Uncertainty for Programming Languages

J. Ulisses Ferreira Jr.

PhD stud. at the University of Dublin, Department of Computer Science, Dublin 2, Republic of Ireland

Escola Politécnica da UFBA, Rua Caetano Moura, Federagdo, Salvador, Brasil (Work)

e-mail: Jose.Ferreira-Jr@cs.tcd.ie or ulisses@ufba.br

Abstract— Uncertainty is a research topic which is well known
to Al community. This paper adapts an uncertainty model to
programming languages for internets describing the operational
semantics of the present model.

I. INTRODUCTION

Uncertainty and fuzziness[7] are research topics which are
well known to the artificial intelligence community, and some
commercial expert systems environments even provide some
model for uncertainty, most commonly, production systems
with confidence factors. In the last two decades, most expert
systems have been based on some uncertainty model, in partic-
ular, a few variations of the MYCIN model of uncertainty[9].
However, to date computation under uncertainty and under
“the absence of pieces of information” have been little inves-
tigated in the programming languages community. Together
with the presence of the Internet and the unpredictability of
success of underlying connections, to handle with both the
unavailable information and uncertainty at the language level
is a desirable feature for programming on the Internet.

A thesis of mine is that, once there is a established paradigm
for programming agents, uncertainty[8] is probably going to
play an important réle in programming. Models that require
many probabilities are mathematically accurate, useful in
many applications and even the most appropriate in some
cases. However, for agents[2], probabilities may be unable to
suitably represent knowledge or belief, because humans do not
normally think in terms of probabilities, but instead vaguer and
less precise notions[8], while observing and inferring. | refer
to such inferences as uncertainty-based inferences. Precise
probability is also inefficient.

Agents have to be robust and, because of this, when
connections fail or delay, programs should carry on running
despite the lack of information. uu, which means “unknown”
or “undefined”, is a constant in programming languages that
can be assigned to any variable of any datatype. uu is part
of the PLAIN programming language, which was introduced
by the present author[4]. This new constant guarantees both
safety and robustness at the same time, because variables
are never committed to any value that is not in the prob-
lem domain, while uu is not in the problem domain. A
specific discussion on uu is in [3]. | believe that (mobile)
agents and the Internet itself can provide a new support
environment[4] where agent-based systems and techniques of

artificial intelligence can succeed. In particular, while one of
the original aims in artificial intelligence was to program and
represent expert knowledge in systems, now, with agents, we
not only expect intelligent machine behaviors, but also to
simulate natural intelligence, for agents also represent their
corresponding individuals in a complex society. In general,
regardless of the kinds of application, agents should contain
personal knowledge about their corresponding users, such as
their preferences, dislikes and so forth. Here, | can see the
role of uncertainty-based programming in the technological
scenario, and this can partially be due to subjectivity, but
partially due to other factors, such as the nature of the subject
being represented.

Individuals differ. As an example, some people might take a
decision in a given situation when they are 60% sure that they
will succeed, while others will only take the risk in the same
situation if they are 70% sure that they will succeed. The eval-
uation itself, i.e. whether 60% or 70%, depends on different
subjective perception and internal factors. In this context, it is
easy to observe that judgments under thresholds can provide
the flexibility needed to represent personal characteristics. The
work of reviewing academic articles by others is an example
of this kind of inference in science and, because of this, there
are often a number of referees.

In this paper, | present an uncertainty model suitable for
programming agents or global computing. Given the simplicity
needed for programming, the uncertainty model might not be
new in the Al community, although | have not found another
author for the same model, which is certainly based on the
classical MYCIN[9]. The combination of significance with
originality of the present work consists in:

« Adapting the MYCIN model and bringing the adapted
model at the language level. | add two notions to the
MYCIN model:

- uu.

— The ability to evaluate each hypothesis as resulting
in either false or true (or unknown) without
exploring all of the premises of the hypothesis.
And because the premises of a hypothesis might
correspond to or include remote accesses, one of
the practical motivations in this paper consists in the
ability that agents may have to reduce the number of
remote accesses.

« Providing a formalization to the present model.

« lllustrating the importance of uncertainty in programming

for global computing.

Moreover, at the time of writing this text, | am assuming that
application programs with uncertainty at the language level are
absent from the literature on programming languages.

The other sections are organized as follows: Section 1l
introduces related concepts. Section 1ll explains the relative
concept of truth in this model, while section IV explains
forward and backward evaluation under uncertainty, including
how a program with uncertainty can compute efficiently on the
Internet. In addition to the model, section I1V-D introduces a set
of built-in inference operators that can provide other choices
to programmers. and section V contains the conclusion.

Il. uu AND UNCERTAINTY

Here | present the formal syntax of a hypothesis declaration,
a subset of PLAIN without handlers, with starting symbol hyp:

hyp — hypo Id factor ’{’ opthreshold if premlist ;" *}’

factor — ¢ | ’(C Number ’)’

opthreshold — ¢ | threshold Number ’;’
premlist — € | prem cnf | prem cnf ’;” premlist

prem — {* premlist ’}" | Id | (" expr’)’

inferop
(" premlist *)’ | inferop (" Number ’, premlist °)’
cnf — ¢ | enf Number

inferop — uand | uor | unot | dand | dor

expr — ... — any three-valued logical expression.

