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Abstract

Mobile agents and the Internet have brought new ideas to theoretical
foundations of computer science in the last few years.

As an example, in 1999, I had an interesting conceptual insight over com-
putation: “...at the moment that I conceive the idea of moving compu-
tation from one place to another, I also observe that a general notion of
computation transcends pure mathematics and meets the physical world“.
This itself requires new, informal and philosophical discussions in the foun-
dations of computer science. Later, in 2001, “and because the universe is
on the move, computation is essentially mobile.”

The present paper discusses some meaning of computation, provides a
different semantics and present a formalized, physical and abstract model
after my simplification. The present model makes use of four forms of mo-
bility, namely strong mobility, intentional unity mobility, non-intentional
unity mobility, and broadcast mobility. In this paper, I present other
arguments for the most general and unified notion of computation, al-
though it is only one among other good proposals. Mobility and global
computing form two different classes of argument.



1 Introduction

It is not easy to perceive the characteristics of the era in which we all are, be-
cause an era transcends the life time of human beings as we miss comparisons
which are more realistic than what the literature can teach. The Internet has
grown very quickly. This global infrastructure, along with other recent tech-
nologies, such as satellite television, mobile phones and portable computers,
have not only changed humans’ behavior but have also made this planet psy-
chologically smaller than ever. On the one hand, this new apparatus has led
to new terminology regarding mobility[17], computation[69, 80], programming
languages[57], distributed systems[7, 13] and mobile agents, in such a way that
this terminology deserves care, regarding the appropriateness of its use. On the
other hand, I observe that one notion of computation cannot be captured using
mathematics. As an example, one may regard parallel and concurrent comput-
ing, some forms of mobility, side-effects, unreliability of the physical media and
other factors as non-mathematical, or mathematical via physics, although they
can be abstractly captured by algebra and categories up to some extent.

To exploit this view in this paper, I consider the semantics of computation
as based on its physical nature, with some rough simplifications in the present
model as I do not deeply investigate psychological issues. It is also part of the
present view to regard the traditional theory of computation, which is based
on recursive functions, as extremely and historically important although, per-
haps from the present standpoint, that theory does not capture what I am
calling computation here. In [58], the authors describe a method for proving
termination of recursively defined functions based on ordinal measure, and such
contributions are very relevant, even adopting a non-mathematical perspective,
or a different philosophical view.

In this paper, I use interchangeably the terms “computer science” and “com-
puting science” as meaning the same science. In the thirties of the last century,
“computer” was the person who used to calculate, normally some woman. Al-
though I have my own personal view, in the present paper, I do not discuss the
philosophical issue of whether humans are machines, nor the issue on whether
God exists. However, such questions are probably what distinguish what I refer
to as the fourth level of computation from a possible fifth level, and also what
distinguish this possible fifth level from higher levels (until the level of God).
This may be seen as a kind of different levels of the Church-Turing thesis stating
that there is a unique level of computation, or, alternatively, as different levels
of negations of the latter philosophical idea.

Some questions arise that might conceptually interest the theory of computer
science. For example, let us imagine two mobile agents that travel in space at
the same speed. The first one is traveling indefinitely. The second one is running
a simple algorithm that, when it has met the first, halts. Should one regard the
second agent as running an infinite computation? If we adopt the point of view
that computation is a physical[50] concept and that space is flat, the answer is
yes.

Another issue is whether mobility introduces new elements in the theory of
computing science or not. A number of academic and theoretical work, to some
of which I make references in the present paper, forms strong evidence that
the computing science community agrees it does. Under certain philosophical
perspective, we can also observe that mobility is a primitive in computation and,
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since this, I provide a formal and physical semantics of computation (one of the
proofs that the present meaning is more general is by introducing one different
form of code mobility which can be via broadcasting media, such as radio or
satellite television) and, finally, I mention other factors of the real world, such
as faults and delays in network connections, as relevant to the probably more
general and physical notion of computation. For the formal semantics, I write
the rules using a space-time logic that I briefly introduce here. In this paper
I argue that both physical and philosophical factors are part of the broader
notion. Indeed, theory of computation has strong connection with philosophy,
and this claim extends the connections between logic[22, 46] and philosophy[24].
Here, I simply discuss the matter while I present a number of examples that
have been selected during these years of research and reflexions.

Regarding the physical nature of computation, I introduce an operational
semantics of computation that includes space and time, as well as captures the
present four forms of mobility. For the present PhD thesis, these factors are
enough to demonstrate that, although pure mathematics and logics are still
going to be used as computation and to simulate reasoning[53], they do not
capture more general notions of computation. In [61], there is an interesting
introduction on mobile agents, where the author shows evidence of benefits
which they achieve. For more advanced literature on this subject, [65], for
instance, among some others.

As regards philosophical factors, one enters a subjective, informal and pos-
sibly psychological world, the real world, transcending the mathematical and
logical language as well as traditional computer science texts. The notion of
computation should not be confined to a unique and universal concept, but in-
stead, there should be diversity, e.g. the concept of computation depends on the
defined underlying machine, although these machines share common properties.
Further, for each different notion of computation, there can be different theories
of computation, including different theories of computability. Further, the re-
ferred to term theory, for instance, starts having a broader meaning, which not
only includes the traditional one, from deductive logics, but also philosophical
theories. Machines are becoming gradually more complex. A global computer,
for instance, is an abstract and general machine atop some internet services
and includes the notion of code mobility. There are other approaches to global
computation, such as [23]. On the one hand, such a computer provides a more
general notion in comparison to those notions defined since Alan Turing and
others, who did not consider mobility as a physical primitive. On the other
hand, the geographical distribution introduces other factors to the definition of
the global computer that cannot be neglected. Because every computer has its
repertoire of operations which not only defines but also constraints the capabil-
ity of the machine, any global computer has to provide a repertoire of operations
that depends on ethics, common sense and the laws of the civilized world, e.g.
some issues are discussed in chapters of [52]. Those factors belong to the real
world, not to an idealized world such as that of mathematics. As an example,
a state or country can establish some law to prevent unsolicited e-mail, say,
messages of advertisement have to contain the string “Advert” in the beginning
of their subject fields. One of the subjective parts of this is that the laws for
e-mail often apply to the receiver and not to the sender, or to the sender and
not to the receiver, and this makes it more controversial. At a different level,
the same holds for mobile agent systems, which are typically spread out among
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different cultures. On the one hand, global computers have to establish what
can be computed. On the other hand, laws of behavior depend on time and
space, among other factors. As another hypothetical example, suppose that a
country has a law that adopts the policy to use only software open to its public
administration. However, should a global computer guarantee privacy of mobile
agents? Can the country impose such a constraint on incoming code? Such a
discussion might be controversial.

Therefore, not only in the present paper, both formal work and informal
discussions are significant. Informal discussions precede formalizations.

Section 2 is somewhat ontological. I discuss terminologies of notions related
to agents[21] or mobility. Section 3 is very conceptual as I introduce a view
of mobility detached from other concepts and I discuss its relationships with
other related concepts. Section 4 discusses other complementary notions such
as distribution and centralization. Section 5 introduces an intuitive notion of
computation, and in section 6 I present an algorithm that solves the halting
problem under the assumption of a finite-tape Turing machine. In section 7,
I provide one notion of computation that is somehow broader than the well-
established notions[71], such as Turing machines, λ− and π− calculi. At a
higher level, the proposed notion is based on physical, mental and philosophical
factors, besides mathematics[30]. I see computing science as a table whose
legs are these four studies. In this way, I extend the conventional operational
semantics by adding space, time and mobility, as well as defining states in a
more sophisticated way, in comparison to the basic literature. Finally, section
8 concludes the paper.

2 Agents

In this paper, I consider four forms of mobility. I dedicate this section to agents.
The term agent has been used by both the AI[41] and distributed systems

(DS) communities with different meanings and at different levels[34]. In ad-
dition, the term agent in English has the same spelling as in French, and has
almost the same spelling and meaning as the term agente in Italian, Spanish and
Portuguese. In these languages, agent or agente can normally mean “a person
who acts on the behalf of another person or other people” or “a person who
does something or causes something to happen”. However, the word agente,
comes from the verb ago in Latin, which means to act.

The term mobile agent is somewhat ambiguous. For instance, robots are
agents that act physically on the environment, some of them are mobile and
they have been referred to (by some) as mobile agents, but they are objects very
different from mobile agents with which some researchers in the programming
languages and distributed systems communities deal. Researchers from AI have
commonly used the term software agent to differ from the other forms of agency.
In this paper, I use the term mobile agent in the context of code mobility, rather
than robotics. As well as code mobility, one of the four forms of mobility will
be roughly related to the latter meaning of agent, from robotics.

In both fields of computer science, DS and AI, it has been noted that the
term agent still lacks a clear and standard definition[34]. An interesting question
now is whether it is really necessary to have a clear and standard definition
of the term agent by a few particular computer scientists, or whether to let
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the problem of these notions and terminology disappear naturally in future
work. That is, if different communities have used the same word in English
with different meanings, it might also be the case that both technologies and
fields have things in common. From this perspective, we ought to explore and
investigate this combination.

Since old times, societies have developed and the term agent has become
more sophisticated. Nowadays, travel agents represent passengers in transac-
tions with airlines, for instance. Agents are able to act on users’ behalf and,
because of this, must have autonomy and authorization to do so. In such a
more complex context, intelligence is one of the desirable requirements for hu-
man, hardware or software agents. This is one of the points where AI has much
to contribute. More than this, there is a subtle emerging area of research related
to agent technology: users not only want agents to be as intelligent as them-
selves, but also want agents to behave in accordance with their corresponding
psychological profiles. What does psychological profile mean? how to program
it? Answers for such philosophical questions have to be established before im-
plementation.

I believe that, although the meanings in the terminologies of agents from DS
and AI are different and apply to different levels, they can easily complement
each other. Thus, programming languages can support this integration.

