
A Property for Church-Turing Thesis

by Ulisses Ferreira

Abstract - This paper proves that, unless a Universal Turing machine is involved in compositions with
some particular property, the class of Turing-computable (partial) functions is not isomorphic to the
class of effectively-computable (partial) functions.

1 Introduction

Since 1930’s, there has been interesting work into foundations of computer science, in theory of computa-
tion [8], category theory[7, 14] as well as in recursive function1 theory, functional programming[17] and
other theoretical subjects. To date, nobody seems to have observed unexpected effects in computations
of compositions of Turing machines on the tape. Those compositions are defined in [3]. Briefly and in-
formally, let

�
and � be two Turing machines, and � be some input. I shall show that, if a programmer

wants to form a composition such as
��� � � ����� with both machines on the tape, we shall have to observe

the dynamic possibility of � replacing
�

by another Turing machine, say
�	�

. Comparing
�

and � in this
context, while � in this context does not prove anything other than � � �
� , a Turing machine must prove
something more than

��� � � ����� , i.e. a Turing machine must prove that the � calculation does not affect
the

�
calculation. In this article, we shall see such details in a careful and more precise way. Variations

on Universal Turing machines have been proposed[9] but not much work has been carried out in the only
and traditional computability theory.

In the next section I present Turing machines from the operational standpoint.

2 Turing machines

Without changing the notion, a Turing machine (�
�) has also been defined as a 6-tuple,� �����	����� � ������������� � where
�

is a finite set of states � �������� !�#"$"$"$���#%'& , � is the alphabet which is a
finite set of symbols �)(��� (#�#"$"$"$� (!* & , where (� is the blank symbol that I represent with + , �-, �/. ��+ &
is the set of input symbols,

�
is the Turing machine program,

�0�213�
is what has been called initial

state, and
� , �

is a set of final states of this Turing machine. According to Alan Turing’s analogy, a
Turing machine is supplied with an infinite tape divided into squares and one write/read head. Each tape
square contains one symbol in

�
. Given 4 � ��5 ��67��89��:;& , the program

�
is a set of <=< transitions or> -transition functions, for ?
@BA�AC@B<=< � >EDFDHG �JI28LK'MN�OI
8PI 4 to which has been referred as a

set of 5-tuples of form
�Q� D � (�R ���!ST� (�U ��VXW � , V�WY1 4 , such that each 5-tuple in

�
produces an effect that is

described in the literature in the following way:

1The standard use of the term recursive function includes the notion of function that does not explicitly contain the operation
called recursion, as presented and used in the recursive function theory. I use both terms, i.e. function and recursive function,
as referring to the same notion. Accordingly, the common use for the term partial function includes the concept and semantics
of total function, but since functions in the present article are total or partial, I simplify the language using both terms, function
and partial function, as referring to the same notion. Thus, in this article, functions and partial recursive functions have the same
meaning.

As usual and in accordance with Alan Turing’s original analogy using a tape, the write/read head is
initially on the leftmost non-blank symbol, which means the leftmost symbol of the input for the Turing
machine. The write/read head writes and reads symbols on the tape as it moves along the tape, one square
to the right or to the left, depending on the current state of

�
and the current symbol, i.e. on which

the write/read head is. For the purposes of this discussion, without loss of generality, I can set that, in
the initial state

�)�
of
�

, the write/read head is on the leftmost non-blank symbol of the tape. Thus, the
machine works in the following way: for every simple step of calculation, for some 5-tuple in

�
, if the

machine is in state
� D and the write/read head is on the square which contains some symbol (�R , the machine

substitutes (U for (R in the same square, substitute
��S

for the current state, and perform one of the known
actions.

Just a short note on notation used in the present article, from now on: given some Turing machine
�

as the first operand and some
W

which is represented here as a letter in the set of symbols � ���������	� � ���H&
as the second operand, I define the meta-language infix operator � to denote a set from the Turing machine,
i.e.

� � W denotes the corresponding set in
�

. For instance,
� � � refers to the program of

�
and

� � �
refers to the states of

�
.