Number — - any real number in [—1.0, +1.0].

In the text, ?? can replace cnf here.

We all know that the real world is full of rules of causes
and consequences and, because of this, as an alternative to
deductive clauses such as Horn clauses or Prolog-like rules,
uncertainty can also be used to permit an agent to make
its own decisions. Like most expert systems environments, a
PLAIN-like programming language can provide constructs for
representing uncertainty as follows:

hypo aweb fault {
threshold 0.4;
if {
(Yhttpaccessok(“www.aaa.bbb.ccc.dbf”)) cnf 0.2,
(Yhttpaccessok(“www.ddd.eee.fff.dbf)) cnf 0.2,
(Yhttpaccessok(*“www.ggg.hhh.iii.dbf”)) cnf 0.2

when sel f true { /* make some decision... */ }

}

When an agent contains a great number of such hypotheses,
the system is deemed to be intelligent, with the ability of
making decisions given the complex and subjective nature
of the objects (0.2 of certainty, in each of the above cases).
Additionally, operators are provided to be used with certainty
factors, as well as nesting expressions with their corresponding
factors. In such contexts, parentheses surrounding an expres-
sion indicates that its negation does not contribute to refute
the consequent, it is simply ignored instead.

In this model, | shall make use of two forms of unknown
value for variables: wu; and wuy, although there is one
constant in the language for both meanings, unknown. In
this paper, uu is a lexical sugar for either uu; or uuy at points
where the difference does not matter. wu; is the initial or partial
unknown state while uuy is the final unknown state after the
evaluation is performed. | write wu where this difference is
not relevant in a particular formula.

Initially, all hypotheses in the program contain wu;. For
every logical variable z in the program, if z # uu, there is an
internal state composed by a pair of thresholds (False, True)
where —1 < Flalse(z) < True(z) < +1 and which are stated
by the programmer and will be clearer in this paper later; a pair
of certainty measures (at least, z(z), and at most, y(z)) where
—1 < z(z) < y(z) < +1, which are inferred dynamically; and
three alternative external values that correspond to ff, uu and
tt, namely false, unknown and true (internally, there are
four values in {ff,wu;,uuy,tt}), one of which is the result
from the following conditions intuitively written in PLAIN:

logic val(logic z) =
if z.x > z.True then true;
else if z.y < z.False then false;
else unknown;

or, in a more mathematical style, still in PLAIN:

logic val(logic z) = true if z.x > 2.True,
false if 2.y < z.False,

unknown otherwise;

Thus, | write z.z, z.y, z.False, z.True instead of
x(2), y(z), False(z), True(z). In this paper, | omit the
variable name when the context applies to all logical variables
without the need to specify some particular variable. In this
adapted model, by default, Flalse = 0 and T'rue = +0.5 in
the range [—1.0,+1.0].

There is a built-in unary prefix operator, 7, that can be
applied to any logical variable. Thus, for a variable z, 7z is
the certainty measure of z, whose value corresponds to the
arithmetic mean of x and y of z. ?z is the form in PLAIN for
any z while here, in this text, the 2?m form is used with the
same meaning.

Logical variables are conceptually classified as hypotheses
and pieces of evidence. A hypothesis has a premise list, while
evidence does not have premises. Premises can be classified
as hypotheses, evidence, logical expressions and inference
operators (inferop). Besides the certainty measure, logical
expressions and inferops can result in {ff, uu, tt}.

An example of syntax is as follows:
hypo h(-0.2,0.7) {

if a cnf 0.3,
C,
(bxb—4xaxc<0)cnf0.2
(©),

uand (0.5, a cnf 0.2, b, ¢ cnf 0.8) cnf 0.9,
{acnf0.2 bcenf0.2,¢ccnf0.3} cnf0.8
}

The above hypothesis A contains the thresholds False = —0.2
and True = +0.7, and its list of premises as follows: a, a
logical variable whose certainty factor is 0.3 above (0.3 is
actually the certainty factor for the relation with (a, h), but
stated here in a simplified way); ¢, another logical variable
whose certainty factor is 1.0 above, by default; the expression
(bxb—4%axc < 0) whose certainty factor is 0.2;
(c), another expression whose certainty factor equals 1.0,
the default certainty factor; one instance of uand inference
operator with truth threshold 0.5, certainty factor 0.9 and
whose premises are variables a, b and ¢ with certainty factors
0.2, 1.0 and 0.8 respectively; and a composition among the
premises: a, b and ¢ with certainty factors 0.2, 0.2 and 0.3
respectively, and the result from the composition is meant to be
multiplied by the certainty factor 0.8 as will be explained later.
As suggested in the above example, premises can be nested.
Expressions are always between parentheses, and the semantic
difference between a variable and an expression containing
only the same variable is that when an expression results in
false its effect is null with respect to the hypothesis, i.e.
it does neither contribute to prove nor refute the hypothesis.
As for an occurrence of a variable in the list of premises, if
the variable is false its certainty measure is negative. At first
sight the use of expression might appear limited, but since an
expression can be written in the list of premises more than
once with different certainty factors, the use of expressions
is flexible and even slightly more general. Thus, ¢ 77 0.8
corresponds to {(c) ?? 0.8, (not ¢) 7?7 —0.8}.