3 Mobility and some related concepts

This section is a conceptual discussion on the foundations of computing science
in the presence of mobility. There are good surveys on code mobility such as [27,
34, 61]. There are other important contributions. Briefly, from the technological
standpoint, code mobility came from a refinement of the client-server paradigm
of distributed systems. The well-know paradigms for code mobility are: remote
evaluation, code on demand and mobile agents. Additionally, there have existed
two forms of code mobility: week and strong. In the present paper, I am
particularly interested in strong mobility, which requires the implementation
by the mobile agents paradigm, although there are mobile agents systems that
provide a weak form of mobility.

On the one hand, mobile agents technology was initially developed to solve or
minimize technical problems, in particular in a distributed environment where
performance is regarded as important. Furthermore, the Internet is a shared
resource, users want to share their resources in a controlled way, and this tech-
nological scenario contributes to development of mobile agents technologies.
Thus, transactions usually need several messages between partners and, when
this case holds, they ought not to be performed remotely but mainly by lo-
cal communication[68, 74] between a mobile agent and another agent. This
requires new programming languages concepts and constructs, and some have
been designed considering agent migration as priority, such as [26, 60].

As already written, the present notion of computation provides four forms of
mobility. In addition to code mobility, the movements of a robot in a corridor,
and the movements of a portable computer running a program in a transport
on the move, at least for computer science, should not be examples of the same
form of mobility for, although the computation moves as a consequence of hard-
ware mobility, robots move intentionally, in contrast with portable computers,
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although some technologies can permit both implementations to be aware of
physical positions of the underlying physical machine.

“Mobile computation”[16] has been used informally to mean the computation
supported by mobile code applications. The longer the distance the stronger
the argument towards mobile code systems. However, although electronic com-
merce, for example, can be conceived without code mobility, CPU loan or rental
is a kind of application impossible to be done on-line on a computer that does
not provide code mobility. Mobile agents typically come and use someone’s
CPU, or even many CPUs in parallel. Although very simple, this example
is evidence that code mobility provides a physical and probably more general
meaning of what can be computed in the real world, and not simply a new
technology.

Conceptually, one can observe that mobility has always been a basic concept
in computer science, as well as part of some models of computation. For ex-
ample, although there are books that provide a symbolic definition of a Turing
machine such as [66], a well-accepted metaphor since Turing himself is based
on one head that moves along a tape as a result from the current state and the
transition function.

There are examples in other models. In a Petri net the control also moves
in a similar way to a finite-state machine, either deterministic or not. The
β-reduction rule in λ-calculus is also a move in a sense. Furthermore, any
von Neumann machine, any sequential computer, provides mobility at several
levels: a variable assignment is a move and a copy. The digital and analogical
circuits also move bits and electrons, and so on. In order to generalize, every
bit that moves from one part of the computer to another may be conceived
as the simplest form of code mobility: it has source, content and destination.
Because these models of computation provide some form of simple mobility,
code mobility should be a primitive of a more general notion of computation.
The fact that some mobile agent can simulate a Turing machine write/read head
or a token in a Petri net is only one example of the generality of the notion of
mobility.

Summarizing the forms of mobility dealt with in the present paper, I itemize
four different ones:

• Strong mobility: the destination is stated explicitly and hardware or com-
putational environment (CE) does not move (existential software move-
ment in a sense).

• Broadcast mobility, SpreadOut primitive: the destination is not explicit
and hardware or CE does not move (universal software movement in com-
parison to the strong mobility).

• Non-intentional hardware mobility: the hardware moves (or it is moved)
and the software might be aware or not.

• Intentional unite mobility, wemove command: it is an intentional form
of mobility of the computational environment (CE), in a sense. Robots
movements and people walking in the streets, might also be seen as par-
ticular case here.

There are other forms of mobility.

6



4 Other Concepts

In [4], the author presents a model of distributed computation which is based
on a fragment of π-calculus relying on asynchronous point-to-point communica-
tion. The same author then enriches the model with some features. In general,
nowadays, many researchers who work in the code-mobility community are in
some distributed systems group, and most call for papers of conferences on dis-
tributed systems includes mobile agents technologies. The connection between
the two notions is indeed very strong.

Here, an important issue is: are mobile agent systems distributed systems? If
one thinks carefully, the answer may be no. Research on mobile-code technology
includes research on programming languages, design and implementation, and
such languages make programmers be aware of resources, which contrasts with
the philosophy of distributed systems in its traditional sense.

But, returning to the primary and conceptual level, the terms centralization
and distribution are often related, and they can oppose or complement. Al-
though we might prefer to use distributed computing for technical reasons such
as efficiency, robustness and security, the concept of centralization is necessary
even in computing. Taking the human body as a metaphor, the human circula-
tory system consists of one heart, veins spread out in the body and blood. Some
of us know that the movement of blood in veins towards the heart represents
centralization while the opposite movement away from the heart to the parts of
the body represents distribution. This is a natural example showing that cen-
tralization and distribution can be mutually beneficial, and even be necessary
for each other. Here, mobility is a third important component, represented by
the movement of blood in both directions.

Similarly, although complex systems are normally distributed, mobile code
systems are not distributed systems but they are related[10, 77]. Likewise, mo-
bility is not distribution, but these concepts can coexist. These concepts exist
at different levels of abstraction. For example, one can implement a distributed
system using code mobility.

The concept of centralization is present in mobile code systems. For example,
the concept of centralization applies to the level of programming. In this case,
a central component is the programming language, as it provides standards and
imposes constraints to the whole system. As another example, agents can move
to a central place, a specific interpreter, and communicate with each other lo-
cally. This independence from centralization and distribution, together with the
possibility of implementing the last two, makes mobility a more general concept
and, hence, a good candidate for a primitive in this model of computation.

Another pair of concepts is individuality and what is from the collective,
which is also relevant for global computers. Physically, every person is indi-
vidually unique. There are refinements of physical characteristics that depend
on genes, e.g. groups due to family factors. However, at the collective level,
all people have common features, such as two eyes, two ears and one mouth.
Accordingly, every individual has his or her own personality, and yet they share
many collective standards: for instance, it is commonly felt that Marilyn Monroe
was beautiful. These psychological standards vary according to place and time,
and some of them change more slowly, others more quickly. Culture and fashion
are two examples of collective standards. Family psychological characteristics,
including those due to education, is an example of psychological characteristics
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shared by groups. Rules of good behavior exemplify group or collective common
sense, and is normally conscious behavior.

So far computation is relatively simple for us, computer scientists, but when
one investigates deeply human psyche and starts thinking about unconscious,
the subject becomes with synthetic nature. The psychologist Carl G. Jung[45],
for instance, studied deeply what he called the collective unconscious, which is
a theory based on science, but also a theory that contains elements from his
philosophical view.

An analogy can be made between the hierarchy of characteristics as de-
scribed above, and mobile agents systems. Because agents cannot view the
internal parts of the interpreter implementation, and because all interpreters of
the system should be the same or at least compatible with each other from a
minimum extent, the interpreter corresponds to the collective unconscious, while
the mobile agent corresponds to the conscious part of an individual. It turns
out that such a psychological model can be somehow simulated by computers.
The power of the collective unconscious can be illustrated in the following way:
if there is some change or mistake in the implementation of the interpreter, like
a social revolution, all mobile agents of the system may be critically affected at
once. On the other hand, common sense and other kinds of information ought
to be ubiquitous resources, provided by the mobile-agent system, i.e. mobile
agents do not need to carry such established knowledge about the world, nor
even any established belief system. Although the work of Jung form one of
the most general psychological models, the Jung’s model seems to apply to mo-
bile agents, including the four psychological types, namely, reasoning, five-sense
perceptions, intuition and feeling. The exceptions are probably intuition and
feeling, although one can develop software which imitates human behavior.

Within the scope of AI, neural networks also make use of mobility. A neural
network tends to represent what is learned from perception and possibly intu-
ition. Using some mobile agent technology, a neural network may be spread out
even over the globe, in such a way that the perception is also spread out, which
contrasts with human perception. Because of this observation, this implemen-
tation can be seen a novel hybrid model of computing. One can observe that,
whereas deductive systems are closer to the western way of thinking[47], neural
networks with fuzzy systems[49] are opposite models closer to the eastern view,
although this difference tends to disappear. I would like to stress that such
applications use the technology of mobile agents to implement mobility, but
mobility is an essential property of networks in general. And since the whole
universe is on the move, mobility is a relative concept.

Regarding computation, as well as mobile computation, there is another
modality of mobility, namely mobile computing [62]. The latter modality comes
from wireless networks and portable computers, a subject somewhat close to
robotics in a sense. Both forms are described in [18] or [19], and both are or-
thogonal to each other, for instance, one application does not affect the other[72],
at least directly. As an example, to be general I must consider that a mobile
agent can move from one craft to another, both on the move, and such a double
movement is part of the general notion of computation.

8



5 An intuitive notion of computation

Traditionally, the models of computation are: Turing machines, Church’s λ-
calculus, Post production systems, Kleene’s µ-recursion schemes, Herbrand-
Gödel equational definability, Shepherdson-Sturgis register machines, the while

programming language, and flow charts. Mobility is becoming part of candi-
dates to the next generation of established models of computation.

Taking the example of on-line CPU loans or rentals, agents come to the
host and, after identification and/or negotiation, use the CPU and possibly
other resources, depending on the agreement. If it becomes expensive, some
agents move to another host. Besides practical concerns, any application that
depends on the presence of the “computational entity” acting locally is an ex-
ample that there are computations which cannot be done without some form
of interpreted code mobility. Should space and time are regarded, it is not dif-
ficult to find other examples. In particular, after having transported an agent
to some virtual machine, while that agent interacts locally, some connections
may be interrupted but the agent’s computation might not be affected by that
(temporary) interruption.

