
uu for Programming Languages

Ulisses Ferreira

Jose.Ferreira-Jr@cs.tcd.ie

Trinity College Dublin, Department of Computer Science
Dublin 2, Ireland

ulisses@ufba.br
Universidade Federal da Bahia, DCC,

Av. Adhemar de Barros s/n, Ondina,
Salvador BA Brazil

Abstract

The Internet has motivated new programming languages features.

I consider that programming for such a global environment requires

the ability to deal with what is unknown because connections often

fail or delay and programs should be robust.

In this article I present uu, a value that can represent lack of in-

formation in programming languages. A thesis is that this value is a

good feature towards the unification of some programming paradigms.

In this article I explore constructs as consequences of uu in such lan-

guages together with examples where this value helps in programming,

and I explain the relationship between uu and another programming

paradigm. The uu implementation is also briefly discussed.

1 Motivation

High school students usually solve systems of algebraic equations. They try
to find values, either numeric or symbolic, to be assigned to variables. Once
they find a value for a variable, this value remains constant. Variables in such
a system have two general states: unknown and (subsequently) known. These
states inspire a new programming paradigm, where variables in a program
initially contain the unknown state, and later, might change their state to

1

known as it receives a value in the problem domain. In imperative languages,
if a variable is in the former state, it contains a special value that is called
uu. Otherwise, it contains a value in the problem domain.

As another example, a program presents a question to the user, but the
user does not know or even does not want to answer the question. What
state should we assign to the variable after the input operation?

One more example, in programming for a world-wide network such as the
Internet, the languages designer should take into account that underlying
connections often fail or delay. In such cases, a neutral state could be assigned
to the variable that takes part in the request, in such a way that the program
carries on running safely, that is, the variable could contain a value that would
represent the lack of that piece of information, instead of being committed
to some known value in the problem domain.

A question arises from the above situations: what are the programming
languages concepts and constructs to provide a better abstraction for vari-
ables regardless of the programming paradigm? In this article, I partially
provide an answer to this question. Here, I also refer to a non-uu value as
known value.

Section 2 addresses somewhat related work. Section 3 introduces the con-
cept of the unknown value together with other related concepts, and section
4 explains how uu can replace specific constructs for exception handling.
Section 5 explains the applicability of uu in OOP while section 6 contains
a discussion on the use of the unknown value in the integration with other
paradigms, in particular logic programming. Section 7 explains how uu can
support lazy evaluation. Section 8 contains a comment on implementation,
section 9 presents a synthesis and, finally, the appendix presents an opera-
tional semantics.

2 Related Work

The ability to represent and reason under lack of information is well known
in the artificial intelligence and logics communities, and there has been much
work on this subject. However, from the best of my knowledge, none of
them is related to programming techniques: Extended Logic Programming,
introduced by Gelfond and Lifschitz[3] is one exception, where the core idea
is the negation itself, and abstract negation, which is an on-going research
of ours to provide only one negation in the whole unifying language. Our
approach here consists in using the uu value when a specific piece of infor-
mation is unknown to the program. In this way a set of variables with their
corresponding values can represent lack of information. Another somewhat

2

related work is boxed representation[7], implemented for functional languages
such as Haskell. Here, my main concern is in pragmatics of a programming
language, although such technique can implement uu. The present ideas do
not apply to pure functional languages, in which variables do not contain
values but instead denote them.

In the late 80’s, most commercial Expert System Shells also made use
of similar unknown value to represent lack of information over Boolean vari-
ables, although in a very restrictive way. I generalize the concept to the
programming language level regardless of the application area.

Current programming languages, such as Java[4] and ML, provide the
concept of exception handling and constructs for it. I present more general
constructs that replace this concept at the language level.

The ANSI/IEEE Standard 754-1985 also supports the concept of ”Not-
a-Number” or NaN[6] instead of floating-point values to represent indeter-
minate quantities. Although it also propagates NaN, the approaches are
not the same since that standard does not concern programming languages
constructs. Moreover, our approach is not limited to some specific data type.