Here, we can define the alphabet
���������� �
	 ��� & and the language
 in

����
where ���1 � is the

symbol that indicates that the next symbol on the right of � is under the write/read head. Thus, the tape is
merely a string in

����
. To keep the comparison, the symbol � occurs only once in the string. Those strings

are infinite but only one finite part of them can contain non-blank symbols. Thus, so far the transition
functions become: ? @3A�� @-<=< � > D R G ���� I � K M ���� I �

. Furthermore, because the state
� D 1P�

together with the symbol on the right of � determine the transition function > D R , the function > D R can be
defined as: for

��� � ����	 �	������� �O��� G > D R G � �� K M � ��
. A non-encoded Turing machine can be

seen as a grammar.
In this article, I introduce an example and observe one feature that is present in one notion and absent

from another. I use the notation
��� ��� to stand for the computation of a Turing machine

�
that inputs� , where � is the representation of � . To describe the computation of a Universal2 Turing machine when

simulating
��� ��� , I denote � � ��� � � � instead of � � ��� � �!� . Accordingly, the functional composition

� � < � � ��� from two Turing machines,
�

and " , are denoted by
�-� " � ��� � . If there exists a Universal

Turing machine interpreting this composition, that is # � � � < � � ����� , I denote this situation by � � ��� " � � �!� � .
In this way, I use parentheses at the outermost level and brackets internally to make it clear that the former
applying Turing machine is not represented on the tape, but instead outside the tape, while the latter is
represented on the tape.

As notation for the computation of some composition, I make use of the up arrow symbol as a prefix.
For instance, $ � � " � � � � refers to the computation of

� � " � ��� � in the present piece of work.
Below, I define the Universal Turing machine with the characteristics that will be subsequently helpful

in this article.

Definition 1 (Universal Turing machine) Let � be a Turing machine. � is a Universal Turing machine
if and only if, given any Turing machine

� G&% K M % encoded and placed on the tape,
�

corresponding
to the Turing-computable function � G'% K'M % , and given any input � G'% , which is some representation
of the natural number � 1 % on the tape, � calculates the value � � � � . (

To help the reader to understand this article, notice that the notion of function exists if and only if
the notion of composition exists as a property (amongst the others). In this case, one cannot talk about
functions without considering compositions as one of the fundamental properties of any related theory, in
particular, theory of computation. Furthermore, let) G+* K M * � and , G+* � K M * � be two total

2In this article, I use both “a Universal Turing machine” and “the Universal Turing machine” as meaning the same. I use the
former when I want to refer to a class of Universal Turing machines that universally interpret Turing machines, and use the latter
when I want to stress the result, i.e. the interpretation itself. In both cases, my view is operational.

functions. There are at least the same number of Turing machines that assign to the values in * the
values in * � by implementing the , �) � � ��� result (by concatenating corresponding Turing machines or by
any other means), than the number of Turing-computable functions with the same results by concatenating
corresponding Turing machines, whether or not there is one such a Turing-computable function. Thus,
this article shows that, more than that, depending on one hypothesis that I shall observe, there can be
those compositions of the referred to Turing machines that yield values outside * � . As an initial example
of Turing machine composition, following a convention, the composition

� ��� � � � � �!� � can be as in the
following diagram:

� � �

�

As a usual example of arrangement (among others), one would previously establish that the input
of a Turing machine is always on the left of its encoding and that they are separated by precisely one
square. Furthermore, after having finished interpreting a Turing machine,

�
clears the interpreted Turing

machine as well as its input, and then places the output of this interpretation in the correct place before
starting interpreting another Turing machine, and so forth. Finally, in this example, one can establish that
every Turing machine in the composition has its reserved space on the tape on the left of its input, but this
is only a priori operational convention and, as such, does not prevent unexpected effects. The important
point is that

�
has to prevent unexpected effects between Turing machines.