Therefore, in this paper, I define a notion of computation from an operational
standpoint, in particular, I am concerned with time and space as part of a
somewhat general notion and, therefore, part of the model that I shall present.

Thus, some conceptual issues are: what is a computational entity? what do
we mean by ’code’ and ’interpretation’? In some sense, ’code’ can be any data,
and the present discussion on computation leads one again to philosophy. There
is the same for the term “executable code” which, depending on the adopted
meaning, there are two different views in computer science. Therefore, code
mobility introduces a philosophical view to computer science.

In [15], Cardelli briefly and informally defines global computation and points
out several related issues, such as how multiple global computers can interact
effectively. As he says, the main characteristic of global computation is the
geographical distribution. Although every planet has its globe, the term global
computation refers to this planet. Although I keep the term “global computer”
from his article, I prefer to use the term global computing instead of global
computation.

In this way, I shift the notion commonly referred to as “computation” to be
referred to as mathematical computation to accommodate mobility as a primitive
of the notion which I refer to as computation, for mobility is the focus of attention
in this paper. Alternatively, one may prefer to refer to the same notion as
physical computation while keeps the traditional meaning of computation.

Parallel computation is another abstract and theoretical concept that is mod-
eled in π-calculus[55]. In that article the author shows that names of channels
can be passed from one process to another, for instance, and that was a major
step in the foundations of mobility and computation. Technologically, parallel
computing has been linked to super-computing and powerful machines, but code
mobility can also implement parallel computation over a local-area network or
wide-area network or both. Thus, parallel computation is simply computation
in parallel.

In [33], the authors introduce the distributed Join-calculus, which is an ex-
tension of the Join-calculus[32] for mobile agents. Both are asynchronous vari-
ants of π-calculus with the same expressive power as the latter, but the former
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provide better locality and better static scoping rules[33]. To represent mobile
agents, the distributed Join-calculus introduces locations, and for unreliable
environments, that calculus also provides a simple model of failure.

Ambient calculus[18, 19] also captures the notion of code mobility, and,
because the calculus is also partially based on the π-calculus, it also describes
parallel processes. The Ambient model is also inspired by Telescript but almost
dual to it, according to the authors. Other important contributions have been
made since then, such as [14]. However, like other calculi and unlike Distributed
Join-calculus and the Seal calculus[75] which is another extension of π-calculus,
it does not abstract other details associated to mobility, such as resources and
uncertainty, e.g. due to unreliability of physical media. On the other hand, the
Seal calculus and others are somewhat practical calculi, in the sense that they
are dependent on current structures such as the Internet. Although the notion
of process[51] migration[56] is not new, the term mobile computation was coined
by Cardelli in [16].

An interesting feature of a model of computation with strong mobility is
that they transcend term rewriting systems. In comparison to models based on
π-calculus, the flyto primitive (i.e. an instruction needed in every mobile agents
programming language) moves not only the remaining symbols but also its sur-
rounding context. Here I present an example of a rewriting system-like rule,
in Ambient calculus, for moving an agent composed of two parallel processes
(flyto(B).P and Q) from the place A to the place B:

A[ (flyto(B).P )|Q ] ‖ B[ ]
τ

−→ A[ ] ‖ B[ P |Q ]

The above rule cannot be applied using, for instance, a context-free grammar[5,
40, 43]. Moreover, at a more practical level, if one considers that places have
their local resources and that agents typically use them locally, the order in
which agents move does matter. For instance, in an unreliable environment, one
cannot think in terms of a more general sense of the Church-Rosser property[37].

Parallel computation is a more general and abstract notion in comparison
with recursive functions, that is, the latter is like a thiner granule. The linear
operator ⊗, for instance, captures the notion of parallel operands, but it is
still purely mathematical. Because I am looking for generality, my notion of
computation includes both parallel computation and mobility, in addition to
the physical[67] nature of this form of computation. In comparison to Ambient
calculus, for instance, I consider timeouts in the model.

Although the mobility community in computer science established global
computing for structures such as the Internet, certain issues related to compu-
tation are not limited to this planet. For example, a mobile agent can migrate
from a spacecraft and continue its computation at another spacecraft no matter
where they are. Agents can also travel from one planet to another no mat-
ter the distance between them. Because of this, I can perceive another term
to refer to another model that includes code mobility. I use the term physical
computation to stress the physical nature of computation, and computation in
the real world to stress the philosophical, physical and psychological aspects of
computation together. Additionally, I also use the term computing in the real
world to include programming languages, technologies and applications.

Larger distances and time intervals for mobility are two fundamental char-
acteristics of code mobility in comparison to the computation local to a single
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hardware. In [15], Cardelli describes the main characteristics of global comput-
ing and I summarize them below:

• Parallel or concurrent processes.

• Code mobility.

• Latency and bandwidth are directly addressed.

• The availability of resources are distributed geographically, which requires
that programmers be aware of locality of resources. This in turn replaces
a established law in distributed systems.

• Higher level of interaction between users and machines.

• Security and privacy are particularly critical.

Thus, physical computation is a more abstract and theoretical notion than
global computing, because physical properties of time and space are not limited
to this planet or Internets. Physical computation and global computing almost
entail mobility. However, while mobile code systems necessarily produce physi-
cal computation, this can be done locally or remotely, but not necessarily on a
global environment.

If one starts considering mobile computation as a specialization of compu-
tation, we can see a kind of ontological paradox[20] in the traditional notion of
computation: from the moment that one conceives the idea of moving computa-
tion, one can observe that an effective general notion of computation transcends
pure mathematics and meets the physical world. Furthermore, objects in the
real world are far from being perfect as the mathematical objects which one
idealizes. In other words, code mobility changes the notion of computation.

Considering that humans have unconscious, the task of simulating human
behavior with computers becomes dramatically more difficult. Here I give one
more example of this view. It can be perceived that the sensation of pleasure
conceptually is a mechanism of which the nature makes use to preserve both the
individual and their species. At the individual level, a delicious (or beautiful)
meal is sometimes able to create the wish in some person to feed themselves,
sometimes even without any need. At the collective level, sexual pleasure can
make a person pregnant. According to Jung, the human unconscious is often
projected on things and people that one deals in one’s daily life, and that mech-
anism can work individually or collectively. Thus, projection is a view that the
individuals have of their unconscious, both personal and collective, and the rôle
of projection seems to be to make them aware that the source of the standard of
their interactions with the world is in themselves, and possibly that the standard
needs change.

Projection is a mechanism of which the psyche makes use to advise the
individual concerning what they do not perceive in themselves. In some sense,
although projections are not normally pathological, the rôle of projection is
somewhat similar to physical pain, which advises the individual that he or she
is sick and, therefore, should seek treatment. Some other physical symptoms
seem to play this rôle but they act at the collective level especially when the
disease is contagious.
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The collective unconscious makes sense as a psychological mechanism that
seems to protect the individual and the species. To date, in addition to the
approaches in natural sciences, there are different philosophical positions con-
cerning the nature of psyche, some more complex than others. A recent selection
on the rôle of analogy in the context of cognitive science is in [36].

To establish what computation is, I find a philosophical question: does any
computation exist that cannot be perceived by humans at all? The answer also
depends on the philosophical position. Although I use the term “real”, I also
adopt some idealistic ideas, i.e. computation in the real world regards human
as a central component, but this does not exclude beliefs in God, either internal
or external, and this is another subject in philosophy. The previous question
can be used to provide foundations for a theoretical computer science based on
physics and philosophy, as well as on mathematics. The relationship between
mathematics and computer science is certainly very strong, like the relationship
between mathematics and physics[31].

Here, as an example of computation, I present the reduction steps in some
computation using some version of λ-calculus with some syntactic sugar:

(λf.f 10)(λx.x+ 1)
λ
 (λx.x + 1)10

λ
 10 + 1

λ
 11

An interesting introductory and long study on λ-calculus and models of un-
typed λ-calculus is in [8]. Although these steps of computation are described as
purely abstract objects, at the moment that I read them the actual computation
is carried out mentally, in a context at some time and at some place.

6 A little on computability

Alan Turing demonstrated that the problem of determining algorithmically
whether a Turing machine M1 halts is unsolvable[11, 44]. This is one of the
known theorems in computer science, often labelled as the unsolvability of the
halting problem. The recent course book, [25], contains the well known proof of
this theorem.

On the one hand, this problem is unsolvable because it is generally assumed
that the tape is infinite, otherwise solutions to the halting problem would be like
in chess, which regards a match a draw when the same position appears three
times or in which the same sequence of moves happens three times. Accordingly,
regarding that the computation by M1 can be reproduced literally, one solution
to the halting problem could be as follows:

—– Let the algorithm In interpret Turing machines.
halts := 0;
p := pointer(firstinstruction);
states := [ ]; —– comment: states now has the empty list.
while halts = 0 do

〈operator, operands〉 := fetch(p);
p := nextinstruction(p);
if operator is halt then

halts := 1;
states := states : “halt′′; —– concatenates

else
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〈newstate, p〉 := execute(operator, operands);
if newstate in states then halts := −1;
else

states := states : newstate;
endif

endif

endwhile

if halts is 1 then

write “The analyzed program halts.”;
else

write “The analyzed program loops.”
endif

where : is the concatenation operator. Thus, if the tape was finite there could
be a finite number of configurations, all of which could be checked by the algo-
rithm In, although this could still be a complex problem[44]. If a configuration
repeated once, In would decide that the computation of M1 was infinite[63],
otherwise both machines would halt on normal termination. However, this is
also a hypothesis. In this case, the time for solving the problem, as well as the
above solution, are exponential (non-polynomial, in NP). However, apart from
complexity issues, my observation is that no real machines have infinite-sized
memories. Therefore, from the perspective of computability theory, it turns out
that the halting problem is decided in the real world, although its solution is
infeasible in some cases.