3 uu : the Unknown Value

In this section, I introduce uu for programming languages design. For every
data type, the languages designer can add a special value, namely uu, to
represent the lack of information. For integers, we have uui; for real numbers,
we have uur and so on. In this paper however, I simply write uu to mean
that the type is irrelevant in the context. I apologize for such slight abuse of
notation. Accordingly, I use the term value to refer to a value regardless of
its type, and a known value to mean a value in the problem domain.

The unknown value, uu, extends the semantics of the classical and in-
tuitionistic connectives according to the Lukasiewicz[8] 3-valued logic. In
arithmetic and relational expressions, the presence of uu as an operand im-
plies that the expression results in uu without evaluating the other operand.

As a first example, I present a program to find the roots of an equation
of the second degree:

float a, b, c;
float delta := b ∗ b − 4 ∗ a ∗ c;
float x1 := (−b − sqrt(delta))/(2 ∗ a);
float x2 := (−b + sqrt(delta))/(2 ∗ a);
write x1, “ ”, x2;

I believe that the above syntax is intuitive or familiar for programmers.

3

In comparison to other programming languages, it is not syntactically much
different and here, a bit like Prolog, the corresponding system tries to find
values for variables when they are being requested in an evaluating expres-
sion. Initially, all variables contain or denote uu. The programmer, then,
uses the variables, x1 and x2, in the expressions of the write command and
then their known values are found according to the formulas in the program.
Although delta is used by both x1 and x2, it is desirable that its value be
calculated only once. Thus, the program execution asks for the values of b,
a, c, in this order, before giving the answer.

In terms of Domain Theory, uu is a result and there is no order relation
between uu and other values in the domain. Thus, uu is a value in the object
language, and not the bottom (⊥). However, although uu is not “undefined”,
it can be used where a function is undefined to transform a partial function
into a total one. Thus, the factorial function can be written as follows:

int fact(int x) :=
if x == 0, 1
ifnot

(if x > 0, x ∗ fact(x − 1)
ifnot uu)

otherwise uu ;

In the above example, if the value of the parameter x is uu or negative,
the result is uu. Notice that the conditional was extended to accommodate a
3-valued logic. I address conditionals as well as lazy evaluation later in this
article.

Variables either contain uu or a known value. Most imperative program-
ming languages adopt a default value as initial variable contents. Here, since
I am introducing uu in this context, I adopt this value as initial for each vari-
able according to its type. The programmer might want to initialize some of
the variables according to the application.

3.1 Evaluators and Reactors

In imperative programming, the present idea is to allow the programmer to
write a piece of code to “discover” the value in the problem domain whenever
a variable that contains uu is being used in some evaluating expression. I call
this piece of code an evaluator. Additionally, the programmer can write a
piece of code, called reactor, to be triggered instead of letting values be stored
in the variables. For every variable in a program, one can attach handlers.
They can be one evaluator and/or one reactor, independently. Among other

4

purposes, such handlers protect the variable. One can write handlers in the
following way, intuitive for Pascal or C++ programmers:

int x, y;

when x do { // this is an evaluator
x := 2 ∗ y;

}

when x := do { // and this is a reactor
x := $;

}

In the above example, two handlers were defined for x. At the first time
that the value of the variable x is being requested in an expression, the above
evaluator is triggered, which in turn computes the double of the value of the
variable y assigning it to x. From the second time on, that computed value
2 ∗ y is already available and the evaluator is not triggered.

The concept of evaluator can contain the return statement (similar to
C) instead of assigning a value to the requested variable. In the case of the
return statement, the evaluator is always triggered when that variable is
used, unless a known value has been assigned to that variable outside the
evaluator. Such an assignment can be statically allowed and dynamically
allowed or forbidden, or simply statically forbidden.

On the other hand, whenever a value is to be stored in x, the control
is jumped to the corresponding reactor. In the above example, the value is
accepted: notice that the $ symbol is used in reactors to represent the value
that, in other languages, would be stored unconditionally.

Two predicates are used to check whether a variable contains uu, namely,
known and unknown. In these cases, the value is accessed directly and
the Boolean result from the condition is provided by the interpreter without
evaluating the uu -valued variable handler.

3.2 Comparing Handers with Methods and Functions

A pragmatic comparison between the use of handlers and the use of func-
tions and methods can be done: after implementing an application system,
handlers can always be added and updated without changing the system
elsewhere. However, unlike functions and methods that are called elsewhere,
handler definitions can always be removed as the system provides a default
semantics for the absence of a handler.