Like measure, certainty factors are in the real interval
[-1.0,4+1.0] and are written by programmers to measure
how the corresponding premises contribute to prove or refute
the hypotheses, depending on the sign, positive or negative.
While certainty factors are specified in the program, cer-
tainty measure is a dynamic value in the same real interval
[-1.0,41.0]. For simulating a subjective judgment, in this
model, the concept of truth is relative to the programmers
beliefs, as well as to beliefs of possible users when the corre-
sponding system is applied. Therefore, each relation between
one premise and one hypothesis or between one premise and
one inferop has one certainty factor and one certainty measure
attached. Syntactically, certainty factors can be floating-point
expressions. | simplify the present model by allowing only
constants in that interval. During the evaluation, a certainty
measure is multiplied by the corresponding certainty factor,
and its result is finally an input to the hypothesis.

By combining hypotheses and premises, the programmer
can represent complex knowledge forming an acyclic graph.

I1l. UNCERTAINTY HANDLING

The four figures below represent the four possible states of
a logical variable. A possible initial state in which a variable
can be regarded as uu; if the condition x < FalseAy > True
holds is as follows:

-ll F?Ise P Tlrue 4;1

i 1 y 1

The initial state is not necessarily z = —1 Ay = +1, but
instead both values can be calculated by the compiler.

Eventually, a variable can be regarded as true, if the
condition z > True holds:

—ll F<|alse 0 Tlrue +1
xy

Or eventually, a variable can be regarded as false, if the
condition y < False holds:

—ll F<|alse I0 Tlrue +1

Xy 1 1

Or eventually, a variable can be regarded as wuy, if the
condition z > False Ay < True holds:

-ll F?Ise P Tlrue +1

1 N 1 y 1

In an alternative model, there might be other values such as
non-False (z > False Az < TrueAy > True) and non-True
(x < False Ay > False Ay < T'rue). Both are regarded as
unknown (uu;) in the present model.

The difference y — 2 means the amount of non-evaluated
evidence. An inconsistent state does not occur in the present
model since x <y and False < True always hold.

A simpler model equates the thresholds, F'T = False =
True. Further, FT = 0 is the default value. Graphically, it
reduces a hypothesis to only three states:

The initial unknown state as the condition z < FT < y
holds:

—ll 0 FT +1

i I Y |

Eventually, a variable can be regarded as true once the
condition z > F'T holds:

i A s
i i | 1

Or eventually, a variable can be regarded as false once the
condition y < F'T holds:

Both schemes permit variables to contain uu in the premises
and, because of this, hypotheses can also result in uu in the
latter case.

The ability to permit premises and hypotheses to result in
uu is a flexible characteristic of the present programming
model.

Before describing the two directions of evaluations, | should
set some default values for a premise z according to its
category:

« Hypothesis: as described above, F'T'(2) is statically given
by the programmer. z(z) and y(z) are calculated as the
agent is initialized, or at the time of compilation of the
program;

« Logical evidence: FT(z) = +0.5, z(2) = —1, y(z) =
+1;

o Expression: FT'(z) = +1, z(z) =0, y(z) = +1,

o Inferop: FT(z) =0, z(z) = -1, y(z) = +1.

IV. EVALUATION

Here the present work provides forward and backward
evaluations. The former starts from some evidence and goes
upwards to the hypotheses while the latter starts from one
hypothesis and goes downwards trying to calculate its certainty
measure according to its premises. In the following subsec-
tions, | provide a scheme, for both forward and backward
directions.

Let [-1,+1] C R, F = [-1,+1],V = {ff, uu;, uuy, tt}.
For this section, for a logical variable, its value and certainty
measure can be represented as a tuple in O = F x F x F x
V x F x F. The elements of such a tuple are the following,
whose description order corresponds to left-right order in the
tuple:

o The minimum certainty measure x;

o The maximum certainty measure y;

o The certainty measure;

o The logical value;

o The false threshold False;

« The true threshold T'rue.

Let (pz,py, ?7p, pv, pFalse, pTrue) be such a tuple, where
pz and py correspond to the certainty measures (at least and
at most) as explained, and so on. Let ??p be (pz + py)/2. It
will always be in this way, computed on demand.

In this paper, wu is the lexical sugar for either wu; or uuy.

A. Forward Evaluation

Forward evaluation is invoked by a built-in function call,
perhaps imperative, and usually after some data has been
entered. After the evaluation has finished, some imperative
actions are typically performed once hypotheses become true
or false, and perhaps after other conditions.

The forward evaluation starts from the pieces of evidence
and goes upwards. Because a hypothesis can be declared

as a premise to another hypothesis, the forward evaluation
continues recursively until no more hypotheses need to be
calculated.

The composition of a list of premises, whose representa-
tion in PLAIN is between a pair of braces, has the same
algorithm regardless of the number of premises. Before de-
scribing composition, | consider only two premises, namely
P with logical value (px, py,??p, pv, pFalse, pTrue) and Q
with (qz, qy, ??q, qu, qFalse,qTrue), to the hypothesis H
with (Hz, Hy,??H, Hv, H False, HTrue). Considering that
pr=py=0 if pyv=wuin Pand gr = qu =0 if quv = uu
in @Q, the certainty measures of H are defined by a set of
formulae computed as follows:

pr+ (1 —px)-qz, ifpr>0, gz >0.