7 A notion of computation

Although there are other notions of computation, using local symbol definition,
here I consider that computation can be φ in the following signature:

φ : π × ρ, ρ : τ × U × ψ

where π is the sequential concept of computation, and ρ is an extra philo-
sophical component, which in turn is defined as a product of time τ , space U
and some possible psychological component ψ. Here, place and time can be
those traditional physical dimensions, while ψ is with respect to some observer.
In this piece of work, I do not use the above signature, which was shown as
illustration.

7.1 A view of time, a representation

In many articles on temporal logics[1, 2, 35] commonly applied to AI plan-
ning systems[3] and other fields, time is often represented by using real values
where, as time goes by, the present moment normally increases. There might be
branches along these lines to represent “futures”. There are other approaches,
such as in [64] that can also be useful for applications, including system speci-
fication, but also to express natural sub-languages by using particular cases of
modality.
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In this paper, I adopt a form of representing time by making use of a flow.
Thus, let us define T as an infinite set of temporal moments and let the flow be
linear in R. I use relational operators over the real numbers to state temporal
relations.

The longer the distance is, the more significant modern physics is. Thus
the present model is only a simplification of my intuitive notion i.e. this notion
depends upon a number of factors that do not appear in these semantic rules,
such as those caused by gravity and bodies, as well as what can be discovered
in physics.

The operators over time instants refer to the daily-life temporal concepts,
e.g. a <t b refers to “a happens before b” and so on. Apart from such order
operations, there is no interval relationship over indexes. Thus, if t ∈ T is used
as time variable, tj >t ti always holds for j > i but ti+1 −t ti is not necessarily
equal to tj+1 −t tj . If T is R, therefore <t is < and −t is − without further
formalization.

I do not use <s here. −s : S × S −→ S is some approximation of the
Euclidean distance from the first operand to the second one

(xi, yi, zi) −s (xj , yj , zj)
def
= approx

√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

by using some mathematical method, already known for example.
One may want to represent time in a different way.
Here I define computation by defining the set of operations of some abstract

machine.

7.2 States of the Real World

In this subsection, both space and time[9] are defined as continuum[28]. Much
current theoretical work in computer science, such as [12], makes use of some
form of continuous time. I choose and present one philosophical view as an
example, having in mind that it is not necessarily a proposal for all. One sub-
jective view is needed for supporting explanations in next subsection. Therefore,
since such a model supports the idea of computing in R, it may also support the
idea of computing in Z with possible minor adaptation. In parallel to this, as
an example that philosophy is a basis for computer science, in this subsection,
I am regarding a hypothetical situation where agents travel to some country,
for instance, China and, therefore, are culturally exposed to their very ancient
wisdom. However, in India for instance, although it is another country in Asia,
agents would be exposed to some different cultural background. In general,
computer science has been based on modern western culture, but mobile agents
on a global environment is making one think about the meaning of computation
from different perspectives. Furthermore, on the one hand, complexity theory
states what computers can do. On the other hand, ethics[46] (which is a branch
of philosophy) asserts what computers should and what they cannot morally
do, i.e. there are two complementary approaches. Internethics may be viewed
as a good term for this new area.

Following this, during computation, each real state, or here I simply refer to
it as “state”, is not only the context of the program, in its traditional sense.
It is also behaviors, including actions, which are unique in time and space.
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Behavior is the part of a state that can be perceived externally, while the internal
state contains the perception of the external world. A state is a set that can
contain behavior and internal state, which in turn can contain locations, the
characteristics of the physical world at a specific time, e.g. the whole mankind
and all computers, the whole world, although not everything is accessible by the
agent in question. In this sense, there is a mismatch between real states and the
machine set of behaviors. The former is uncountable, the latter is countable[31].
Human experience is continuous in both space and time1. I tend to perceive
time and space as in the structure of the set of real numbers.

Without defending a particular view, an analogy can be drawn between
this discussion and in the relationship between I Ching and Taoism. I Ching
hexagrams are pictorially composed of six lines. Some lines might move from
yin to yang, others might move from yang to yin. Indeed, the I Ching is based
on the binary system. On the other hand, although Taoism is also based on this
pair of concepts, they are pictorially shown inside the Tao circle in such a way
that one is gradually (but without granularity) being moved to the other. This
analogy suggests that the I Ching is only a simplification of the Taoist view of
reality as much as machines, by nature, are simplifications of the real world.

As another analogy, the classical musical language as well as the capability
of some instruments can also be seen as simplifications of music. For some
instruments, there are only 12 notes, although the scale is cyclical and can be
repeated with higher or lower pitches. However, between any two subsequent
notes rests a continuum interval of frequencies.

Likewise, from a somewhat similar point of view, although digital computers
are useful and much can be improved on them, human computation might not be
a concept limited to the set of integers, or perhaps it is better to define the notion
of computation more precisely. That is, it is important to make clear up to what
extent one is talking about computation, whether e.g. feeling and intuition are
really computation, or whether this pair of psychological concepts and others,
say synthetic concepts, can only be a matter of analytical simulation. Moreover,
R certainly suggests the potential for future discoveries, as the infiniteness of the
tape in the Turing machine model represents this potential, which is infinite. As
a concrete example, if I want to conceive a circumference in a Cartesian plan,
it is sufficient to have its equation, i.e. x2 + y2 = r2 where r denotes its radius,
but, to calculate its coordinates, I must convince myself that between any two
points there exist infinite points. Although the infiniteness of the tape in the
Turing machine model suggests this potential, proposing a model in R4 may
be more natural and easier to conceive from a different view of computation.
As one example of other work on a continuous three-dimensional space, in [42],
the authors introduce an approach to the solution of the pursuit problem in the
Euclidean E3 space.

It is known that humans reason and do research in science and mathematics
in many ways, while the mathematical world is pure, exact or precise and per-
haps very clean, tidy and structured in comparison to the psychological world,
with dreams and the unconscious, for instance. An example of this kind of issue
is input-output in purely functional languages, solved by using monads[38, 76],
but a problem that can also be seen from a physical standpoint instead. There

1The notion of time might also be even individual, e.g. for a 2-year-old child, one year

corresponds to the experience during half of life, and, perhaps because of this, I may feel that

time goes by quicker as I get older.
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are other different views regarding the match between mathematical and real
worlds, and this is also another piece of evidence that computation is a philo-
sophical notion. This almost entails that philosophy is a theoretical basis of
computation and computer science.

To compute in R is not a novel idea, and there are good references such as
[73].

In this discussion, I can still see a finite computation in a discrete interval in
time as a sequence of states st0st1 ...stn

, where {t0, ..., tn} are chosen instants,
and I simply add the notions of time and space for every state. To define
computation I need to define an abstract machine. My machine is a virtual
machine that supports mobile agents, i.e. a virtual machine for a subset of an
imperative language, such as Pascal or C, in addition to the ability to move the
code, data and state of the computation in accordance with the definitions here.

Firstly, I define a state as a tuple composed of an internal state (ι), the
external state of behavior (β), a place p ≡ 〈x, y, z〉 and an instant (τ). Thus,

s ∈ S, s
def
= 〈ι, β, x, y, z, τ〉

where S is the set of all possible states. In this paper, I define ι and β as

sets of propositions. I define the empty state as f ∈ S, f
def
= 〈∅, ∅, 0, 0, 0, 0〉.

Thus, for s1 ≡ 〈ι1, β1, x1, y1, z1, τ1〉 ∧ s2 ≡ 〈ι2, β2, x2, y2, z2, τ2〉 ∧ τ = τ1 = τ2,
and ζ being a condition (a predicate as a singleton), there are six properties,
which are the following:

P1:

ζ ∈ s1 ↔ ζ ∈ ι1

That is, if a condition is in a state, it means that it is part of its internal
state. Similarly, two predicates for sets:

P2:

s1
s
⊂ s2 ↔ (ι1 ⊂ ι2 ∨ β1 ⊂ β2) ∧ p1 =s p2 ∧ τ1 =t τ2

Accordingly, s1
s
⊃ s2 ↔ s2

s
⊂ s1.

P3:

s1
s
= s2 ↔ ι1 = ι2 ∧ β1 = β2 ∧ p1 =s p2 ∧ τ1 =t τ2

Accordingly, s1
s

⊆ s2 ↔ s1
s
⊂ s2 ∨ s1

s
= s2.

P4:

s1
s

6= s2 ↔ ι1 6= ι2 ∨ β1 6= β2 ∨ p1 6= p2 ∨ τ1 6=t τ2

and two functions for the spatial sets, P5:

s1
s
∪ s2 ≡ 〈ι1, β1, x, y, z, τ〉

s
∪ 〈ι2, β2, x, y, z, τ〉 ≡ 〈ι1 ∪ ι2, β1 ∪ β2, x, y, z, τ〉

P6:

s1
s
∩ s2 ≡ 〈ι1, β1, x, y, z, τ〉

s
∩ 〈ι2, β2, x, y, z, τ〉 ≡ 〈ι1 ∩ ι2, β1 ∩ β2, x, y, z, τ〉

I also take the liberty to use ε to denote the idle state. There is only one
occurrence of the idle state in any computation. Notice that ε and f are not
the same notion.

In this paper, because ι and β are closely related, I collapse ι and β and refer
to them as virtual state. Thus, from now on a state is the tuple 〈rt, x, y, z, t〉
where rt is the corresponding virtual state at the time t.
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As already mentioned, although I informally consider the possibility of con-
tinuous flow-like multi-dimension set of states with respect to space and time,
here I define a simplified version of computation, i.e. computation in the real
world is a sequence of states, st0st1 ...stn

that one selects according to a partic-
ular focus of attention.

Let S be the set of all machine states, S isomorphic to N. I define a (non-

reflexive except for one case, and) anti-symmetric relation
c
→: S×S −→ Bool to

indicate the existence of two subsequent states associated to the computation.
I define

c
→ in terms of its properties as follows:

• s
c
→ s1 ∧ s

c
→ s2 ⇒ s1

s
= s2, s1

c
→ s ∧ s2

c
→ s⇒ s1

s
= s2.