2.1 Unexpected Effects

We can view unexpected effect as being the effect of some operation that a Turing machine (or, more
generally, a program) can perform that can possibly change the representation of data or Turing machine
on the tape (or of data or program in a common memory device) and therefore its result, in such a way that
the effective effect depends on where the representations of the Turing machines are placed on the tape,
as well as secondary conditions. If they are placed in different blocks in different runs, the results from
these occurrences of computations are possibly different. The notion of unexpected effect is particularly
important in any interpretation of Turing machine by a Universal Turing machine, for the latter has to
guarantee the absence of unexpected effects, as we shall see.

Notice that unexpected effect is not a pure-mathematical notion regardless of its importance in com-
puter science. Furthermore,

�
might produce or receive unexpected effects. For the analysis in the next

section, one can interpret that an unexpected effect indeed replaces one Turing machine by another one,
while they are interpreted by a Turing machine that neither detects nor treats unexpected effects.

3 A Refuting Example

In the following theorems of this article, I prefer to use both terms computable and calculable as meaning
the same.

In my analysis, there exist two connections, namely, between Turing machines and Turing-computable
functions, and between Turing-computable functions and effectively computable functions. I am at show-
ing that the former one-to-one correspondence is broken, as well as their structural properties are not
preserved because of the necessary notion of composition.

Example 1

Let � be a Universal Turing machine, and let � and
:

be two Turing machines that are placed on the
tape. For my proofs, an example will suffice. Thus, as an example,

:
calculates double its input, which

is encoded in binary and placed on the left of
:

, separated by, say, fifty blank symbols, initially. Thus,: � � � ��+ � ? ����& and
: �H� � ��? ����& . In this example, let

: � � be�Q�!��� ? ��� ��� + ��6 � ���Q������������ !� + ��6 � ,�Q� � � ? ��� � � ? ��6 � , �Q� � ������� � ������6 ��Q� ��� + ����� � ? � 5 � , �Q����� ? ����� � ? � 5 � , �Q��� ��������� ����� 5 � ,�Q��� � + ������� ? ��: � ,�Q�� !� ? ��� !� ? ��6 � , �Q�� #�������� !������6 ��Q�� !� + ��� ��� ? � 5 � , �Q� �)� ? ��� ��� ? � 5 � , �Q� ��������� ������� 5 � ,�Q� � � + ��� � ������: � .
Thus,

: � � � � �����#"$"$"$������& , < ��� , � �	�
, and

: � �L� � ����& .
Let � � �Q: � � 	 � �#%�
 #�#"$"$"$���#%�
 ��
�
 &0��: � ����: � � ��� 	 � � �����!����: � �L. � ����& � be defined as

follows:
� moves the write/read head an arbitrary number � of squares to either left or right of � � � � , and, for

some (1 � � � , writes (on the tape. In this way, the Turing machine � is similar to
:

, except that �
attempts to produce some unexpected effect on the tape. Without loss of generality, this can be done in
the following way, assuming that I choose to move the write/read head to the right and that the write/read
head is positioned at the leftmost square of � � �C� at

� �
:

� > 1 : � � , >�� �Q� D ��� ��� R ������� � G A��� ?�� ���� ?�� > 1�� .� > 1 : � � , >�� �Q� � ��� ��� D ������� � G�> �1 � � �Q� %!
 ���'��� D ���)��� � 1�� .� > 1 : � � , >�� �Q� D ��� ���!��������� � G�> �1 � � �Q� D ���'���#%�
 #���)��� � 1�� .�!� 1 : � � � �#%�
 �1 � � � .�Q�!��� (�����#%�
 �)� (����8 � 1 � � � .� (1 �2. �)(�)& G �Q�!��� (���!��� (��6 � 1 �+� � .
For some arbitrary � 1 % :� A 1 % � A#"$� � G �Q�#%�
 ��
 D � (�����#%!
 ��
 D � (����6 � 1 � � � .�Q� %�
 ��
�
 � (� ��� %�
 ��
�
 � (� 5 � 1 � � � .� A 1 % � A#"$� � G � � 1 % �%� @ ��@ � � G �Q�#%!
 ��
 D � (R ���#%�
 ��
�
 � (��� 5 � 1 �+� � .�Q�#%�
 ��
�
 � (�����#%�
 ��
�
 � (��� 5 � 1 � � � .� (1 �2. �)(�)& G �Q�#%�
 ��
�
 � (���#%�
 ��
�
 � (� 5 � 1 � � � .�Q�#%�
 ��
�
 � (�����#%�
 � (����6 � 1 � � � .