Hzx =
¢(pz,qr)= pr + (1 +pz) - gz, if pr <0, gz <O0.
pT + gz, otherwise.
Hy = py+ (1—py)-qy, ifqy>0, qy>0.
e(py,qy)= {py + (1 +py) -ay, if py <0,qy <O0.
py + qy, otherwise.
H H
H.?7? =mean(Hz,Hy) = y
and judgment for the value Hv = Hw = A(H) in the
following:
tt if Hx > H.True.
Houo = ff if Hy < H.False.
A(H)= S uu; if (Hz < H.FalseV H.y > H.True)
AH.x < H.y.
wuy if Ha > H.False N Hy < HTrue.

where H.v denotes the attribute of logical value of H, and
H.xz and H.y correspond to Hz and Hy, respectively. For
strict evaluation, which is an alternative form here (the default
form in PLAIN), the reader shall see that there is a condition,
H.x = H.y, in addition to the above one for the machine to
consider H.v = uuy. See later.

One of the positive points of these formulae is that the
evaluation of the corresponding scheme is both commutative
and associative. That is, although the premises are statically
written in a sequence in the program, they become available
dynamically in any order, and the order does not affect the
result of the hypothesis certainty measure.

The structure for every hypothesis H follows: Let P be
the finite set of all premises of the program, where every
premise is of type F x Q. Let H = O x N x P(PP) be the set
of hypotheses of the program. For every hypothesis H : H,
besides its value, the list of premises that lead to H is of the
form (n,{H.P,, H.P,, ..., H.P,}). The whole list is addressed
as H.P, of type N x P(P). The list length is addressed as
H.Pn.

Every premise P is of type F x Q. The fist element of
P, denoted as P.77, is the certainty factor between P and its
corresponding hypothesis. From the hypothesis H, given some

i € N, this certainty factor is referred to as H.P;.?? while the
certainty measure of P; is referred to as H.P;?m.

Thus, for this paper, H is the set of hypotheses and P
is the set of premises. Further, from now on | generalize
the notation by writing H.z and H.y, instead of writing
Hz and Hy, respectively. And from now on | am going to
consider any number of premises. For every hypothesis #,
| have its finite list of premises, Py, Ps,..., P;,..., P,. For
every P;, for i € [1,n] C N, the P; value is in {ff,uu,tt},
as well as their certainty measures. Furthermore, in addition
to the logical value and certainty measures, every premise
contains the certainty factor to link to the hypothesis, that
is, the certainty factor helps prove or refute the corresponding
hypothesis. Given that every P; : F x Q, the first element
of that P; is the certainty factor towards the corresponding
hypothesis.

Letting P;.v = wu = P;.x = 0 and P;.y = 0, the certainty
measure of H is defined by a set of formulae, given new values
p; for some occurrences of ¢ € [1,n], for some n, as follows:

Let [-1,+1) C R, F =[-1,+1], V = {ff, uu,tt},
O=FxFxFxVxFxF.

Suffix functions:

2:0 — T (z,y,c,v, f,t).x = x.
Z2:FxF—TF (z,9)z==x.
y:0—F (z,y,¢,0, f,t).y = y.
Y:FEXF —TF (z,9)y=uy.
m:0—F (z,y,c,v, f,)?m = ¢
w:0—V; (z,y,c,v, f,t)v =wv.
False: 0 — F; (z,y,c,v, f,t).False = f
True: 0 —F, (z,y,c,v,f,t).True=
a:FxH-—F

alz,H) = z - H.P.??

where H.P;.7? corresponds to the certainty factor
between P; and H.

6:P— T
0(P) =Py — P..

F:HxPP)xN—FxTF,

(((F(H,P,n—1)).x +§(P) -
(F(H,P,n—1)).y)
ifn>0ANa(P,.z,H) >0

a(Py.z,H),

((F(H,P,n—1)).x,

r P = A (FOLPn = 1)+ 6(P) (P)
if n>0Aa(P,y,H) <O0.

((F(H,P,n—1)).z, (F(H,P,n—
if n>0AP,.v=uu.

1).y)

L(0,0) if n=0.

and after having calculated the final values z and v,

Hax+Hy
2

where H?m is the confidence measure of the hypothesis #,
calculated as follows:

(F(z,y,H, Pi,n)).x

H?m =

+ (F(z,y,H,Pi,n)).y
2

In the forward evaluation, because states can be changed,
expressions in the list of premises are always evaluated when
the virtual machine visits some hypothesis.

Forward evaluation is cyclical, and the process is repeated
while hypotheses feed other hypotheses with new certainty
measures. The process is repeated by possible imperative
handlers whose actions can be triggered just after the virtual
machine has proven some particular hypothesis. Since such
actions can change the program state, they can require an extra
cycle of forward evaluation. The process finishes when the
objects involved become stable, i.e. all set of hypotheses have
the same values for more than one subsequent cycle.

This model has the advantage of representing and dealing
with lack of information. Moreover, unlike Boolean models,
the present model represents the condition of being unable to
prove or refute a hypothesis.

H?m =

B. Operational Semantics - Forward Evaluation

Here, | present an operational semantics for the forward
evaluation during computation of a program II. Given a
program II as a set of symbols, let E C II be the set
of pieces of evidence, H C II be the set of hypotheses,
Op C II be the set of occurrences of inference operators,
and X C II be the set of expressions. Let P = EuU X UH and
ENnX = ENH= XNH=0. LetS be the set of states
of computation.