• s
c
→ s⇒ s

s
= ε.

• Its particular case ε
c
→ ε which always holds.

I define
+c
−→ as the transitive relation as follows:

st0

+c
−→ stn

def
= (st0

s

6= ε ∧ st0

c
→ stn

+c
−→ ε) v (∃st1 ∈ S : st0

c
→ st1

+c
−→ stn

+c
−→ ε)

where v is the exclusive or, and ∀s0, s1, s2 ∈ S : s0
+c
−→ s1

+c
−→ s2 is defined

as s0
+c
−→ s1 ∧ s1

+c
−→ s2 and the same holds with

c
→. Among others, three

important properties of
+c
−→ are the following:

• s
+c
−→ s⇒ s

s
= ε.

• ∀s, s
+c
−→ ε which is my practical view of computation.

• si
+c
−→ sj ∧ si

+c
−→ sk ⇒ (sj

s
= sk v sj

+c
−→ sk v sk

+c
−→ si), i.e.

+c
−→ is

unique with respect to
c
→.

• si
+c
−→ sj ∧ si

s

6= ε⇒ ¬(sj
+c
−→ si)

In this way, computation in the real world can be defined as any finite se-
quence of states over the time, where every two subsequent states are linked with
an application of

c
→ relation, where the last state of that sequence is the only

inactive state of that computation. The intention might be the same, the place
might be the same but, if the instants are not the same, the external world is no
longer the same. Therefore, from this point of view, computations performed at
different times cannot be the same. With some simplification, human thought

can be an example of
+c
−→, where ε corresponds to the individual’s death. It is

very difficult, if possible, if I want to mathematically establish when a compu-
tation starts and when it finishes for this case. So I state in this example that
human computing starts when they are born and finishes when they die, and
it is also always finite. I can also think in terms of collective computing which
may never finish due to (human) communication, or may finish due to some
colliding asteroid, for instance.

An analogy can be made between computation and a melody being played,
where not only the sequence of notes is relevant but also the duration of every
note among other variables. More generally, there is a subtle difference between
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a melody and its performance, whereas, likewise, there is some subtle difference
between the mathematical and physical forms of computations.

In comparison with any rewriting system[6], except for the idle-state case

here, although
+c
−→ is also transitive, such a relation is neither symmetric nor

reflexive as time never goes by backwards nor it stops, i.e. joining together two
of the above properties we obtain the following one:

sti

+c
−→ stj

⇒ (sti

s
= stj

s
= ε) v (sti

s

6= stj
∧ ¬(stj

+c
−→ sti

))

Moreover, this relation implies some measure of uncertainty due to the some-
what unpredictable nature of the real world. While any computation happens,
the probability of its success gradually increases over time. To add some prob-
ability between states is enough to introduce a more general and physical model,

in some sense. Hence, I alternatively define
+c
−→ as follows:

st0

+c
−→ stn

def
=∃m ∈ R, 0 ≤ m ≤ 1 : (st0

s

6= ε ∧ Ψ(m : st0

c
→ stn

)
+c
−→ ε) v

(∃st1 ∈ S : Ψ(m : st0

c
→ st1)

+c
−→ stn

+c
−→ ε) (1)

where Ψ(n : ϕ) represents the assertion ϕ with probability n. Therefore,

∀s : Ψ(1 : s
+c
−→ ε) and also

∀s0, s1, s2 ∈ S,mn ∈ R, 0 ≤ mn ≤ 1 : Ψ(mn : s0
+c
−→ s2)

def
=

∃m,n : R, 0 ≤ m ≤ 1, 0 ≤ n ≤ 1,mn = m× n : (2)

Ψ(m : s0
+c
−→ s1) ∧ Ψ(n : s1

c
→ s2)

The � relation indicates that two states coexist independently. Using the
present style...

s1 � s2
def
= s1 ≡ 〈r1, x1, y1, z1, τ1〉∧

s2 ≡ 〈r2, x2, y2, z2, τ2〉∧ (3)

(s1
s
∩ s2

s
= f ∧ (x1 6= x2 ∨ y1 6= y2 ∨ z1 6= z2))

Let U be the set of computations and S be the set of states. I define the
function

s
 : U × S −→ Bool, which informs whether the second operand is

the last non-idle state during a computation, which in turn is given as the first
operand.

The function
s
 may have included the influence from the behavior of other

computations, not only interaction with other computations. Thus, a program
running twice produces two different computations (and perhaps two different
behaviors). There are two more significant properties:

(∀C1, C2 ∈ U, ∀s ∈ S) C1
s
 s ∧ C2

s
 s⇒ C1

c
= C2

where C1
c
= C2

def
= ∃n ∈ N : C1 ≡ s0s1 . . . sn ∧C2 ≡ s′0s

′

2 . . . s
′

n ∧ ∀(i ∈ N, i ≤
n) : si

s
= s′i. And also:

(∀C ∈ U, ∀s1, s2 ∈ S) C
s
 s1 ∧ C

s
 s2 ⇒ s1

s
= s2
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That is, computation has the property of being a unique object with respect
to its final state. I also define α as the set of all programs, i.e. the set of all
mobile agents (or mobile processes), which are the potential for computation.
Let U be the set of computations and S be the set of states. The function
d e : U −→ S, that indicates the last active state, is defined as the following:

dCe =

{

s0 if C ≡ s0ε, where s0 6= ε ∧ s0
c
→ ε

sn if C ≡ s0...snε, where ((∀i ∈ N) si 6= ε) ∧ sn
c
→ ε

for every computation C which entails some n ∈ N.

7.3 The Brief Definition of the Space-Time Logic, @-Logic

This section introduces the concise definition of the space-time classical logic,
called here the @-logic.

For this paper, let C be the set of all formulae in the space-time logic, i.e.
the language of the present logic. The syntax can be defined as follows:

Definition 1 Let ϕ and φ be two formulae and α be a variable (a quantifier).
Thus, the grammar for the space-time classical logic can be as follows:

ϕ 7−→ P | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ | ϕ⇔ ϕ | (∃α) ϕ | (∀α) ϕ
ϕ 7−→ @s · t[ϕ] | φ | @s · t[ ]
φ 7−→ @s · t[[ϕ]]
α 7−→ x | y | ...

where ϕ is the starting symbol, P stands for a proposition or predicate, α
denotes a quantified variable in the @-logic, s ∈ R3 or s ⊆ R3 and t ∈ R or
t ⊆ R, depending on the focus of attention, points or sets. Let φ stand for
semantics, which can be seen as a function whose domain is in C and semantic
image is a parameter of the present logic. Both the syntax and semantics are
simple: if ϕ is a formula, then

@s · t[ϕ]

is a formula in the present logic, where s indicates the place where ϕ holds, and
t indicates the time when ϕ holds. A particular case is

@s · t[ ]

which intuitively indicates that there is no assertion for space s and time t. This
notation is capable of representing an empty data base or theory, for instance.

With @s · t[[ϕ]], we are able to express “the meaning of ϕ at place s and time
t”.

Note that this language implicitly introduces a conjunction between the
space and the time, for every space-time formula. Now, for any formula or
expression, everything happens intuitively in the same way as it would happen
in the classical logics, except that now there are the variables of space and time,
and that the classical logic formula or expression is valid in the new context.
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7.4 The Present Semantics of Computation

In this subsection, I attempt to formalize a simplified version of the previous
notion of computation, informally introduced above in this section, by using the
@-logic.

Let π be a program in some object language with some computation φc and
let all of my definitions in this subsection apply to the scope π, unless stated
otherwise. To avoid being exhaustive, I consider that variables have their sep-
arate scopes in each rule although they have the same names and meanings,
except for variables defined explicitly as global for all rules. Let AR be isomor-
phic to R∪{uu } and AL stand for the set of Boolean values, and use these sets
as carriers of the algebra[29, 54] that is going to be defined here.

I also write 〈x, y, z〉 explicitly when I want to stress the relationships between
each of these coordinates and the time, although I do not use them individually

in the semantic rules. There is one global definition, in symbols, p
def
= 〈x, y, z〉

and it may be indexed, e.g. pi
def
= 〈xi, yi, zi〉. As well as the notation in rules,

I make implicit use of first-order predicate logic in these rules. When t is not
the present the predicate expression does not hold. Thus, the states of the
predicate expressions change as time passes. Thus, in the @-logic, I write logical
expressions as well as operational expressions.

The present model is over the following definitions:

• There is a common three-dimensional space in E3, which is the universe. I
equate R ≡ E and use Cartesian coordinates 〈x, y, x〉 to refer to the points

in (Euclidean) space E3. Thus, let U
def
= E3, be the universe;

• There is an infinite but countable set of possible agents 4
def
= {a1, ..., ai, ...}

written in the language α;

• Every agent has its input queue;

• Every point 〈x, y, z〉 in U contains a finite set Obj
def
= 〈v, {a1, ..., an}〉

where v ∈ V al, V al ≡ AR, that is, v stands for either a real number
or the uu value (which stands for unknown or a kind of vacuum), and
{a1, ..., an} = Y ⊆ 4.