5

The semantics of using a variable containing a known value is exactly
the same as for other languages. However, the semantics of using a variable
containing uu is not: if there is an evaluator, it is executed. Otherwise, i.e.
when there is no evaluator, uu is used. On the other hand, the semantics
of the use of variables is not the same as the semantics of function calls
either, because the latter are always executed. Therefore, in some sense, uu
combined with handlers are semantically somewhere between use of variable
and function.

Before using uu as an operand in the expression evaluation, Plain[2],
a proposed language for the Internet, optionally tries to get the value from
other sources, e.g. asking the end-user, in such a way that in the first run
programmers can be reminded that they forgot to initialize some variable.

Besides using some languages constructs to hide variables (x2, y2, uux,
and uuy, below), the equivalent semantics is then achieved without a built-in
uu in the following way:

int x2, y2;
logic uux := true, uuy := true;

int x(void) {
if uux, { // the evaluator for x

x2 := 2 ∗ y(); // instead of x eq(2 ∗ y());
uux := false;

}
ifnot return x2;

}

int x eq(int dollar) { // the reactor for x
x2 := dollar;
uux := false;

}

Notice that the Boolean type, built-in in some languages, has been replaced
by (3-valued) logic. Also, the parentheses that surround conditions in the
if statement (and while statement in other contexts), which might contain
commas in C, C++ and Java, have been replaced by the comma to mean
then. Here, ifnot is being presented instead of the reserved word else,
adopted in other imperative and functional languages.

In an object-oriented context, although it is possible to write a class,
say C1, with the above code, and then to define many instances of that
class and its subclasses, the use of classes does not encourage the use of
these ideas as much as a programming language does. Moreover, the syntax

6

for assignment and for handlers are more suggestive of the programmers
intention, and the occurrence of variables in expressions should not need to
have the same syntax as function calls. More importantly, handlers contain
different code, and this diversity makes classes and subclasses definitions
much more complicated and less readable. Another important difference:
in object-oriented languages, programmers should take care when they are
defining a public field because the field can be used outside the class and
programmers can no longer change the field definition, e.g. to be private to
that class, without considering elsewhere. Here, although it is not possible
to change the field definition either, it is still possible to insert code related
to that variable in a handler without changing the rest of the system. The
use of public fields in the current scheme is surprisingly harmless. If we think
in terms of classes as being downloaded and linked dynamically on a public
network and of mobile agents that deal with resources that cannot move,
this difference itself might become decisive in the language design. Using a
variable in an evaluating expression might cause its value to be read from
disk or requested from a remote process, provided that its current value is
uu. Thus, a variable may be a kind of cache, because in the subsequent uses
of that variable its value is already locally available and the handler is not
triggered. Conversely, assigning a value to a variable might cause its value to
be stored on disk or sent to a remote host. Storing values of variables on disk
and restoring the values by using the same variables implements persistent
programming.

4 uu in Exception Handling

uu, as being a more primitive and general concept, when combined with
handlers, replaces exception handling, which simplifies the language. The
prefix operator code gets the exception code for a variable in a context
where the reason for its value be unknown is required. Suppose that I want
to access a value for a variable at some place on the WWW, given the address
www.somewhere.on.the.earth.

string addr = “www.somewhere.on.the.earth”;
int x = getint(addr) timeout 10;
if unknown x then {

int c = code(x);
if c == exc to then {

write “Time-out in the attempt to access “,addr,nl;
}

7

ifnot {
write “Exception “,c, “in the access of x at“,addr,nl;

}
}

Thus, if the requested integer value is not retrieved by 10 seconds, the
program execution continues normally. In the above example, the case is
treated as an exception, but the lack of information in the problem domain
that was expected to be in x allows the computation to continue normally,
with or without the above treatment, and without x being committed to any
value in the problem domain, which guarantees safety and robustness.

5 Object-Oriented Programming with uu

The uu value can be added to any programming language no matter its
paradigm. In this section I give some examples in object oriented program-
ming. Although a hybrid paradigm language can adopt only one construct
for both frames and classes, I discuss them separately here.

