
The Probable Decidability of the Halting Problem

Ulisses Ferreira

http://www.ufba.br

Abstract In the present paper, I present an epi-

logue of the past works on the halting problem,

also known as a kind of the Entscheidungsprob-

lem over Turing machines, although this paper is

relatively short. As part of this work, I continue

some work by the present author on the busy

beaver problem, because the busy beaver problem

was introduced (in 1962) over the former, thus

endorsing the belief of the undecidable halting

problem, and there has also been a general and

strong belief that the latter is also undecidable.

They are not dependent from each other though.

Finally, I present two different proofs.

Keywords: The halting problem

1 Introduction

Paper [4] reports that some fundamental mistake
had been discovered. The next step is to attempt to
prove the decidability of the busy beaver problem,
as well as, consistently, to attempt to prove the
decidability of the halting problem, and those are
what I do in the next sections.

2 The possible decidability of

busy beaver problem

For each computable function application here, the
corresponding Turing machine places the write-
read head on the leftmost non-blank symbol, thus
leaving the situation on this standard configuration.
If the machine does not do so, here the computa-
tion is regarded as partial. The same holds for every
computation that does not halt. The interpretation
is that the computable function does not have that
input value in its domain.

The proposed Turing machine either sequentially
writes a number of ones or multiplies the current
number of ones by some positive natural number.
Then, as the alphabet is binary, the number of
states are added to this to form the resulting value.

Moreover, I have to take into account that the Tur-
ing machine may write sequentially either in those
first applications, or during them, for I am looking
for the greatest value. Let Λ be the computable
function that corresponds to the longest string of
ones written by the Turing machine on the tape,
let ζ ∈ N be the minimum number of states for du-
plicating any string given one Turing machine defi-
nition (in this way, (ζ + 1) is the minimum number
of states for multiplying the length of the string
by 3, and so forth. More precisely, ζ + k can be
interpreted as some arrangement of states and tu-
ples where, in any such computation, for each iter-
ation, the corresponding machine writes k ones on
the tape for multiplying the input by the (k + 2)
factor, although some other arrangements with the
same number of states may yield better results and
overwrite this one1), and the function B : N −→ N,
as an approximation to Λ, can be finally defined as
follows:

B(t) =

{

0 if t = 0;

Π(t, 0) if t > 0.
(1)

for number of states t and which applies the follow-
ing function

Π(a, b) =

{

λ(a, b, 0) if a = 1;

m(λ(a, b, 0), Π(a− 1, b + 1)) if a > 1.

(2)

which in its turn applies the following maximum
function

m(a, b) =

{

a if a ≥ b;

b if a < b.
(3)

as well as the following one

1Notice that, here, because Turing machines are not

equipped with the notion of subroutine, for each function

application, the machine consumes ζ + k states. Therefore,

I have to consider that states are disposable, even for the

same function definition.

λ(a, b, c) =

a + b if b < ζ + c;

a + b if b = ζ + c ∧

a + b ≥ a(c + 2);

a(c + 2) if b = ζ + c ∧

a + b < a(c + 2);

m(λ(

a + ζ + c,

b− ζ − c,

c),

λ(a, b, c + 1))

if b > ζ + c ∧

a + ζ + c ≥ ac + 2a;

m(λ(

a(c + 2),

b− ζ − c, c),

λ(a, b, c + 1))

if b > ζ + c ∧

a + ζ + c < ac + 2a

(4)

where a denotes the number of states for writing
the string sequentially, b denotes the number of
states available for applying multiplications on the
string that rests on the tape, c is a multiplicative
operand, and t, as already stated, is the total num-
ber of states available for one Turing machine.

Clearly, B is a computable total function, and
the present author regards that the solution of the
busy beaver problem is certainly in [B(x), B(x)+x]
interval, and that B(x) + x as solution is rare if
possible, in particular if the machine is defined to
compute leaving standard configurations. Clearly,
the solution is in [B(x), B(x + 1)], probably very
close to B(x) as x grows. In this way, letting
BB(x) = B(x) + x be this asymptotic function
that is not lesser than the solution of the busy
beaver problem, for the Turing machine defined in
[1], ζ = 11 in accordance with [1].