Then, I define the following Σ-algebra

A
def
= 〈AR,AL, V ar, SObj, Loc, S,U , 0, 2, uu , par, p, p0, pi, q,

r, r0, r
p, rp0 , rt, rt0 , rt0+Ib

, t1, rti
, s, s′, t, t0, tε, tf , ti,∆t,

Ap
t , A

p
ti
, Ap0

t0
, Ap0

t , At, At0 , A
pi

ti
, Ap0

t0+Ib
, Ad,

u, v, V, x, y, z, x0, y0, z0, xi, yi, zi,
∆l,∆l1,∆l2,∆s,∆s1,∆s2,

I, Iµ, Ia, Ia1
, Ia2

, Ib, Ie, Ii, I:=, IC, Ith, Is, Iwem, ω,Ψ〉

for signature Σ here, where V ar is the set of all variables internal to φc, and
also to π; and since Obj = 〈v, Y 〉 where v ∈ AR, Y ⊆ 4 as stated, SObj =
AR ×P(4); Loc is the set of internal locations, and S is the set of states. Let
u, v ∈ V al, V ∈ V ar, p ∈ U , r, s ∈ S, t ∈ R. Then,

Σ
def
= 〈{AR,AL, V ar, V al, Loc, S, SObj}, F 〉
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where F is consisted by +, −, /, =, 6=, <, >, ∧, ∨, r2 as usually defined in
mathematics plus the following functions:

(locate) γ : V ar −→ Loc

(lookup) ρ : S × Loc −→ V al

(update) ∆: S × Loc× V al −→ S

(value) Θ : S −→ SObj

(first) ξ : S −→ AR × S

(del queue) χ : S −→ S

(ins queue) η : S ×AR −→ S

(fault) fπ : R3 × R −→ AL

(physical move) µ̈x, µ̈y, µ̈z : R −→ R

Intuitively, γ maps a variable to its location; ρ results in the content of
a location in some particular state; ∆ updates the memory according to its
parameters: location and value; Θ, provided a state, results in the value of the
corresponding point in space and time; ξ gives the first element of the input
queue and the state after the operation; χ removes the first element from this
queue; η inserts a value as the last element of this queue; fπ is a predicate
that, given some point p and time t, informs whether there is some fault (e.g.
the presence of another agent) between the current point (an implicit parameter
that denotes the point at the three current coordinates of the running agent) and
p at t; and µ̈x, µ̈y, µ̈z are postfix functions that, given one coordinate results in
the new corresponding coordinate due to possible physical hardware movement.
That is

pµ̈
def
=

√

(xµ̈x)2 + (yµ̈y)2 + (zµ̈z)2 (for an approximation of the real)

For each semantic rule, as it is already clear here, to simplify a little the
notation, I shall assume that the existence of more than one occurrences of the
functions µ̈x, µ̈y, µ̈z and µ̈ is not relevant, that is, I do not formally consider that
the physical shifts of the machine for this tiny intervals might be at different
velocities. However, in this case, to state this independence of velocities, I could
index the occurrences of theses operators, for example, µ̈x1, µ̈x2, µ̈1, µ̈y1, µ̈2, µ̈y2
and so on. Additionally, let s, s′, r, rt, r0, rt0 , rt0+Ib

, rti
, rp, rp0 ∈ S, as well as

let r0 be the initial state of the computing agent.
For the level of abstraction to capture computation, I regard the meaning

of defining operations in terms of some sequence in some microcode. There are
other alternatives. My choice is to divide the rules into two levels. One of them
concerns the object of computation, as usual, and I call object rules. The other
concerns the application of the object rules. This applies only for interaction
and mobility operations. Let us start with the three rules as follows:

ät0 ∧ (∀t, (t0 <t t <t t0 +t qi) ⇒ ät) ∧Kt0+qi
∧ ∀t, t >t t0 +t qi, (¬ät ∧ ¬Kt)

where ät is the attempt to perform a remote operation (wemove although for
this level of detail there is no timeout, flyto or view or throw) at time t by
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using the rule 6 (wemove) or 7 (flyto) or 10 or 13 (both rules for view), or 16
(throw); Kt is the action of skipping the executing operation of rule 9 (flyto)
or 15 (view) or 18 (throw) at time t; qi = min(q, d), d is the delay due to the
operation in question, q is the timeout for this occurrence of operation.

I also need to formalize the notion “the sooner the better”. Thus, if ti and
tj are time variables, ät is some action of type A to be performed at t, then the
rule

( (ti ≤t tj) ∧ 3äti
∧ 3ätj

) → 2äti

states that, given the above conditions, the action äti
must be performed first.

Every state is a tuple 〈rt, x, y, z, t〉 where rt is the virtual state at some time
t, and 〈x, y, z〉 are Cartesian coordinates at that locality. I use the notation
r[V/u] to mean that the variable V contains the value u in the virtual state
r. I adopt Ap

t , for ambient state, to refer to a particular state at some place
p and time t. Ambient states are important to stress the mobility of virtual
states. Therefore, rt ∩ Ap

t simply indicates that the virtual state rt is placed
in the ambient Ap

t at place p and time t, once the premise rt ⊆ Ap
t exists. I

use this notation for mobility and other related operations, and simply write
rt to denote the same situation in other rules. In the semantic rules, I use the

definition s
def
= 〈r, x, y, z, t0〉 which can also be represented as @p · t0[r] in the

@-logic. Thus, two or more states s, s′... can happen at the same time, i.e. in
parallel. In this case, I denote this as s � s′ � ... .

Given that ε
+c
−→ ε, any agent segment of computation can also be composed

in S1‖S2 i.e. in parallel:

S1 |= 〈rp1

t , x1, y1, z1, t〉
+c
−→ sti

S2 |= 〈rp2

t , x2, y2, z2, t〉
+c
−→ s′ti

S1‖S2 |= (〈rp1

t , x1, y1, z1, t〉 � 〈rp2

t , x2, y2, z2, t〉)
+c
−→ (sti

� s′ti
)

where S1 and S2 denote two segments of computation for some ti. For any two
computations, the rule for composing them is different from the previous one:

C1 |= 〈r1, x1, y1, z1, t1〉
+c
−→ sti

C2 |= 〈r2, x2, y2, z2, t2〉
+c
−→ stj

C1|C2 |= (〈r1, x1, y1, z1, t1〉 � 〈r2, x2, y2, z2, t2〉)
+c
−→ (sti

� stj
)

where C1 denotes a computation that finishes at ti and C2 denotes a computa-
tions that finishes at tj .

Parallel computation presents behaviors in parallel. Notice that computa-
tions might interfere with each other.

My abstract model of computation is an extension of the while language,
which is an abstract model of computation. Nonetheless, although that model
has the if statement, I observe that this statement can be definable: that is,
for p and q as a Boolean expression and statement, respectively, IF p THEN q
is defined as

x := 0;
while x = 0 ∧ p do

q ;
x := 1;

endwhile
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for a new variable x.
For defining the if-then-else, roughly speaking the reader can view two sim-

ilar loops, and this change by removing if from the present model will simplify
my effort. I am formulating a model in terms of one set of operations. It is
important to see that these operations do not necessarily correspond to their
suitability in programming languages that permit proactive move because here
I am only defining an abstract model.

The coordinates 〈x, y, z〉 of E3, for instance, are not normally provided at
the language level, but they are in the model because they provide a suitable
notion of space for my purpose.

In this way, the operations form a somewhat minimal set of primitives for
the present semantics of computation, i.e. it corresponds to an extension of
the while language presented in the literature as in [39, 48, 57, 59, 70, 78, 79]).
Thus, I formalize the operational semantics that complement theirs and give a
few local primitives. Thus my working objects are:

• Real constants.

• The space initialization.

• The create statement, which creates another copy of the computation at
another place.

• The arithmetical operators: +,− : R × R −→ R.

• The relational operators: =, <: R × R −→ R.

• The assignment statement.

• The while statement.

• Intentional unity mobility: the wemove statement.

• Broadcasting mobility: the SpreadOut statement.

• Strong mobility: the flyto statement.

• Communication: the view and throw statements for remote communi-
cation, and read and write for local communication.

• The halt operation. The fπ predicate.

• Physical mobility: no operators, but the µ̈x, µ̈y and µ̈z postfixed functions
defined in the above algebra. Further,

pµ̈
def
=

√

(xµ̈x)2 + (yµ̈y)2 + (zµ̈z)2,

more precisely, some approximation of this number.

Variables can range over an address space, that is, V ar
def
= {V0, V1, ...}, but

here I shall use only the V symbol to denote any variable in V ar.
From the while statement, one builds the if-then, if-then-else and case as I

did or in the same manner. From these definitions, one builds min and max,
then builds the logical operators, and so on.
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Now I can present the initial axiom before one places agents and values in
U :

Initial :
(∃t0 ∈ T) (∀s ∈ S, ∀t ∈ T, t0 ≤t t) s ≡ 〈rt0 , x, y, z, t0〉, Θs = 〈uu , ∅〉

and another rule with the
eval
 relation:

ρ(s, γV ) = u

@p · t0[[V, s]]
eval
 @pµ̈ · t0 +t ∆t[u]

where ∆t is the time for accessing a variable at place 〈x, y, z〉 and time t0.
Notice that, in the signature, I defined γ : V ar −→ Loc as the function that,
given a variable, locates its storage.

An agent can create another agent by executing the create statement. The
new agent is a clone but it executes from scratch at a given coordinate. The
semantics for this statement can be as follows:

rp0
t0

* Ap
ti

rp0
t0

⊆ Ap
ti+∆t @p0 · t[t <t t0 +t q ∧ ¬fπ(p, t)]

@p0 · t0[[create〈x, y, z〉 time q, rp0

t0
∩ Ap0

t0
]]

exec
 

@p0µ̈ · t[rp0

t0
∩ Ap0

t0
] � @p · ti +t ∆t[rp

0 ∩Ap
t ]

(4)

where ti =t t0+tΨ+tIc, Ic is the time for interpreting the create statement.
Ψ is defined globally as

Ψ = approx

√

(x − x0)2 + (y − y0)2 + (z − z0)2

ω

where ω is the velocity of light and, for the rule 4, t ≥t ti +t Ψ and ∆t is
the time spent installing the agent at the destination, once the transmission has
completed.

For the purpose of simplification and visibility, I allow myself a slight abuse
of notation by not writing the temporal subscript in operations, such as +t,
when they are already part of a temporal expression appearing in subscript of a
formula, for instance Ap

ti+∆t, which appears above. The same is valid for spatial
relations in subscript, as the meanings of the operators are clear.