Briefly, for our semantics of uncertainty-based inference,
| define two relations for forward and backward evaluations,
respectively: ™ and &Y leading to some state of computation.

Another relation, ! for expression evaluation, also leads to a
state, although | only represent the resulting pair of values, the
minimum and maximum certainty measures in [—1.0, +1.0]
and the logical value in {ff, uu,tt}.

t: HxSxP — O Intuitively, ¢(h, s,p) is the result
from the forward evaluation from state s and premise p to the
conclusion h.

Where it is suitable, | write h.P to denote the list of
premises of the hypothesis k. | define «(h, s, P) to make the
sequence of operations explicit in PLAIN, in terms of &, which
in turn results in a pair (z,y), which in its turn is a certainty
measure (minimum,maximum), and to state that . does not
change the state, in the PLAIN syntax (although the words
and other tokens are not the same):

a(p, h) = p?m - h.p.77;
d(e, 1) = true if [e] == head(l),
(ea[ha]) () [e] = h;

U(ha‘S:p) = (h.’E + (hy - h.’E) : Oé(p, h); h Y

mean(h.x + (h.y — h.x) - a(p, h), h.y),
A(h),h.False, h.T'rue)
if a(p,h) >0,

O'(h,S,p) = (h.ill’, hy + (hy —h.’E) -a(p, h)’
mean(h.x, hy + (hy — hz) - a(p, h)),
A(h), h.False, h.True)
if a(p,h) <0,
o(h,s,p) = h ifa(p,h)=0;
t(h, s,p) = o(h,s, P) if §(p, h.P),

h otherwise;

where p € P, p?m is the certainty measure of a premise p
and h.p.?? is the certainty factor from the premise p to the
hypothesis h, which is static from the source program.

Since every hypothesis can have hypotheses, expressions,
inference operators and pieces of evidence as premises (for
proving or refuting the former hypothesis itself), let Op(h) €
Op be the set of inferops in the list of premises of h, more
precisely,

Vi,j € Op, (i € h.P =i € Op(h)) A
(i € j.PNje Op(h)=ieOph))

Similarly, for some h € H, let Obj = EU X U H be the
set of all pieces of evidence and expressions and hypotheses
of the program, and let C(h) C Obj be the set of objects
that can contribute to prove or refute h. Let p € Obj. Thus,
pehP=peCh), (peClg)nge C(h) = pe C(h),
and (3i € Op(h), (p € i.P)) = p € C(h).

Then, considering that the symbol a in the forward com-
mand is grammatically a piece of evidence, an operational
semantics for the forward evaluation can be as follows:

{(h, s) & s'[h?m = v(h, s',a)]

(forward a, s) g

a € h.P

while, as usual, a state (s, s’ or s") followed by an expression
between square brackets indicates that the expression holds in
the state. For instance, s[z = 0] means that the expression z =
0 holds in the state s. The forward statement can change the
state of more than one hypotheses by propagating uncertainty
from a hypothesis to another as follows:

a € C(hy) A hy € C(hs)
hi ¢ C(hs) = ((forward a, s) 25 s'[h1?m = u(hy, §', a)])
(forward a, s') N §"[ha?m = 1(ha, ", h1)]

(forward a, s) T gn

Finally, to state that forward is an imperative command in
PLAIN, | can insert it in a rule for sequence of commands:

e.s) B s (forward a,s') % "
))

£
(c; forward a, s) ~5 s

C. Backward Evaluation

While the forward evaluation is invoked by a command
to discover those hypotheses that become proven and those
hypotheses that become refuted, the backward evaluation is
invoked for a particular hypothetic goal, more precisely, when
a hypothesis is used in any evaluating expression such as
from imperative constructs. The virtual machine then tries to
decide that particular hypothesis (i.e. the machine tries to prove
or refute it), visiting the premises backwards until it reaches
the pieces of evidence, by running handlers to change values
of the related evidence. After that, the control is returned
to that hypothesis. Finally, the control continues normally in
the expression evaluation with the new requested result in
{ff,uu,tt} while the certainty measures are ignored for the
context is deductive.

In a local context, the order of evaluation is not relevant
for the result, but since | intend to apply the present model to
programming for internet, | propose a way of predicting the
best path in terms of efficiency.

Because certain pieces of evidence might not be available
at that moment, the hypothesis h that has been expected to
be proven or refuted might remain unknown, that is, h.x <
h.False < h.True < h.y.

An expression as a premise can also result in {ff, uu, tt}.
It is arguable whether it is worth allowing programmers to
state some uncertainty inside expressions to allow the virtual
machine to use the factors to compute the certainty measure
of the expression, in particular if the expression may result in
many possible alternative values, such as integer expressions,
not only two or three values. Thus, for safety reasons, PLAIN
adopts the conservative idea that only logical variables have
certainty measures.