Note that the above function requires that the
Turing machine, for the solution of the busy beaver
problem, leaves on the tape only one sequence of
ones. From the definition in [1], the scores will be
different from the present ones maybe due to their
standard configuration, whereas, in [3], the scores
were greater than the present ones for there was
blank symbol occurrences in result. For this case,
one might use the Λ function defined in section 5.

3 A novel adaptation: A

Finite-Tape Model

In this section, I describe a finite-tape model which
will be called here (n)FTM . It was initially con-
ceived in 1999 and written in the year 2000, and the
only relevant difference from the model of Turing
machines was the finiteness of the tape. In 2002, I
added a new feature to that which is an interactive
operation.

A Finite Tape Turing Machine with n squares,
referred to as (n)FTM , is just a Turing machine
supplied with n squares on the tape, and, for vari-
ations of the present finite model, of mine, there
is some interpretation for the attempt to move the
write-read head outside the tape, e.g. that the ma-
chine does not halt. One of the best formal defini-
tions of Turing machines is in [6]. Here, I make a
brief modification.

Definition 1 A Turing machine with tape con-
taining n squares, (n)FTM , is an ordered system
M = (Q, Γ, Σ, δ, q0,t, F, n) where Q is a finite set
of states; Γ is the input alphabet; Σ is the tape
alphabet; constraints Σ ∩ Q = ∅, Σ is finite and
Γ ⊂ Σ; q0 ∈ Q is the initial state; t ∈ Σ − Γ is
the blank symbol, s0 = t; F ⊆ Q is the set of final
states, therefore also finite; and δ is the transition
function

δ : Q× Σ −→ Q× Σ× {←,→,4, Ω} (5)

2

In accordance with what is suggested, there are
two characteristics to be added to the Turing ma-
chine, namely, finiteness of memory, as well as inter-
active operations, both input and output. Whereas
the former modification is timeless and represents
the limitations of physical resources of a machine,
the latter is temporal and has a motivation to rep-
resent interactive computation, in particular, after
that ancient notion of data processing in batch.
The above definition partially adds the latter char-
acteristics to the model while I use a tape with n
squares.

With respect to the input/output operations, in-
tuitively, I can solve this problem in the following
way: add to a Turing machine a unique operation
for input and for output Ω to the set of opera-
tions {←,→,4}2, as shown above, in a way that
after having recognized Ω in the image of δ, the

2{←,→,4} represents, respectively, the operations shift

the write-read head one square to the left, shift the write-

read head one square to the right, and finally make the write-

read head stay put.

machine temporarily halts, shows the symbol un-
der the write-read head in some output device, and
wait for an input symbol in Σ (that is, an exter-
nal action, say from a user), as well as the ma-
chine replaces the previous symbol by the one from
the external action without moving the write-read
head. This operation does not change state either,
the value of the new state in the image of δ is sim-
ply ignored in this case. Therefore, the operation
Ω changes only the current symbol on the tape. In
this way, the user can type the new symbol shown
in this output device when the Turing machine is
only displaying a value (that is, the programmer
presumes that the user does not wish to change it),
or type a different symbol, in case of input oper-
ation (that is, the programmer presumes that the
user wishes to change it). Although this kind of
unified operation is not usual in the real world, it
simplifies the model without loss of generality.

If the interaction operation is in a state in F ,
then the Turing machine computation halts with-
out performing the interaction.

Initially, the write-read head is on the left-most
square of the tape, also on the left-most symbol. I
refer to this square as square 1. An input string is
said to be accepted by the Turing machine if and
only if, after a finite number of steps, the machine
(n)FTM reaches one of its final states, in F . In
case there is no transition for the current state and
symbol currently under the write-read head, for-
mally, (∀q ∈ Q)(∀s ∈ Σ) (q, s) /∈ dom(δ), the ma-
chine performs infinite computation and hence no
longer gives any response whatsoever. In this case,
the result from the computable function is said to
be undefined, with usual notation ⊥ if one wishes
to refer to it.