The semantics for the corresponding timeout situation is as follows:

@p0 · t[t =t t0 +t q ∧ fπ(p, t)]

@p0 · t0[[create p time q, rp0

t0
∩Ap0

t0
]]

exec
 @p0µ̈ · t0 +t Ic[r

p0

t0
∩ Ap0

t0
]

(5)

The halt operation is not a statement of the present language, that is, after
the execution of the last statement in the program, the computation goes to the
idle state. Although it is not a statement, I regard as if it were, as, here, I am
interested in the computation itself:

(∃k ∈ N)
@p0 · t0[[halt, r]]

exec
 @p0µ̈ · t0 +t k[ε]

where halt corresponds to the implicit last operation.
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For unity (CE or hardware) mobility, the command wemove moves the set
of agents from the current point p0 : S to another p : S (coordinates 〈x, y, z〉)
as a unity, along with the corresponding value, given the coordinates of the
destination. I assume that sets of agents can share a common place and move
slower or at the speed of light, but robots movements can be a particular case
of this form of mobility as long as I formalize some physical laws as well as
constrain and regard the destination close enough to the source place for uniform
and straight movements, in such a way that more complex movements could be
obtained from a sequence of this simpler physical movements here. Thus, let
p0 represent the coordinates of the original place. While the unity moves (say,
after some delay ζ), the original place becomes without value in the problem

domain. The subexpression 2×(p−sp0)
ω

, below, represents the minimum interval
with value of twice the space through which the light would traverse: Time for
observation and, then, for moving the unity; Iwem, for interpreting the wemove

command:

∃(t ≥t t0 +t Iwem +t
2×(p−sp0)

ω
)

p ≡ 〈x, y, z〉 ∧ Θ〈r, x, y, z, t〉 = 〈u,Ad〉 ∧ ¬fπ(p, t)

@p0 · t0[[wemove p,Ap0

t0
]]

exec
 @p0 · t0 +t ζ[〈uu , ∅〉] � @p · t[Ad ∪ Ap0

t0
]

(6)

where p0 ≡ (x0, y0, z0). For strong mobility, given the source and destina-
tion ambient states Ap0 and Ap, time t0 and the current state 〈r, x0, y0, z0, t0〉,
an operational semantics for the flyto p time q statement, which moves the
computation to the position 〈x, y, z〉 using a set timeout q, can be as follows:

@p0 · t0[r ⊆ Ap0

t0
] @p · t[r ⊆ Ap

t ] @p0 · t[t−t t0 <t q ∧ ¬fπ(p, t)]

@p0 · t0[[flyto p time q, r ∩Ap0

t0
]]

exec
 @p · t[r ∩ Ap

t ]
(7)

where (p0 6=s p ∧ r ⊆/ A
p0

t ) v (p0 =s p ∧ r ⊆ Ap0

t ) and

t ≥t t0 +t Ψ +t ∆l +t ∆s+t Iµ (8)

where ∆l is latency, ∆s is the time interval due to the code size, and Iµ is
the time for interpreting the flyto instruction. The semantics of the timeout
for this operation is as follows:

(∃! t ∈ T)
@p0 · t0[r ⊆ Ap0

t0
] @p0 · t0 +t q[r ⊆ Ap0

t ∧ fπ(p, t0 +t q)]

@p0 · t0[[flyto p time q, r ∩Ap0

t0
]]

exec
 @p0 · t0 +t q[r ∩ A

p0

t ]
(9)

Here is the semantics for the + operation:

@p0 · t0[[a1, s]]
eval
 @p′ · t0 +t Ia1

[〈u, s〉]

@p′ · t0 +t Ia1
[[a2, s]]

eval
 @p · t0 +t Ia1

+t Ia2
[〈v, s〉]

@p0 · t0[[a1 + a2, s]]
eval
 @pµ̈ · t0 +t Ia1

+t Ia2
+t I [〈u+ v, s〉]

where s is any state, I is the time for evaluating the operation once the ma-
chine has the operands. uu permits that almost all operators of the underlying
machine are lazy, according to the following rule:

@p0 · t0[[a1, s]]
eval
 @p · t0 +t Ia1

[〈uu , s〉]

@p0 · t0[[a1 + a2, s]]
eval
 @pµ̈ · t0 +t Ia1

+t I [〈uu , s〉]

25



The pair of rules for −, = and < are the same as for +, except that the
operator is different. Notice that I am assuming that the above operands do
not have any side-effect and, therefore, their evaluations do not move the com-
putation, although the mobility can exist due to physical movement, µ̈. Now
here the assignment statement:

@p0 · t0[[a, s]]
eval
 @p · t0 +t Ie[〈u, s〉] @p · t0 +t Ie[∆(s, γV, u) = s′]

@p0 · t0[[V := a, s]]
exec
 @pµ̈ · t0 +t Ia +t I:=[s′]

where s′
def
= 〈r[V/u], xµ̈x, yµ̈y, zµ̈z, t0 +t Ia +t I:=〉, and Ia is the interpretation

time for evaluating the expression, and I:= is the time for assigning the value u
to the variable.

The other local expressions and statements are similar to the above. A
semantics for the while statement is as follows:

rt0 ⊆ Ap0

t0
rt ⊆ Ap

t @p0 · t0[[b, rt0 ∩ A
p0

t0
]]

eval
 @p0µ̈ · t0 +t Ib[〈v, rt0+Ib

〉]

v 6= 0 @p0µ̈ · t0 +t Ib[[C, rt0+Ib
∩Ap0

t0+Ib
]]

exec
 @pi · tt[rti

∩ Api

ti
]

rti
⊆ Api

ti
@pi · ti[[while b do C, rti

∩Api

ti
]]

exec
 @p · t[rt ∩ A

p
t ]

@p0 · t0[[while b do C, rt0 ∩ A
p0

t0
]]

exec
 @p · t[rt ∩ A

p
t ]

where ti =t t0 +t Ib +t ICt0+Ib
, t >t ti and ICt0+Ib

is the time for executing
the statement C at time t0 +t Ib, where Ib is the time for evaluating the Boolean
expression b. A semantic rule for finishing the while loop is as follows:

@p0 · t0[[b, rt0 ∩ A
p0

t0
]]

eval
 @p0µ̈ · t0 +t Ib[〈0, rt0+Ib

〉]

@p0 · t0[[while b do C, rt0 ∩ A
p0

t0
]]

exec
 @p0µ̈ · t0 +t Ib[rt0+Ib

∩ Ap0

t0
]

Once two or more agents are at the same coordinate, they usually com-
municate locally. To provide local communication, every agent has its input
queue, which is part of the state. As briefly defined in the algebra signa-
ture, ∆ : S × Loc × V al −→ S updates the queue with a value of type V al,
given a state in S and location in Loc. Moreover, χ : S −→ S removes the
first element from the agent queue by receiving a state and producing another
one. ξ : S −→ AR × S informs the first element of the agent queue (remov-
ing it), which is a pair that contains the value and the new state. As before,
γ : V ar −→ Loc is the function that, given a variable, locates its storage. Thus,
here I am not concerned with delays or faults:

ξ@p0 · t0[rt0 ∩ A
p0

t0
] = 〈u, rti

〉 u 6= uu ξ@p0µ̈ · ti[rti
∩Ap0

ti
] = 〈v, rtj

〉
@p0µ̈µ̈ · ti +t I2r[∆(χ∆(χrtj

, γpar, v), γV, u) = rt]

@p0 · t0[[read to V, rt0 ∩A
p0

t0
]]

exec
 @p0µ̈µ̈µ̈ · t[rt ∩ A

p0

t ]

where par, which stands for partner, is a system variable that informs the
sender id φpar , t =t ti +t I2r and Ir =t I1r +t I2r is the time for interpretation
of the read statement, composed of these two parts, and ti ≥t t0 +t I1r. I1r

is the interval of time from t0 until obtaining 〈u, rti
〉, while I2r indicates the

interval of time from ti until receiving 〈v, rtj
〉.

If the queue is empty, the evaluation results in uu , and there is no modifi-
cation in the state of the queue:
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ξ@p0 · t0[rt0 ∩ A
p0

t0
] = 〈uu , rti

〉 @p0µ̈ · t1[∆(rt0 , γV, uu ) = rt]

@p0 · t0[[read to V, rt0 ∩A
p0

t0
]]

exec
 @p0µ̈µ̈ · t[rt ∩ A

p0

t ]

where t0 <t t1 <t t.
Given η : S ×AR −→ S from the signature, which inserts a value in AR in

the queue, the opposite operation is write, which writes the real number stored
in the variable denoted by a, to the channel denoted by h, with the following
semantics:

@p0 · t0[[a, rt0 ∩ A
p0

t0
]]

eval
 @p0µ̈ · t0 +t Ia[u] @p0µ̈ · t0 +t Ia[η(η(rh

t0+Ia
, u), c) = rh

t ]

@p0 · t0[[write to channel h from a, rt0 ∩ A
p0

t0
]]

exec
 @p0µ̈µ̈ · t[rt0 ] � @p0 · t[r

h
t ]

where rh
t is the state r of some computation πh at time t; and c is the Id of the

computation, which corresponds to φpar, i.e. the sender Id, which is also used
in the read statement. Therefore, the write statement writes in the receiver’s
queue the value in AR and c in this order. As stated in the corresponding
rules, the read statement obtains these elements in the same order. As well
as the µ̈ shift, code mobility and local communication, an additional facility
for mobile agents is remote communication among agents. To define remote
communication formally, I first ought to set the following rules:

• κ ∈ SObj at 〈x, y, z〉 is visible by all agents if there is no agent at 〈x, y, z〉;

• κ ∈ SObj at 〈x, y, z〉 is not visible by any agent at a different point if there
is some agent at 〈x, y, z〉. In this case, any attempt to access this value
results in uu .

• κ ∈ SObj at 〈x, y, z〉 is visible by agents at 〈x, y, z〉. In this case, I say
that κ is local to those agents. And, since κ ≡ 〈v, Y 〉, for all r in Y , v is
visible by r.