Notice that, like
:

, � finally halts in (� . That is, both
�Q����� + ����� � ? ��: � and

�Q� ��� + ������������: � are in
�+� � . Therefore, � is an algorithm.

Now, given � G�% , some Turing machine
� G � � I % K M % , and sequences of simple steps

8
and

8 �
, let � �Q� � � � ���!� � be calculated: Suppose for the present example that

�
calculates the inte-

ger division modulus four of a number represented in binary digits (that is,
�

results in the two least
significant digits). I define

�
as
� � � � � �������� ������ � !���� ������ ������ ������� � !���� � ������ � ������ ���������� ��� �& and� � � � � � ����� ��� ��� & . Thus,
� � � can be defined as follows: � �Q� � � ? ��� � � + ��6 � , �Q� � ������� � � + ��6 � ,

�Q�� ��� ? ���� ��� ? ��6 � , �Q�� ���������� � !������6 � ,�Q� � � + ��� ��� � + � 5 � , �Q� � � ? ��� � � ? ��6 � , �Q� � ������� � ������6 � , �Q� � � + ��� � � + � 5 � ,�Q�� ��� ? ���� ��� ? ��6 � , �Q�� ���������� � !������6 � , �Q� ��� + ���� � � � + � 5 � , �Q�� ��� ? ���� � � ? ��6 � ,�Q�� ���������� ��������6 � , �Q�� ��� + ���� � � � + � 5 � , �Q�� ����� ? ���� ���0� + � 5 � , �Q� ������������ ��� � + � 5 � ,�Q�� ����� + ���� �����0� ? ��6 � , �Q�� � !� ? ���� �)� + � 5 � , �Q� � !�������� � !� + � 5 � , �Q� � !� + ���� ��� �� ? ��6 � ,�Q�� � ��� ? ���� � �0� + � 5 � , �Q� � ���������� � � � + � 5 � , �Q� � ��� + ���� �����0������6 � , �Q� � ��� ? ���� � � � + � 5 � ,�Q� � � ������� � � � + � 5 � , �Q� � � � + ��� ��� ������6 � , �Q� ����� � + ��� ����� � ? ��: � , �Q� ��� � + ��� ��� ������: � & and then, suppos-
ing � ����� , we obtain the following situation in

���
, where � indicates the write/read head:

tape starts here
K'M�� � ? ����� ? � + "$"$" � � �C� + "$"$" � �Q� � + "$"$"�

Because some simple steps of calculation of � might modify the representation of any Turing machine
placed on the tape, including of

�
, we could obtain � �Q� � � � � �!� ���� � �Q� � : � � �!� � from the calculation.

The programmer who writes
�

does not have prior knowledge on � nor
:

. That is, � might change
the representation of

�
if � allowed this. From the alternative view for unexpected effects, a computa-

tion could start as � �Q� � � � � �!� � and finished resulting in � �Q� � � � � ���!� � since � might change the Turing
machine

�
in such a way that it would become

� �
, if � allowed � to do so. (

Definition 2 For this article, let � 1 % , �	� ? , � G�% be some input, and ��
 � Turing machines�9S G % K M % . For any ��� ? , a (� K level) Turing-machine composition is a composition of �

 � Turing
machines

�9S � � S�� � "$"$" � � � � ���!� "$"$" �!� . For any ? " A @�� , � D does not read or manipulate any Turing machine
other than

� D � .
Lemma 1 (Universal Interpretation) For any � 1 % , for any representation � G % on the tape, and for
any Turing machines

� ����� !�#"$"$"$���9S
, let

�9S � � S�� � "$"$" � �9� � ���!� "$"$" �!� be a � -level Turing-machine composition.
Then, the Universal Turing machine is capable of reading the Turing machines

� ����� ��#"$"$"$���9S
.