In case of an operation in {←,→}, I can establish
here that, in case the computation tries to move the
write-read head outside the range of the tape, the
machine simply does not move the write-read head
in that step and the computation continues, but the
(n)FTM can be different. As a simple matter of
choice, here, computation is neither sound not com-
plete with respect to the original Turing machine.
If, instead of only refusing to move the write-read
head the machine refused to continue computing,
the computation would be sound but not complete
with respect to Turing machines as originally de-
fined. In the remaining cases, moving the write-
read head to the left corresponds to decreasing that
current numeric square position. Accordingly, mov-
ing the write-read head to the right corresponds to
increasing that current numeric square position. I
could think of running (n)FTM in state qi and with

the square under the write-read head containing the
symbol sj as in the following drawing:

sj

qi, sj , qk, sr, op

A Finite Turing Machine with 13 squares being
shown

In a way similar to a conventional Turing ma-
chine C, for the effect of the (n)FTM machine M
not moving the write-read head outside the tape
boundaries, I consider two squares on the C tape,
namely square 0 and square n + 1, together with
the n squares, from 1 up to n. A particular symbol
of an alphabet is said to be a reserved symbol if it
is used for one purpose and, in order to make the
idea be successful, that symbol cannot be used in
other contexts. In this way, the left-most square
becomes the square of number 0 and it always con-
tains a reserved symbol � which is not in the al-
phabet of M , and the right-most square becomes
the square of number n + 1, and that square con-
tains the reserved symbol � which is not in the
alphabet of M either. Once the write-read head
has reached the square 0 or the square n + 1, to
make the machine no longer gives the answer, I
just obtain (∀q ∈ Q) δ(q, �) = δ(q, �) =⊥, or
in other words, there is no transition for either
symbol. However, in this case, there exists one
or more transitions that move the write-read head,
currently on the � symbol, one square to the right,
or infinitely to the right, in accordance with how I
define a (n)FTM ; Accordingly, there is one transi-
tion that moves the write-read head, currently on
the � symbol, one square to the left or, alterna-
tively, two transitions that move infinitely to the
right according to the definition, and I chose to
have one transition that moves the write-read head
one square to the left. For students, the number
of transitions may be approximated and depends
upon the particular (n)FTM .

Alternatively, for preventing the effect of mov-
ing the write-read head outside an imaginary finite
tape on Turing machines, I do the following: for
every state qi, I construct a tuple (qi, �, qi, �,←)
of Turing machine C, and the symmetry applies for
the � symbol.

From now on, I shall abstract the above details
of interpretation. The left-most square is again the
number 1 and the right-most square is the n. The
above interpretation has the purpose to show that a
(n)FTM and a Turing machine are approximately
the same model, but those differences are theoreti-
cally interesting.

I observe that a (n)FTM implies that data rep-
resented by the content of the tape is always a
string with length n, and the blank symbol may
occur in the string. The number of complete ex-
pressions on such a machine is the following:

n× |Q| × |Σ|n (6)

therefore, a finite number of possible situations.
Initially, as already set, the write-read head is on
square 1.

Definition 2 A complete expression is a record

composed of the following variables:

• The sequence of symbols of the Turing machine
which are on the tape, in some finite represen-
tation;

• The current state q;

• The write-read head position on the tape.

2

In any simulation, the complete expression re-
peats if and only if the simulated computation
never halts.

In this section, I showed by giving examples how
a (n)FTM can be a finite model of serial compu-
tation based on Turing’s model. In the following
section, I shall consider interaction for (n)FTM .

4 Two points of view, the two

halting problems

There are two points of view on the halting prob-
lem, as stated in the following subsections.

This section makes use of an intuitive term,
namely computational limit, which will be infor-
mally defined from here on.

4.1 The real halting problem

It is known that real and physical machines also
have their own computational limit, although they
are not in terms of tuples. Therefore, the referred to
P program running on a real machine cannot decide
over any computation that requires some machine
with larger computational limit.

4.2 An equivalent point of view

That looks as if M were outside the tape and only
X were written on the tape while H were only in a
human mind and outside the represented objects.
This point of view is equivalent to the busy beaver
problem, since the latter consists in finding a func-
tion only. The halting problem normally assumes
that H is outside the tape, and both M and X at
some established positions are already printed on
the tape.