In this model, to see the content of a point ∈ R at 〈x, y, z〉, agents execute
the statement view〈x, y, z〉 time q, whose semantics in the @-logic is:

@p0 · t0[p 6=s p0 ∧ Θ@p · t1[rp] = 〈u, ∅〉 ∧ u ∈ R]
@p0µ̈ · tf [tf −t t0 <t q ∧ ¬fπ(p, tf )]

@p0 · t0[[view p time q, rp0 ∩ Ap0

t0
]]

eval
 @p0µ̈µ̈ · tf [〈u, rp0〉]

(10)

where
t ≥t t1 ≥t t0 +t Ψ +t ∆l1 +t ∆s1 +t Ii (11)

and
tf ≥t t1 +t Ψ +t ∆l2 +t ∆s2 (12)

where Ii is the time for interpreting the view statement. For remote attempt
to see a value that is local to other agents, there is another rule:

@p0 · t[p 6=s p0 ∧ Θ@p · t1[rp] = 〈u, Y 〉 ∧ Y 6= ∅]
@p0µ̈ · tf [tf −t t0 <t q ∧ ¬fπ(p, tf )]

@p0 · t0[[view p time q, rp0 ∩ Ap0

t0
]]

eval
 @p0µ̈µ̈ · tf [〈uu , rp0〉]

(13)

That is, the value in the problem domain is not accessible and, therefore,
uu is provided instead.
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For local access in permitted time, let {a1, ..., an} ⊂ 4, and c is the Id of
the agent who is currently computing. Thus, the semantics is as follows:

@p0 · t1 +t ∆t1[Θ@p · t1[rp] = 〈u, {c, a1, ..., an}〉 ∧ ∆t+t Ii <t q]

@p0 · t0[[view p time q, rp0 ∩Ap0

t0
]]

eval
 @pµ̈ · t0 +t ∆t+t Ii[〈u, rp0〉]

(14)

where t1 ≥t t0. The semantics for the timeout situation during the view

request follows the next rule:

@p0µ̈ · tf [tf −t t0 =t q ∧ fπ(p, tf )]

@p0 · t0[[view p time q, rp0

t0
∩ Ap0

t0
]]

eval
 @p0µ̈ · tf [〈uu , rp0

tf
〉]

(15)

where tf is constrained in accordance with the expression 12.
In this model, to provide some form of communication, agents can throw

a real number at any place in space with timeout q, and this operation takes
some time to be completed, as described below. A place occupies one point in
E3. The value uu can also be thrown and indeed can be part of programming
languages constructs as introduced in.

The operational semantics of the throw instruction is as follows:

@p0 · t0[[a, rp0 ∩ Ap0

t0
]]

eval
 @p0µ̈ · t0 +t Ia[〈v, rp0 〉]

@p0 · t[t−t t0 <t q ∧ ¬fπ(p, t)] @p0µ̈ · t[Θ@p · t[rp] = 〈u, ∅〉]

@p0 · t0[[throw a to p time q, rp0 ∩ Ap0

t0
]]

exec
 @p0µ̈ · t[rp0 ] � @p · t[〈v, ∅〉]

(16)
where

t ≥t t0 +t Ψ +t ∆l +t Ia +t Th

where Th is the time for interpreting the throw instruction.
In the case that there is already some agent at 〈x, y, z〉, if an agent throws

a number from another place, there is no effect. Therefore, if

{a1, a2, ..., an} ⊆ 4

is a non-empty set of agents, and t0 ≤t t1 ≤t t:

@p0 · t0[[a, rp0 ∩ Ap0

t0
]]

eval
 @p0µ̈ · t0 +t Ia[〈v, rp0 〉]

@p0 · t[t−t t0 <t q ∧ ¬fπ(p, t)] @p0µ̈ · t[Θ@p · t1[r
p] = 〈u, {a1, a2, ..., an}〉]

@p0 · t0[[throw a to p time q, rp0 ∩Ap0

t0
]]

exec
 

@p0µ̈ · t[rp0 ] � @p · t[〈u, {a1, a2, ..., an}〉]
(17)

The timeout condition for the throw statement has the following rule:

@p0 · t0[rp0 ⊆ At0 ] @p0µ̈ · t[t−t t0 =t q] @p0 · t0[rp0 ⊆ At]
@p0 · t[fπ(p, t)] @p0µ̈ · t[Θ@p · t0[rp] = 〈u, ∅〉]

@p0 · t0[[throw a to p time q, rp0 ∩ At0 ]]
exec
 

@p0µ̈ · t[rp0 ∩At] � @p · t[〈u, ∅〉]

(18)

Notice that real numbers can contain the codification of some finite mobile
agent. This means that the throw statement is able to model this model. I
formalize the sequence of statements:
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@p0 · t0[[C1, rt0 ∩ A
p0

t0
]]

exec
 @pi · ti[rti

∩Api

ti
]

@pi · ti[[C2, rti
∩ Api

ti
]]

exec
 @p · t[rt ∩ A

p
t ]

@p0 · t0[[C1;C2, rt0 ∩A
p0

t0
]]

exec
 @p · t[rt ∩ A

p
t ]

In spite of the greater generality of the present model, in the next section, I
shall present an example that demands a more powerful notion of computation
in comparison to the one I have presented up to this point. Following this, I
shall complement the present model with the SpreadOut operation, which is
novel in computer science, and whose semantics is also formalized.

The crucial aspect here is that, unlike the flyto statement, this new proactive
move is broadcasting publicly, and without any address specification for the
destination. The only condition for the continuation is the agent be accepted
by the destination, and for which I should set the predicate receptive, which
states that the destination is receptive to the present computation. In this way,
rec(r) indicates that the surrounding ambient is receptive to the state r, and
now the SpreadOut operation can be conceived and included in the present
model. Because the operation does not require any operand, here I use the
syntax SpreadOut. The semantics is as follows:

∀p ∈ U @p0 · t0[r ⊆ A
p0

t0
] @p · ti[rec(r) ∈ A

p
ti

]

@p · ti[r * A
p
ti

] @p · t[t =t t0 +t q ∧ ¬fπ(p, t) ∧ r ⊆ A
p
t ]

@p0 · t0[[SpreadOut q, r ∩ A
p0

t0
]]

exec
 

@p0µ̈ · t0 +t Is[r ∩ A
p0

t0+tIs
] � @pµ̈ · t[r ∩ A

p
t \ {rec(r)}]

and, finally, one additional rule for the case that there is no receptions:

∀p ∈ U @p0 · t0[rp0 ⊆ Ap0

t0
] @p · ti[(rec(rp0 ) /∈ Ap

ti
) ∨ rp0 ⊆ Ap

ti
]

@p0 · t0[[SpreadOut q, rp0 ∩ Ap0

t0
]]

exec
 @p0µ̈ · t0 +t Is[rp0 ∩Ap0

t0+tIs
]

where both t =t ti +t ∆t and ti ≥t t0 +t Ψ +t ∆l +t ∆s+t Is hold for every
p, and Is is the time for interpreting the SpreadOut statement. Notice that
this operation is asynchronous.

It is not impossible to have timeout for the SpreadOut operation, and the
corresponding rule is as follows:

∀p ∈ U @p0 · t0[rp0 ⊆ Ap0

t0
] @p · t0 +t q[fπ(p, t0 +t q) ∨ rp0 ⊆ Ap

t0+tq]

@p0 · t0[[SpreadOut q, rp0 ∩ Ap0

t0
]]

exec
 @p0µ̈ · t0 +t Is[rp0 ∩Ap0

t0+tIs
]

Such a move towards the user interface is another example of centralization.
The idea presented here also attempts to illustrate the power of the com-

bination of mobile agents with broadcasting, which might popularize parallel
computation and provide an evolutionary model. The sequence of moves gener-
ated randomly provides mutation with respect to its prefix. As well as efficiency
concerns and no need for providing the destination address as opposed to, for
example, the Internet, there are other important issues in this example: like
sperm cells in a female animal, mobile agents can compete for the best solution,
which leads designers to questions in ethics. “What should agents be allowed
to do?” This is an open question. Ethics for mobile agents on a global environ-
ment may be even more complicated because agents often transcend boundaries
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of countries. “How can one distinguish an agent from a virus?” This is another
question.

This application exemplifies a model of computing to solve problems that
include the possibility of combinatorial explosion. One can provide an interest-
ing algorithm to find a mobile agent on a network. The use of a media such
as radio2 together with mobile agents is an easy alternative to solve the same
problem.

Another issue is how should a mobile agent system prevent agents from
multiplying in an uncontrolled manner? What is the reasonable cost, overhead
and burden of such an operation? To date, there has not been a technology that
guarantees total security for a host that receives a broadcasted mobile agent,
but any mobile code system that support such operations should see the network
as public. A similar problem is to access WWW hosts in parallel by software
modules, while this idea might be desirable from some people’s point of view
but could also cause traffic jams if performed by programs too often. Therefore,
it is clear that there is an open door to philosophy in computer science, while
AI gets closer to the foundations of computer science[30].

8 Conclusion

Among other conclusions, I discussed mobility and a more general notion of
computation that includes physical, psychological and philosophical factors[30].
I propose four forms of mobility in this physical and simplified model.

Up to some level of abstraction, a simple and different model in E3 has been
presented here by defining a machine together with a somewhat minimal set of
constructs that complements the traditional notion of computation, as well as
an operational semantics for these constructs.

For this purpose, I have introduced one statement, namely SpreadOut,
and have written its operational semantics, and included the operation in the
present model. I shall call the corresponding paradigm broadcasting mobility.
There might be other forms of broadcasting mobility in the near future. The
Internet is used by people from different places from different backgrounds as
philosophy increases its importance for computer science. Furthermore, this
change from mathematics to also include other studies also opens a door to
changes in scientific methods[30]. Science in computer science has a broader
sense.
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