5.1 uu and Frames

A programming language can adopt the following semantics for the use of a
variable in an evaluating expression:

1. If the value is known, use this value.

2. otherwise, if the evaluator for that variable is defined, execute it. Then

(a) if its value is now known, or the evaluator returns a value, use
this value;

(b) otherwise, use uu.

Success.

3. otherwise, if the variable is a field, look for the value of the correspond-
ing field in the object class (and recursively, in its superclass), using
the steps 1-3 of this algorithm, and then,

(a) if a value in the problem domain is found, use this value in the
expression instead of assigning to the requested variable;

(b) otherwise, use uu ;

8

Success.

4. At this point, the variable is not a field, contains uu and there is no
handler for the variable. If “possible”, ask the application user for the
value of that variable, and then,

(a) If the value is entered, the value is assigned to the variable and
the evaluation of the expression continues.

(b) On the other hand, if the user does not want to answer, uu is
used in the expression and its calculation carries on. The user will
no longer be asked for a value of the same variable, unless uu is
assigned to that variable.

5. If “not possible”, e.g. the application is not interactive, use uu.

Note. Steps 4-5, if implemented, require that the compiler generates the
symbolic names of the variables. Plain has done so and recently, in spite of
the size of the byte-code, it was realized that these names are also useful for
symbolic communication between agents on an open system. Thus, because
Plain was designed for knowledge representation, it has been relatively easy
to adapt it to support mobile agents.

Now, looking back to the first example, of the equation of second degree,
its coefficients a, b and c, do not have evaluators and hence their values can
be asked at the terminal at the first time that they are requested. Assign-
ing the result from an expression to a variable in its definition is a syntax
simplification of writing an evaluator for that variable containing only that
expression. Thus, initializations might be dynamic and lazy in a sense.

Handlers are very useful for testing and debugging, by inspecting what is
being used, and this can also be done in mobile agents. For these programs,
there can be handlers for other purposes that are outside the scope of this
discussion, e.g. to be implicitly executed before departures and after arrivals.

5.2 Classes with uu

Using the Internet as an example, if a programmer wants to build a class
to represent some specific measure, they should take into account the fact
that some countries use certain measuring systems while others use differ-
ent systems. Consider the temperature representation, either in Celsius or
Fahrenheit:

class temperature {
public float Fahr, Celsius;

9

when Fahr do {
Fahr := 9.0/5.0 ∗ Celsius + 32;

}
when Fahr := do {

Fahr := $; // it accepts the assignment
Celsius := 5 ∗ (Fahr − 32)/9;

}
when Celsius do {

Celsius := 5 ∗ (Fahr − 32)/9;
}
when Celsius := do {

Celsius := $; // accepts the assignment
Fahr := 9.0/5.0 ∗ Celsius + 32;

}
}

The above example is a form of constraint programming. It is represented
here, almost declaratively, the relationship between two variables concerning
measurement of the same concept, temperature, and the handlers keep the
variables always consistent. Regardless of the syntax, this is somewhat sim-
ilar to method invocation. However, methods are always executed.

As another example, I consider that classes and frames are concepts that
can be integrated. But while classes come from the set theory, frames come
from the prototype theory. While a class is a shape and is conceived for
re-usability and other programming concerns, a frame represents concepts of
the real world. Because both class frames and instance frames are defined, I
can integrate them easily:

class Human {
public logic dies := true;
public int class cardinality := 6000000000; // not exact
public string handed := ”Right”;

}
Human Socrates; // Therefore, Socrates.dies

However, in a frame system, classes are also treated as instances, e.g. it
makes sense to compute Human.cardinality + +; when someone is being
born. The reserved word class is being used as a modifier in cardinality to
remove the attribute from the instances of that class, although its subclasses
can inherit the attribute and even change its value to represent exceptions. In
the example, Socrates.cardinality might be meaningless. According to the

10

step 3 of the algorithm presented in the previous section, the uu contribution
here is that the field values of the instance Socrates is obtained from the class
Human (or possible superclasses) dynamically when they currently contain
uu, i.e. if a definition is changed dynamically inside a frame, its instances
will inherit the new value on demand.

According to the algorithm, uu does not necessarily depend on handlers,
and it can be used as any other value, e.g. it can be assigned to a variable.
Handlers are somewhat similar to ”ties” in Perl, “triggers” in SQL and ”tag
methods” in Lua[5], which are languages that do not provide uu.