5 My Proof

In this section, I prove the decidability of the second
version of the halting problem.

Definition 3 Let M = (Q, Γ, Σ, δ, q0,t, F) be any
arbitrary Turing machine, let X be its input data
placed on the tape and t /∈ Γ. It is referred to as
computational limit of M [X] the maximum number
of different squares that can be read or written by
↑M [X], apart from X , such that ↑M [X] halts.

2

As an example of Turing machine computational
limit, if the tape contains only the blank symbol,
if a Turing machine contains only one state, q0, as
well as the final one, qf , no matter the cardinality
of the alphabet, it cannot write on more than a
single square before moving to qf . Therefore, the
computational limit is 1 for every such a Turing
machine and data. The same limit holds for, if
instead, the tape initially contains one non-blank
symbol. This happens since the notion of Turing
machine computational limit does not include those
squares where X initially rests.

Given any alphabet Σ and any set Q of states,
the Turing machine M can be built for visiting the
squares of the tape as many as possible and finally
halting. Without loss of generality, let Σ be a par-
tially ordered set where t is the maximum element
of the partial order, or formally ∀x. x v t, and let
us assume that, as well as both infinite sequences of
t, one for each side on the tape, the tape contains
finite occurrences of the least symbol only, that is
s such that ∀x ∈ X. s v x 3.

Exponential, in terms of pure functions, is the
greatest function and any machine or person can-
not produce a value greater than the above, since
the parameters correspond to resources. A greater
value requires greater values of parameters. A

3Please, notice that I am looking for the maximum value

for a previously defined Turing machine.

strong piece of evidence towards the established
idea of Turing machine computational limit is the
known results[5] for the busy beaver problem, for
instance, BB(1) = 1, BB(2) = 4, BB(3) = 6 and
BB(4) = 13, which imply a monotone increasing
function. Now, there is no reasons why the the-
oretical community should not believe that there
are computational limits for Turing machines with
their corresponding input.

The computable function of t that corresponds
to the computational limit in number of squares is
now defined as follows:

Λ(Σ, X, t, n) = 2× |Σ||X|+t+n+2 (7)

where X is the input data string, t is the number of
tuples and n is the number of states of any Turing
machine. However, in terms of number of steps, the
referred to computational limit gets the following:

Φ(Σ, X, t, n) = 2× n× |Σ|2×(|X|+t+n+2) (8)

and one may unify these two notions by using only
the larger one instead of two variables or functions,
for the present work is not concerned for efficiency
issues. Stating that there is no function that re-
turns greater values than Λ and Φ above, means
that, given any arbitrary computable function, say
with binary notation × in the form of an operator4,
the only manners to define a value greater than the
one from any exponential function, say generically
xy, which is the essence of Λ or Φ, is by defining
another operand or function, let us use f function
abstractly to be such an operand, to form a combi-
nation of the following expressions: f×xy, or xy×f ,
or (f × x)y, or (x× f)y, or x(f×y) or x(y×f). How-
ever, in any case, this hypothetical greater value re-
quires extra number of states and tuples. Moreover,
it is clear that the × function cannot be included to
the referred to exponential function because there
is not more number of states available. Thus, I
am referring to a set of tuples with the number n
previously defined as a parameter.

The idea of one maximum value is the same as
the used for the busy beaver problem.

Regarding the minimum number n of tuples for
writing the Turing machine that can compute Λ
and Φ for one side of the tape given Q and Σ, the
present author uses 7 + |Σ| tuples for n in the base
case as follows, setting the starting symbol as A,
Σ = {0, ..., 9,t} and F = {Z}:

{(A,′ 0′, B,′ 1′,←), (A,′ 1′, B,′ 2′,←), ...,
(A,′ 8′, B,′ 9′,←), (A,′ 9′, A,′ 0′,→)}

4Here, × is not necessarily the multiplication operator.