1) The Most-Interesting First Strategy: In this section |
introduce uncertain lazy computation with the most-interesting
first strategy, which is probably useful for global computers[1].
Although it is easy to evaluate all premises of the requested
hypothesis sequentially, | introduce a strategy that tries to
minimize the number of premises necessary to prove the
hypothesis, or to refute it, or both (this case happens where
some premises contribute to prove the hypothesis while other
premises contribute to refute it. In this case, both subsets are
relevant). Such a strategy becomes particularly significant in
programming for a global computer because remote accesses
are considerably much more expensive than use of local
resources, although Internet 2 and other global networks in
the future tend to minimize this difference. Thus, | classify
three possible intentions for a hypothesis containing wu;:

o 7;: To make the hypothesis be true.
o Z;: To make the hypothesis false.
o T.s: To make the hypothesis either true or false (or uu).

All logical variables containing wu;, as well as all non-
lazy expressions, are valuable. For a valuable hypothesis
or logical evidence or expression or inferop occurring as
a premise p of a hypothesis h, in Z, what | look for is
(h.True — h.x) / |h.p.7?|: for more than one hypotheses or
pieces of evidence or expressions or inferops, the smaller this
value is, the more interesting p is, but I only consider positive

results for the premises. Similarly, in the intention Z; what |
look for is (h.y — h.False) / |h.p.??|: the smaller the value
is, the more interesting p is, and here | consider only non-
negative results for the premises. In Z;; what | look for is
the value of (h.True — h.x + h.y—h.False) / |h.p.??|: the
smaller, the more interesting, and here only positive values are
included in comparisons. For future work, every of these three
values can be multiplied by the number of variables with wu;
and that play the réle of p, for including the associated cost in
the strategy. Sometimes this cost may be important because,
as an example, connections might have to be set in order to
associate values to variables.

Then, intuitively, the strategy consists in calculating these
values for every premise of some hypothesis, and then to
choose the smallest value obtaining the premise to be exploited
first, in the backward direction. Then, the process is repeated
until the hypothesis is no longer valuable, that it, until its
logical value is either true, false or uuy. Although the
strategy does not generally guarantee the most efficient proof
or refutation, it is natural and efficient. Therefore, I refer to
this final measure as the most interesting.

Among the valuable premises, the virtual machine can make
use of d(h, Z) to identify the most interesting premise (that is,
its index in [1,n]) in a list P with n valuable premises of a
given hypothesis A, some intention Z. The function definition
is the following:

Valuable premises only

e(0) ={,

e({P}UQ) =if ¢(P) in {false,uuy,true}
then €(Q) else {P} U €e(Q);

V(z,y, (,T) =true if £ > T,
false if y < F,
wup if F<zAy<T,
uu; otherwise;

Unary ¢

P(P) = ¢(P.z, P.y, P.False, PTrue);
dh,I) = -=2ife(h.P) =10,

d(h,T) = d(h,e(h.P),T) otherwise;
Ternary d

d(h,{F;},T) = i,

with intention Z;
0 < (h.-True — Pi.x) | |h.P;.77| <
(h.T’f‘UG - h"Pd(h,Q,'T)'x) / |h"Pd(h,Q,T)'??|
then i else d(h,Q,T),

with intention Z
dh,{P}UQ,F)= if
0 < (P;.y — h.False) / |h.P;.77| <
(h.Pd(th’}-).y - h.False) / |h-Pd(h,Q,}')-??|
then i else d(h,Q, F),

with intention Zt f
d(h, {P}UQ.U) = if
0 < (h.-True — Pp.x + P,y — h.False) / |h.P;.77| <
(h.True — h.Pyp,@uy-x + h-Pyp,0uy-y — h-False) |
|h.Pd(h,Q’M).??|
then i else d(h, Q,U);

Finally, the backward evaluation finishes only when the
hypothesis is no longer valuable. The ¢ function repeats d
until that condition holds, as follows:

U(h,z,y) = (p(h-z,), o(h-y,y), mean(p(h.z, z), p(h-y,y)),
Y(p(h.z,z), o(h.y,y), h.False, h.True), h.False, h.T'rue);

¢(h,Z) =ifd(h,7) = —2 then h else c(h, h.P,T);

Ternary ¢ (every hypothesis has at least one premise)
c(h,{P},Z) = if ¢(P;) = uuy then h else
let p = newstate(P;) in U(h,p.x - h.P;.7?, p.y - h.P;.77),

e(h,P,T) =hif e(P) =0,

c(h,P,I) =let j =d(h,P,I); p= newstate(P;) in
c(U(h,p.x-h.P.27,py - h.P;.77), P\{P;},7)
otherwise;

Thus, the operational semantics for using a hypothesis in
some lazy expression can be as follows:

(e(h, Ty), s) ¥ s' (lazy(h),s') 5 (s',u(h, s',c(h, T45)))
(lazy(h), s) 5 (s',u(h, 8, c(h, Ti5)))

Accordingly, there are also built-in functions in the pro-
gramming language for the other intentions:

(e(h, T2),s) X 5" (h,s") X (s',u(h, s, c(h, T;)))
(lazy(prv(h)), s) %% (s, u(h, s',c(h, T)))

(c(h,Ty),8) %5 8 (h,s") % (s',u(h, 8, c(h,T)))
(lazy(rft(h)), s) *5 (s', (h, 8', c(h, T1)))

for trying to prove (Z;) and refute (Zy), respectively, some
hypothesis h. The above rules are not complete.