[Proof] To calculate any � �Q� S � �9S�� � "$"$" � �9� � ���!� "$"$" �!� � , � interprets the operations of some of the in-
volved Turing machines, i.e. some of

� ����� !�#"$"$"$���9S
, by following either lazy or strict evaluation. (

Lemma 2 Let � G�% , � be the Universal Turing machine,
� ���#"$"$"$�X�;S G�% K'M % be ��
 � Turing

machines, and � � �/S � � S�� � "$"$" � �;� � � �!� "$"$" �!� � be a � -level Turing-machine composition where ��� ? . There
exists a non-empty set of transition functions in the Universal Turing machine that garantees absence of
any unexpected effect at any level A @�� in Turing-machine compositions.

By example 1, a Universal Turing machine has to get round the problem of unexpected effects. In this
article, the way is not important, but it may be done by manipulating the tape configuration whenever the
calculation of a Turing machine tries to modify another machine on the tape. That is, for all sequences of
steps, � must always guarantee

� ��� � ��: G % K M % � � � G % � � �Q� � � � � �!� � � � �Q� � : � ���!� � . Therefore,
since the programable part of a Turing machine is in its set of transitions, there exists a non-empty set of
transitions ��� � � � that can solve this problem of unexpected effects. (
Theorem 1 The class of Turing machines is not isomorphic to the class of effectively computable partial
recursive functions. Furthermore, neither the former is necessarily equivalent to the latter, e.g. two Turing
machines can correspond to the same function, nor all structural properties of the class of Turing machines
correspond to the structural properties of the class of effectively computable functions wrt the notion of
composition.

[Proof] By lemma 2, there exists a non-empty set of transition functions � ��� � � that can solve
the problem of unexpected effects. Now, let � � � � � � � �!� � be calculated, from which the reader obtains the
following situation in �+� �)� and in �+� ��� :
tape starts here

K'M�� � ? ����� ? � + "$"$" � � �C� + "$"$" � � �C� + "$"$"�
and the final situation in � � � containing the double value,

� ���
, is

tape starts here
K'M�� � ? ����� ? � ? + "$"$" � � �C� + "$"$" � � �C� + "$"$"�

although solution � might move the absolute positions of � � �C� and � � �C� , and hence changing the tape
configuration. Thus, the computation of � � ��� is represented as follows:

�!�!� ? ����� ? � + K M + �� ? ����� ? � + K M +�? �� ������ ? � + K M
+�? �#�� ���� ? � + K M +�? ���#�� � ? � + K M +�? �����#�� ? � + K M
+�? ����� ? �� !� + K M +�? ����� ? �#�� + K M +�? ����� ? � � � ? K M
+�? �����#� � ? � ?T+ K M +�? ���#� � � ? � ?T+ K M +�? �#� � ��� ? � ?T+ K M
+�? � � ����� ? � ?T+ K M + � � ? ����� ? � ?T+ K M � � + ? ����� ? � ?T+ K M���!� ? ����� ? � ?C+ "

Assuming that there is no unexpected effects in the above computation. Then let two Turing ma-
chines, � and � , exist such that, except for the possibility of unexpected effects, � and � produce
the same output: The only difference is that � contains � and calculates � � � � � � � �!� � , and � does
not contain � and might calculate � � � � � � ���!� � or � � � � � � � �!� � . As a possible example, � may some-
times calculate � � � � � � ���!� � and sometimes not, depending on the physical places where � and � rest
on the tape. Assuming that the class of Turing machines necessarily corresponds to the class of effec-
tively computable functions, for later contradiction (although my Example 1 above clearly applies to any
model based on functions), I can choose � -calculus, defined by Church himself, as a functional model
of effective calculability, denoted here by � K#� ��� � # � # (1 �	�

. Clearly, a simple case by case analy-
sis demonstrates that parameters in � -calculi cannot modify the operations of other functions (nor are
able to replace a function application by another one). That is, no � -calculi operations, namely ��
 -
reduction, � -conversion,
 -conversion

&
and higher-order function application, are capable of doing this

at all, as � -expressions are always well formed. The same is valid for any functional model. Thus,
let (��)�� � (��)�� � (��)�� G �	� IY� � I % K M % be the effectively computable functions which are sup-
posed to correspond to � , � and � , respectively, and their corresponding sequences of steps