∪ (9)

{(A,t, Z,′ 0′,4), (B,′ 0′, B,′ 0′,←),
(B,t, C,t,←),

(C,′ 0′, C,′ 0′,←), (C,t, D,′ 0′,→),
(D,′ 0′, D,′ 0′,→), (D,t, A,t,→)}

Thus, with κ(7+ |Σ|) tuples, for any κ ∈ N, κ >
0, there may be the referred to recursive case with
adaptation in the set of tuples replacing the tran-
sition to the final state by a transition to the state
that is supposed to correspond to the initial state
of the next subset of tuples, while the last subset
inherits the corresponding transition towards the
final state. It is clear that the implementation of
recursion in a Turing machine does not consume
any extra state.

6 Does Uncomputable Func-

tion Exist?

In this section, I observe that uncomputable func-
tions do not exist. Although this section was really
unrefereed, it is certainly worth presenting it here,
as this particular result is another way to refute the
idea of the undecidable halting problem.

It is known[1, 2, 7] that, unary computable func-
tions can form a denumerable set according to some
enumeration of Turing machines. Therefore, let
such an enumeration of all of the computable func-
tions be with the following monadic symbols fi for
i ∈ N: {f1(x), f2(x), f3(x), ...}, from natural num-
bers to natural numbers. Let us define g : N −→ N

as follows:

g(x) =

{

0 if fx(x) is undefined;

fx(x) + 1 if fx(x) is defined.
(10)

Clearly, g(x), above, has been regarded as a total
function. Thus, if one assumes that all total unary
functions are computable, one obtains a contradic-
tion: On the one hand, for every n ∈ N, g(n) seems
to be different from fn(n) when fn(n) is undefined,
because g is defined, above. On the other hand,
g(n) differs from fn(n) when fn(n) is defined be-
cause g(n) = fn(n) + 1 and the results are also dif-
ferent for all n. And if g differs from f in all cases,
g does not belong to the enumeration. However,
as one assumed that all total unary functions were
computable, one also assumed that g would be in
the enumeration, and so one arrived at a contradic-
tion. Therefore, the conclusion is that there exists
some total unary function that is not computable,
and that the conclusion is correct.

6.1 However, Another View

I see the picture in a different way.

If the halting problem is unsolvable as it has
thought to be, despite the appearance, the above
g(x) function is not a total function but instead
a partially computable function since its value de-
pends on the value of fx(x) which in turn has to
be calculated beforehand, and can be undefined. In
this case with x = n, the partially computable g(x)
corresponds to a Turing machine which loops in the
case of the particular value n.

On the other hand, if fx(x) is defined, the partial
g(x) is also defined, and g(x) = fx(x) + 1, like in
the other view, and there is no contradiction while
g(x), as partial, is not in the referred to list.

Thus, there would be no uncomputable function

as shown below, even for the halting problem un-
solvable.

6.2 However, If the Halting Problem

is Decidable?

Let us check how the above computation of g(x)
may be thought to be performed. Initially, the code
of g is outside the tape (this Turing machine will
be called G) while the tape contains only a partic-
ular value of x in some representation X . As soon
as the machine G starts running, it transforms the
particular value of x into some Fx(X) (some repre-
sentation of fx(x)), obtaining the representation of
x and of fx(x), both on the tape. Then, G starts in-
terpreting Fx(X) until one obtains its result if any,
with the value of the function application fx(x). Fi-
nally, if the computation of Fx(X) halts, the result
is added to 1 as the result of G(X). Otherwise, the
result of G(X) is 0. Here, I assume the absence of
any unexpected effect during that interpretation.

A second scheme is the following: Initially, the
Universal Turing Machine U is outside the tape,
while both X and G(X) are encoded on the tape.
For a Universal Turing machine that always guar-
antees the absence of side effects, the result is al-
ways exactly the same as in the above paragraph.

There is still something wrong in the above com-
putation. If we checked it in a deeper way, we
would observe that, in the case that g(x) = fx(x),
the computation with all its details would run for-
ever during the decoding process. In other words,
when Fx(X) is interpreted, a new copy of Fx(X) is
created, then this new copy is started being inter-
preted, another copy appears and so on. Therefore,
in the particular case of g(x) = fx(x), no matter
other parts of the definition of g, the corresponding

computation unconditionally would not halt and,
therefore, g is a partial recursive function, not an
uncomputable function.