Handlers and uu can be used to implement multiple inheritance in an
object-oriented language that provides single inheritance and late binding:
the programmer defines secondary conceptual super-classes as fields in the
defining class as in the example below:

class c1 {
public int i;
public float f ;

public void m() { }

when f do { f := 3.14; }
when i do { }

}

class c2 {
public int f ;
public float i;

public void m() { write ”Hello”, nl; }

when i do { }
when f do { f := 15; }

}

class c3: c1 {
private c2 sec; // c2 is a secondary super-class

// here, the conflicts are solved by interception:
public void m() { sec.m(); } // ... from c2
when i do return sec.f ; // ... from c2
when i := do { sec.f := $; } // ... to c2

11

}

Thus, the language shifts responsibility to the programmer to define the
interpretation of the conflicts among attributes from different conceptual su-
perclasses. The exceptions are treated by overriding methods and handlers,
which can be used to rename conflicting attributes when they are needed in
the defining class. In c3 in the above example, by default, the attributes are
inherited from c1 and handlers and methods are written to implement inher-
itance from c2. Because multiple inheritance is not very often needed, single
inheritance in this context seems to be an interesting solution, in particular,
together with late binding.

Classes do not necessarily need the new operator to create objects as
they might be created on demand: when a variable of any class is used in an
evaluating expression and it contains uu, the object referred to is created.

The program below exemplifies the use of uu when the programmer wants
some default value to be assumed. For example, we normally assume that
English ought to be generally used on the Internet when we want to commu-
nicate with the public. Spanish ought to be used in Latin-America mailing
lists, and so on. With uu, value inheritance can be a dynamic relationship:

class General {
public string you := “world”;
public string hello := “Hello,”;
public string sayhello;
when sayhello do

return hello + “ ” + you+ “!”;
}

class MailingList: General {
initial {

hello := “Ciao, ”;
you := “Italia”;

}
}

//...
MailingList b;
b.you := “caros brasileiros”;
write b.sayhello, nl;
b.you := uu;

12

write b.sayhello, nl;
MailingList.hello := uu;
write b.sayhello, nl;

In the above example, after the definition of b, the value of the field b.you
is customized as “caros brasileiros”. In the following line, the field b.sayhello
is requested and evaluated as “Ciao, caros brasileiros!”, and this content is
written followed by the newline: the constant nl. Then, uu is stored in
b.you. When b.sayhello is evaluated in the subsequent line, it is evaluated
as “Ciao, Italia!”, that is, because b.you now contains uu, its known value is
picked up from its class (and so on, upwards, if it is also uu there). Then,
this value is written followed by the newline. The next line assigns uu to
the field hello of the class MailingList. Finally, the string “Hello, Italia” is
written followed by the newline command. In this way, I represent default
values. In this case, sayhallo is always evaluated.

6 Imperative and Logic-Based Features

uu can help combine imperative constructs in a hybrid language with other
programming paradigms, such as Logic Programming. A Logic Programming
system, besides answering a query with either true or false, can provide values
for free variables. Some of these variables remain free after the computation
from a query, which means that they represent “any answer”. Thus, besides
the ability to answer a query with uu to mean “unknown”, uu can be used
to implement free variables.

On the other hand, if a variable of the imperative paradigm is passed to
a query of the logic paradigm and its value is uu, the algorithm of the called
paradigm will understand that the query includes a request for the value
of that variable. After receiving the answer, the calling program interprets
variables containing uu as an appropriate answer, and continues normally.
If the answer list is empty, that means “no answer”, while uu is normally
interpreted as “unknown answer”. As above, depending on the contract, uu
can be interpreted as “any answer”.

7 uu in Lazy Evaluation (Call by Need)

uu can support lazy evaluation in almost all sequential operations in a lan-
guage, that is, when the first operand results in uu, the second operand is
not evaluated. Another submitted article to this journal describes in detail

13

the application of uu and lazy evaluation in programming for internets and
mobile agents. Thus, in the rest of this section, I mention only call by need.