2) Lazy and Strict Computations: In the backward evalua-
tion, for the requested hypothesis, there can be lazy and strict
computations. Lazy computation is the one which makes use
of the most-interesting first strategy while strict computation
evaluates all premises of z in any case until z.v = uuy for
every logical variable z.

By default, the virtual machine adopts strict computation
and, to specify lazy computation, the programmer writes the
lazy keyword. Thus, lazy is a unary-prefix function with one
of the highest precedences.

During the lazy computation of backward evaluation, for
every variable z, one of the conditions z.x > z.True, or z.y <
z.False, as stated previously, is enough to prove or refute the
hypothesis, respectively. Thus, an operational semantics for
uncertain lazy computation is as follows:

s[h.x > h.True]
(lazy(h), s) %% (s, tt)
s[h.y < h.False]
(lazy(h), s) % (s, 1)
slh.z > h.False N h.y < h.True]

(lazy(h), s)

2 (s, uuy)

let z = u(h,s',h.Pup1)) (c(B,T),s) *5 &'
(h?m, s") bl (s',2) §'[h.False < z.x A z.y < h.True]

(lazy(h), s) >

(s',uuy)

(e(h,D),5) *¥ s (h7m,s") % (', u(h, s'
(h 8 hPC(hI))SU

(lazy(h), >‘3¥<s’,tt>

(e(h,T),5) X 5" (h?m,s') 5 (s, u(h, 8", h-Pugy 1))
t(h,s',h.Pp 1))y < h.False

(lazy(h), s) > (s', ff)

Some rules for prv:

s[h.x > h.True]
(lazy(prv(n)), s) % (s, t1)
s[h.y < h.False]
(lazy(prv(h)), s) =% (s, ff)
slh.z > h.False N h.y < h.True]

(lazy(prv(h)), s)

2 (s, uug)

let z = u(h, s, h.Punz,y) (c(h,Ts),) 5 &
(h?m, s) bl (s',2) §'[h.False < z.x A z.y < h.True]

(s, uu)

(lazy(prv(h)), s)

(e(h,Ty),8) %5 8" (h2m,s") %5 (s, 1(h, 8, h-Pugh 7,)))
t(h,s',h.Pyp,1y).x > h.True

(lazy(prv(h)), s) %% (s', tt)

(e(h,Ty),8) %5 8" (h2m,s') %5 (s, 1(h, 8, h-Pugh 7,)))
t(h,s',h.Pyp 1))y < h.False

(lazy(prv(h)), s) 5 (s', ff)
and some rules for rft:

s[h.x > h.True]
(lazy(rft(h)), s) 25 (s, tt)
slh.y < h.False]
(lazy(rft(h)), s) 2% (s, ff)
slh.x > h.False A h.y < h.True]

(lazy(rft(h)), s) %5

(s, uuy)

let 2 = u(h,s', h-Pynz,)) (c(h,Zy),s) bw o
(h?m, s") b (s',2) s'|h.False < z.x A z.y < h.True]
(lazy(rft(h)), s) Ry

(', uu)

(e(h,Ts),8) X 8" (h?m, ') % (', u(h, 8", h-Pog z,)))
t(h,s', h.Pep,1y)-2 > h.True

(lazy(rft(h)), s) =5 (s', tt)

(e, Tp),8) ¥ 8" (h?m, ") %% (s, u(h, 8", hoPugn 7))
t(h,s',h.Pyp 1))y < h.False

(lazy(rft(h), s) 2% (s', £f)

On the other hand, for uncertain strict computation, the
request for the value of a hypothesis can also mean to exploit
all its premises in order to get a more accurate certainty
measure. The order of computation in the list of premises is
static as follows:

b(h,T) = ifd(h,Z) = —2 then h else b(h, h.P,T);
Ternary b
b(h,P,I) = hif P=0;

b(h,P,T) = let p=newstate(Py) in
b(U(h,p.x - h.P,.??, p.y - h.P,.77), P\{P1 },7) otherwise;

The operational semantics of the strict evaluation is as
follows:

slh.v = uuy]
(h, s) (s, h.v)
s[h.v # wug A h.x < hy] A (b(h,T),s) K g
v(h,s',h.Py).x > h. False Aulh,s' h.P).y < h.True
(hy5) X (o',)

s[h.v #uug ANhx < h.y] (b(h,I),s) s g
t(h,s',h.P1).y > h.True

(h,s) 5 (s',t)

s[how # uug Ahx < h.y] (b(h,I),s) Y s
t(h,s',h.P1).x < h.False

(h.s) ¥ (5", 1)

D. Inference Operator - Inferop

Inferops result in a pair of type (F x F) x V, in which
the first member is a pair which in turn consists of the at
least and the at most certainty measures, in [—1.0,+1.0], and
the second member, in the outermost pair, is a logical value in
{ff,uu,tt}. The operational semantics for the built-in inferops
are:

Uncertain and:

(a,8) W (u,0) (b,8) W (v,8) min(uy,v.y) <T

(uand(T, a,b), s) bad ((min(u.z,v.z), min(u.y,v.y)), ff)

(a,5) ' (u,0) (b,5) ' (v,5)
min(u.z,v.z) < T Amin(u.y,v.y) > T

(uand(T, a, b),)

((min(u.z,v.x), min(uv.y,v.y)), uuy)