Another way of seeing the same picture is that
no Turing machine can decode itself and then start
interpreting itself to obtain any result, as there will
be no result.

Assuming the Church-Turing thesis, since G
never halts for g(x) = fx(x), G actually corre-
sponds to a computable function, or the Church-
Turing thesis is not valid.

Note that, as a consequence of this assumption,
the self halting problem is solvable.

In the above known proof, that deduction does
not prove that there is uncomputable functions, but
instead that no functions can unconditionally en-
code or decode itself as part of its computation with
a result.

If the halting problem is published as solvable
as the present work shows, for all x, g(x) is defined
where fx(x) is undefined and, in this case, results in
0. Moreover, if fx(x) is defined, the computation of
the g function becomes equivalent to g(x) = fx(x)+
1.

Note that, in the first case of the g(x) function5,
where fx(x) is undefined, g(x) is defined if and only
if one algorithm that solves the halting problem is
properly involved in the computation of g(x). More
generally, in the same view, any function g(x) is
regarded as total if and only if some algorithm de-
ciding the halting problem is in the computation of
g(x) wherever another function is undefined.

Here, regardless of whether the halting problem
is decidable, the function g(x) is in the above list
of computable functions. However, in the particu-
lar case where g(x) = fx(x), g is undefined for its
computation never halts.

If I consider the present refutation of the proof of
the unsolvability of the halting problem as above,
the extent to which the Cantor diagonal process
can be certainly applied to the computability the-
ory, whether the process should really be applied
whatsoever, is a question that needs to be thought,
at least for this claim. However,

Any natural function is computable:

Let f : N
k −→ N be any function for any k ∈ N

such that k ≥ 1. Therefore, by definition, f has one
domain Dom(f), one codomain Cod(f) and one im-
age Im(f), where Im(f) ⊆ Cod(f). No matter how
f is represented and whether f is defined as recur-
sive or not, f is a function and can be described as
a set of tuples where each tuple has k + 1 elements

5See the definition of the formula 10.

in N where the first k elements of every tuple (in
some previously set order) denote one element of
Dom(f) while the (k + 1)th element is the result
from f and denotes one element of Im(f). In this
way, the referred to sequence shows only those el-
ements where f is defined. Where f is undefined,
the tuple is not in the sequence.

Any set of tuples such that each tuple has k nat-
ural elements is a countable set. Clearly, some com-
putation of f given one element in Dom(f) is trivial
searching the sequence in this countable order.

Acknowledgments

Many thanks to P. Chaves.

7 Conclusions

The halting problem is decidable.

References

[1] George S. Boolos and Richard C. Jeffrey. Com-

putability and Logic. Cambridge University
Press, third edition, 1989.

[2] Nigel Cutland. Computability: an introduction

to recursive function theory. Cambridge Uni-
versity Press, 1980. This book was reprinted.

[3] A. K. Dewdney. A computer trap for busy
beaver, the hardest working Turing machine.
Scientific American, 251:16–23, August 1984.

[4] Ulisses Ferreira. On Turing’s proof of the unde-
cidability of the halting problem. In Hamid R.
Arabnia, Iyad A. Ajwa, and George A. Grav-
vanis, editors, Post-Conference Proceedings of

the 2004 International Conference on Algorith-

mic Mathematics & Computer Science, pages
519–522. CSREA Press, June 2004. Las Vegas,
Nevada, USA.

[5] Jozef Gruska. Foundations of Computing, chap-
ter 4.1.6 Undecidable and Unsolvable Problems,
pages 227–229. International Thomson Com-
puter Press, 1997.

[6] Alexandru Mateescu and Arto Salomaa. Hand-

book of Formal Languages, volume 1, chapter
Aspects of Classical Language Theory, pages
175–251. Springer-Verlag, 1997.

[7] I. C. C. Phillips. Handbook of Logic in Com-

puter Science, volume 1: Mathematical Struc-
tures, chapter Recursion Theory, pages 79–187.
Oxford University Press, 1992.