Some functional languages are eager (e.g. ML) and some are lazy (e.g.
Haskell), but I can think of lazy and eager evaluations as concepts related to
functions in the following way:

logic lazy f(int x, int y) :=
if x + x > y, true
ifnot false;

//...
logic y := f(1 + 2 + 3, 2 + 2);

Here, although the parameter x is used more than once in the function f, x
is evaluated only in its first occurrence in the expression. The lazy modi-
fier postpones the evaluations of the parameters, e.g. 1 + 2 + 3 and 2 + 2.
Regarding the implementation of this mechanism, it is not difficult with uu :
The compiler generates code to skip the actual parameter list. It also creates
a pointer to every expression in the actual parameter list, 1 + 2 + 3 and 2 + 2
in this case, including references to the activation record[1], transforming ev-
ery actual parameter into a local subroutine, and then passes the expression
pointer to the corresponding formal parameter handler, x or y. As already
explained, for the first time that a uu -ed parameter is being evaluated, the
corresponding actual parameter, either 1 + 2 + 3 or 2 + 2, is evaluated. From
the second time on, the value is known and, because of this, it is not evalu-
ated. However, if the formal parameter is not used, the corresponding actual
parameter is not even evaluated.

It seems to be bizarre to provide lazy evaluation and imperative features
because of side-effects. However, a hybrid paradigm programming language
can provide the concept of “pure function” as its compiler forbids assignments
and global objects inside its code.

8 Implementation

Although efficiency is not the main issue in the present paper, inefficiency
might be the only negative point of the present ideas, in comparison with
imperative languages that do not provide object-oriented constructs, because
the interpreter has to check the presence of uu whenever a variable is being
used in an evaluating expression. References to handlers for a variable also
increase the size of the object code. This detail is not really a languages fea-
ture, but instead it depends on the decision of implementation which might

14

require some analysis on the source code in terms of frequency of use of
handlers, which in turn depends on use and experiments. Therefore, the
implementation of uu is a challenge. The comparison is relative to applica-
tion because method invocation, for example, requires pattern matching and
search algorithm. Moreover, like a mobile-code language, a uu -based lan-
guage entails some form of code interpretation, which is becoming a normal
conduct in programming languages as hardware is getting larger and faster.

9 Conclusion

As a consequence of the adoption of uu, expressions in a programming lan-
guage have to be able to consider this special value. Assuming that not uu
results in uu, statements such as if -then-else and while, as well as their
semantics are adapted to deal with three logical values. The conditional
statement or expression in their full forms, for example, becomes if -then-
ifnot-otherwise.

uu and handlers can simplify a programming language by replacing com-
mon constructs such as multiple inheritance.

Handlers and uu have been experimented within Plain for a number of
years successfully. Their application, along with other features, to program-
ming for mobile agents and the Internet has been investigated.

The idea of a hybrid paradigm for programming allows programmers feel
free to choose their own way of working. Some definitions are better writ-
ten in some particular paradigm while others are better written in other
paradigms.

At a more refined level, there can be two kinds of unknown states: the
first represents the initial lack of information with potential for later dis-
covery. The second kind also represents the lack of information after having
attempted to discover its value. Plain distinguishes one kind from the other,
to allow the inference machine to recognize variables whose value was already
asked.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques,
and tools. Addison-Wesley series in computer science. Addison-Wesley
Publishing Company, Reading (Mass.). - London, 1986. Originally pub-
lished as: Principles of compiler design.

15

[2] U. Ferreira. The plain www page. URL http://www.ufba.br/˜plain and
http://www.cs.tcd.ie/˜ferreirj/plain.html, 1996–2003.

[3] M. Gelfond and V. Lifschitz. Classical negation in logic programs and dis-
junctive databases. New Generation Computing. Ohmsha Ltd and Spring-
Verlag, pages 365–385, 1991.

[4] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Ad-
dison Wesley Publishing Company, 1996.

[5] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes. Lua - an extensible
extension language. Software: Practice and Experience, 26(6), 1996.

[6] Institute of Electrical and Electronics Engineers. IEEE Standard for Bi-
nary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, 1985.

[7] S. P. Jones. The Implementation of Functional Programming Languages.
Prentice-Hall International Series in Computer Science. Prentice-Hall,
Inc., 1987.

[8] S. C. Kleene. Introduction of Metamathematics. D. Van Nostrand, Prince-
ton, 1952.

16

