13] Drew Dean, Ed Felten, and Dan Wallach. Java security: From
HotJava to Netscape and beyond. In Proceedings of the 1996
IEEE Symposium on Security and Privacy, Oakland, Cal., May
1996.

[14] Ulisses Ferreira. uu for programming languages. ACM SIGPLAN
Notices, 35(8):20–30, August 2000.

[15] Ulisses Ferreira. Programming languages features for some
global computer. In Proceedings of SSGRR 2003s International
Conference on Advances in Infrastructure for e-Business, e-
Education, e-Science, e-Medicine, and Mobile Technologies on
the Internet. Scuola Superiore G. Reiss Romoli e Telecom Italia
Learning Services, From 28 July to 3 August 2003.

[16] Eric Freeman. Supercomputer earth: Massively parallel internet.
Technical report, Yale University, December 1993. Supplement
to the Yale Weekly Bulletin.

[17] Michael Gelfond and Vladimir Lifschitz. Logic programs with
classical negation. In Proceedings of 7th International Confer-
ence on Logic Programming, pages 579–597, Cambridge MA,
1990. The MIT Press.

[18] Michael Gelfond and Vladimir Lifschitz. Classical negation in
logic programs and disjunctive databases. New Generation
Computing. Ohmsha Ltd and Spring-Verlag, pages 365–385,
1991.

[19] R. S. Gray. Agent tcl: A transportable agent system. In
Proceedings of the CIKM’95 Workshop on Intelligent Information
Agent, 1995.

[20] Robert S. Gray. Agent tcl: A flexible and secure mobile-agent
system. Technical Report PCS-TR98-327, Dartmouth College,
Computer Science, Hanover, NH, January 1998. Ph.D. Thesis,
June 1997.

[21] Dag Johansen. Mobile agent applicability. In Mobile Agents:
Second International Workshop, MA’98, volume 1477 of Lecture
Notes in Computer Science, pages 80–98. Springer, 1998.

[22] Dag Johansen, Robbert van Renesse, and Fred B. Schneider.
An introduction to the TACOMA distributed system. Technical
Report 95-23, Department of Computer Science, University of
Tromsø, Tromsø, Norway, June 1995.

[23] Guy-Vincent Jourdan and Nejib Zaguia. Incremental software
development strategy: A sucessful experience. In Pradip Peter
Dey, Mohammad N. Amin, and Thomas M. Gatton, editors,
Proceedings of The 2nd International Conference on Computer
Science and its Applications, pages 100–104, National Univer-
sity, San Diego, CA, USA, June 2004.

[24] A. C. Kakas, R. A. Kowalski, and F. Toni. The Role of Abduction
in Logic Programming, in Handbook of Logic in Artificial Intelli-
gence and Logic Programming, volume 5. Logic Programming,
pages 235–324. Oxford University Press, 1998.

[25] Gnter Karjoth, Danny B. Lange, and Mitsuru Oshima. A security
model for agents. IEEE Internet Computing, 1(4), July/August
1997.

[26] Stuart Kauffman. Molecular autonomous agents. Philosophical
Transactions of The Royal Society, 361(1807):1089–1099, June
2003.

[27] Stephen C. Kleene. Introduction of Metamathematics. D. Van
Nostrand, Princeton, 1952.

[28] Frederick C. Knabe. Language Support for Mobile Agents. PhD
thesis, Carnegie Mellon University, Paittsburgh, Pa., December
1995. Also available as Carngie Mellon School of Computer
Science Technical Report CMU-CS-95-223 and European Com-
puter Industry Centre Technical Report ECRC–95–36.

[29] Tim Lindholm and Frank Yellin. The Java Virtual Machine
Specification. Addison-Wesley Publishing Company, Reading,
Massachussetts, 1997.

[30] B. Mathiske, F. Matthes, and J. W. Schmidt. On migrating
threads. Technical report, Fachbereich Informatik Universitat
Hamburg, 1994.

[31] Miguel Mira da Silva. Mobility and persistence. In Mobile Object
Systems: Towards the Programmable Internet, pages 157–176.
Springer-Verlag, April 1997. Lecture Notes in Computer Science
No. 1222.

[32] Miguel Mira da Silva and Malcolm Atkinson. Combining mobile
agents with persistent systems: Opportunities and challenges. In
2nd ECOOP Workshop on Mobile Object Systems, pages 36–
40, Linz, Austria, July 1996.

[33] J. K. Ousterhout. Tcl and the Tk Toolkit. Adison-Wesley, 1994.
[34] Stuart Russel and Peter Norvig. Artificial Intelligence, chapter

Two. Prentice Hall, second edition, 2003.
[35] David A. Schmidt. The Structure of Typed Programming Lan-

guages. Foundations of Computing Series. The MIT Press,
1994.

[36] Andrew S. Tanenbaum. Computer Networks. Prentice Hall PTR,
fourth edition, 2003.

[37] Bent Thomsen, Lone Leth, Sanjiva Prasad, Tsung-Min Kuo,
Andre Kramer, Fritz C. Knabe, , and Alessandro Giacalone.
Facile antigua release programming guide. Technical Report
ECRC–93–20, European Computer Industry Research Centre,
Munich, Germany, December 1993.

[38] Christian Tschudin. The messenger environment M0 – a con-
densed description. In Mobile Object Systems: Towards the
Programmable Internet, pages 149–156. Springer-Verlag, April
1997. Lecture Notes in Computer Science No. 1222.

[39] Jan Łukasiewicz. Jan Łukasiewicz Selected Works. Series on
Studies in Logic and Foundations of Mathematics. North-Holland
Publishing Company and PWN - Polish Scientific Publishers,
1970.

[40] Jan Vitek, Manuel Serrano, and Dimitri Thanos. Security and
communication in mobile object systems. In Mobile Object
Systems: Towards the Programmable Internet, pages 177–200.
Springer-Verlag, April 1997. Lecture Notes in Computer Science
No. 1222.

[41] Dennis Volpano. Provably-secure programming languages for
remote evaluation. ACM Computing Surveys, 28A, December
1996. Participation statement for ACM Workshop on Strategic
Directions in Computing Research.

[42] J. White. Telescript Technology: the Foundation for the Electronic
Marketplace. General Magic, Inc., 1994.