8 � , 8 �
and

8 � . The three sequences of steps depend on their respective effectively computable functions. Fi-
nally, while the applications � � � � � � ���!� � and � � � � � � ���!� � do not always produce the same value for
all � , the corresponding applications (��)�� � � K#� ��� � # � # (��8 � � (��)�� � � K#� ��� � # � # (��8 � � � ��� � # � , � � ��� and
(��)�� � � K � ��� � # � # (��8 � � (��)�� � � K � ��� � # � # (��8 � � � ��� ��� � , � � ��� always result in the same values for all , ,
regardless of whether # � , � � ��� ��� � , � � ��� or # � , � � ��� ���� � , � � ��� or not, since (��)�� and (��)�� are functions.
By assumption, the absence of one corresponding function for � � � � � � � �!� � is a contradiction. (

In other words, in the presence of compositions, the model of Turing machines is not equivalent to the
model of effectively computable functions.

References

[1] G. S. Boolos and R. C. Jeffrey. Computability and Logic. Cambridge University Press, third edition,
1989.

[2] N. Cutland. Computability: an introduction to recursive function theory. Cambridge University
Press, 1980. This book was reprinted.

[3] Ulisses Ferreira. On Turing’s Proof of the Undecidability of the Halting Problem. In Hamid R. Arab-
nia, editor, Proceedings of 2004 International Conference on Algorithmic Mathematics and Com-
puter Science, June 2004.

[4] A. Galton. Machines and Thought: The Legacy of Alan Turing, volume 1 of Mind Association
ocasional series, chapter The Church-Turing Thesis: Its Nature and Status, pages 137–164. Oxford
University Press, 1996.

[5] N. D. Jones. Computability Theory: An Introduction. ACM Monograph Series. Academic Press,
New York and London, 1973.

[6] N. D. Jones. Computability and Complexity: from a programming perspective. Foundations of
Computing. The MIT Press, 1997.

[7] S. M. Lane. Categories for the Working Mathematician. Graduate texts in mathematics. Springer,
second edition, 1998. Previous edition: 1971.

[8] H. Lewis and C. H. Papadimitriou. Elements of the theory of computation. Prentice-Hall, Inc., second
edition, September 1997.

[9] M. Margenstern. On quasi-unilateral universal turing machines. Theoretical Computer Science,
257(1–2):153–166, April 2001.

[10] A. Mateescu and A. Salomaa. Hanbook of Formal Languages, volume 1, chapter Aspects of Classical
Language Theory, pages 175–251. Springer-Verlag, 1997.

[11] M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall Series in Automatic Computa-
tion. Prentice-Hall International, Inc. London, 1972. Original American publication by Prentice-Hall
Inc. 1967.

[12] C. H. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company, 1995.
Reprinted with corrections.

[13] I. C. C. Phillips. Handbook of Logic in Computer Science, volume 1: Mathematical Structures,
chapter Recursion Theory, pages 79–187. Oxford University Press, 1992.

[14] B. C. Pierce. Basic Category Theory for Computer Scientists. Foundations of Computing Series.
The MIT Press, 1993. Second print.

[15] A. Poigné. Handbook of Logic in Computer Science, volume 1: Mathematical Structures, chapter
Basic Category Theory, pages 413–640. Oxford University Press, 1992.

[16] M. Sipser. Introduction to the Theory of Computation. PWS Publishing Company, 1997.

[17] S. Thompson. Haskell: The Craft of Functional Programming. Addison-Wesley Publishing Com-
pany, second edition, 1999. Paperback.

[18] J. V. Tucker and J. I. Zucker. Handbook of Logic in Computer Science, volume 5: Logic and Alge-
braic Methods, chapter Computable Functions and Semicomputable Sets on Many-Sorted Algebras,
pages 317–523. Oxford University Press, 2000.

[19] A. M. Turing. Computability and � -definability. Journal of Symbolic Logic, 2:153–163, 1936.

[20] A. Yasuhara. Recursive Function and Logic. Academic Press, Inc, 1971.