{:9) ™ (v,)
((min(u.z,v.z), min(u.y,v.y)), tt)

(a,s) ¥ (u,a)

(uand(T, a, b),)
Uncertain or:

min(u.z,v.x) > T

(a,5) ¥ (u, a)

(uor(T,a,b),)

(b, s) %! (v,8) maz(uvy,vy) <T
((maz(u.z,v.z), maz(u.y,v.y)), ff)

eval eval
(a,s) ~ (u,a) (b,s) ~ (v,5)
maz(u.xz,v.x2) < T Amaz(uy,vy) >T

(uor(T, a, b),)

((maz(u.z,v.z), maz(u.y,v.y)), uuys)

(a, s) %! (u,a) (b, s) %! (v,8) maz(u.z,vx)>T

(uor(T,a,b),)
Uncertain not:

((maz(u.z,v.x), maz(u.y,v.y)), tt)

eval

(a,s8) ~ (u,y) 1l—wx<T
(Unot(T’ a), s) ¥ (1 — u.y, 1 — u.z), ff)
(a,8) 3 (u,7)

(unot(T, a), s) %

(a,8) B (u,7) 1-uy>T

(unot(T, a), s) =5 ((1 — u.y, 1 — u.z), tt)
Note that unot inverts the minimum and maximum values

and swaps the positions.
Determinable and: (for any f > 0)

l—uy<TAuzxz>T

(1-wy,1—wu.x),uuy)

(a, s) ! (u,a) (b, s) vl (v, ﬁ) uy <TVoy<T
(dand(T,a,b) cnff,s) %5 ((—f,~f), ff)

(a,8) %' (u,0) (b,8) ¥ (v, B)
(um<Tva<T)/\uy>T/\v.y2T

(dand(T), a, b) cnff,) ((0,0), uuy)

(a, s) % (u,a) (b, s) ! (v, ﬂ) uz >TAvx>T
(dand(T, a,b) cnff,) ((f,), tt)
Determinable or:
(a,5) B (w,0) (b,5) ™ (v,8) uy<TAvy<T
(dor (T, a,b) cnff, s) ¥ ((—f,—), ff)
(a,5) 5 (w,0) (b,5) 3 (v,)
uzr <TAve<TA(u y>TVv.y2T)

(dor(T,a,b) cnff,) ((0,0), uuy)

(a,5) B (u,0) (b,5) W (v,8)
(dor(T, a,b) cnff,s) 2 ((f,

forany f > 0.
Finally, users are able to define their own inferops.

uxr>TVvr>T

f), tt)

V. CONCLUSION

The Internet has raised many issues in programming. The
fact that connections are neither reliable nor efficient makes us
consider the possibility of programming with uncertainty[10].

I formally introduced uncertainty as a programming lan-
guage feature, considering the current scenario in the presence
of code mobility and the Internet. Additionally, the present
uncertainty model permits evaluation with partial information,
by considering unknown[3] as part of the model in both the
variables used as premises and in resulting hypotheses. | also
introduced a number of inference operators. As a result, uu
can permit the unification of this paradigm with others.

Acknowledgement: | would like to thank Heélio Silva for
having discussed the present subject.

REFERENCES

[1] L. Cardelli. Globa computation. ACM Computing Surveys, 28A(4),
1996.

[2] U. Ferreira. Chiron: a framework for mobile agent systems. In G. E.
Lasker, J. Dospisil, and E. Kendall, editors, Advances in Mobile Agents
Systems Research. Proceedings of the 12th International Conference on
System Research, Informatics & Cybernetics, volume 1: Theory and
Applications, pages 12-22. The International Institute for Advanced
Studies in Systems Research and Cybernetics, August 2000.

[3] U. Ferreira. uu for programming languages. ACM SIGPLAN Notices,
35(8):20-30, August 2000.

[4] U. Ferreira. Programming languages features for some globa computer.
In Proceedings of SSGRR 2003s International Conference on Advances
in Infrastructure for e-Business, e-Education, e-Science, e-Medicine, and
Mobile Technologies on the Internet. Scuola Superiore G. Reiss Romoli
e Telecom lItalia Learning Services, From 28 July to 3 August 2003.

[5] I. Hacking. What Is a Logical System?, chapter What Is Logic?, pages
1-33. Number 4 in Studies in Logic and Computation. Claredon Press,
Oxford University, 1994.

[6] N. K. Kasabov. Foundations of Neural Networks, Fuzzy Systems, and
Knowledge Engineering. The MIT Press, Cambridge, Massachusetts;
London, England, 1996.

[7] B. Kosko. Fuzzy Thinking: The New Science of Fuzzy Logic. Harper-
CollinsPublishers, Flamingo, 1994.

[8] H. Kyburgh Junior. Handbook of Logic in Artificial Intelligence and
Logic Programming, volume 3: Nonmonotonic Reasoning and uncertain
reasoning, chapter Uncertainty Logics, pages 397-438. Oxford Univer-
sity Press, 1994.

[9] E. H. Shortlife. Computer-Based Medical Consultations: MYCIN. New
York, 1976. Elsevier.

[10] J. F. Sowa. Knowledge Representation: logical, philosophical, and
computational foundations. Brooks/Cole, 511 Forest Lodge Road,
Pecifi ¢ Grove,CA, 2000.

